
RGBN image editing

Thiago Pereira Luiz Velho
Visgraf Laboratory

IMPA - Instituto de Matematica Pura e Aplicada
Rio de Janeiro, Brazil

tpereira@impa.br lvelho@impa.br

Abstract—We propose a method to edit RGBNs (images with
a color and a normal channel). High resolution RGBNs are easy
to obtain using photometric stereo. Free editing will result in
normals which do not correspond to any realizable surface. Our
normal operators guarantee the integrability of the results.

Our method can filter normals with any linear kernel
allowing high-pass and edge-enhancement filters. We have
designed a normal linear combination method for adding
details with frequency control. New geometric features can be
created with a custom brush that warps deformations along its
path. A nonlinear operator is also proposed. Its integrability is
controlled with a two-band separation of frequencies: smooth
shape and details.

Keywords-RGBN, normal map, gradient reconstruction, nor-
mal processing, filtering, deformation

I. INTRODUCTION

This paper proposes new methods to process normal maps
that guarantee the integrability of the results. Normal maps
evolved from the seminal work of Blinn in bump mapping
[1]. Beyond the applications in real-time rendering, normals
are extremely important in geometric modelling. In Shape
Palletes [2], the authors sketch 3D models specifying only
normals.

Normal maps can be obtained in many ways. A high-
resolution modeled mesh can be used to extract it and
enhance models with fewer polygons [3], [4]. An alter-
native is capturing real world objects. Capturing normals
with 3D scanning requires expensive equipment and lacks
resolution. Much cheaper digital cameras can be used to
obtain better results with stereophotometric approaches [5]
allowing very high resolution normals, as in the digitization
of Michelangelo’s Pieta [6]. It takes as input multiple images
from the same view point, each illuminated with different
known light positions. It then solves a least-squares problem
to find the normal and albedo (color) of each pixel in the
image. In many applications, normals are first obtained from
raw data and then undergo an integration process to obtain
a mesh with positions. The integration step is unstable, as
Nehab et al [7] point out, reconstructing geometry from
normals brings low frequency errors. For this reason, we

have designed a tool that edits the normals directly and
completely avoids reconstruction.

Note that editing normals is semantically different from
editing colors. Normals are unit vectors and should always
represent a surface. Free editing will result in a normal field
which does not correspond to any realizable surface. This is
why editing normals is a hard problem. Our main contribu-
tion is controlled operations that guarantee integrability, i.e.
the existence of a smooth surface with the given normals.
Editing general normal maps in an image editing software
is difficult, because normals are restricted to the unit sphere.
Also due to distortions introduced by parametrizations which
are usually hard to comprehend by the user and by the
system.

Advances in vision like shape from shading and
stereophotometric [5] have made RGBNs an important nor-
mal map representation. We restrict our work to RGBNs
[8], which are camera pictures containing for each pixel
color (RGB) but also geometric information (normal). An
RGBN is a projective mapping of a 3D object into the
texture space. With this parametrization, we propose simple
integrability-preserving linear operators on RGBNs, such as
filtering and adding details. We also introduce a nonlinear
detail operator which reduces bias towards the camera. The
nonlinear operator results can be controlled with a two-band
separation of the signal: low frequencies are preserved and
only details are edited.

Projective mappings have the advantage that users are well
acquainted to projections, as such, editing becomes more
intuitive. On the other hand, RGBNs are limited in that they
do not allow for change of viewpoint or realistic shadow
calculations. Both these limitations are a consequence of
having only a local description of the model (normals)
instead of a global one (positions). A projective RGBN atlas
[9], [6] can counter this limitations. The resulting charts are
surfaces mapped by a camera transformation to the plane
image. Since they contain normal and colors, each chart is
in fact an RGBN and can be edited by our system.

The paper is organized as follows. In section III, we
propose a method for filtering normals allowing smoothing,
edge enhancement and high pass filters. In section IV we
introduce the linear combination method for adding details.

Subsection V defines the creation of features by twisting
some known detail along a user-defined path. In section VI
we determine when edited normals correspond to a realizable
surface. In section VII, we also propose a nonlinear operator
to add details.

II. RELATED WORK

Toler-Franklin et al. [8] coined the term RGBN to refer to
an array of pixels with associated color and normal channels.
They have shown that many NPR rendering algorithms
work in RGBNs. These include toon shading, line drawing
methods, curvature shading and exaggerated shading. They
developed signal processing techniques like low-pass filter-
ing, derivatives and curvature estimation.

ZBrush [10] is a digital sculpting tool. It can create
high resolution models using subdivision. They can then be
painted/sculpted using 2.5D images of pixols which contain
colors and depth. Normal maps can be generated from the
final models. For editing normals, they would first have to
be converted to depth information outside ZBrush.

In [11], [12] the authors recovered normals from pho-
tographs and then developed texture synthesis on the re-
sulting RGBNs. This way the normals are used to guide
local distortions in the synthesized texture. In Textureshop
[12], the authors also transferred normals between images.
Poisson image editing [13] was used to merge normals
seamlessly, followed by normalization, a process which does
not guarantee a conservative normal field.

Normalpaint [14] proposes a tool for creating normal
maps directly, thus avoiding the need to model a high-res
mesh in the traditional modeling pipeline. They calculate
normals in a way that is equivalent to height extrusion. In
their approach only shapes with simple geometry can be
created and editing of normals is not supported.

In Gradient Domain Painting [15], the authors propose
tools that change the gradient of color images, a GPU-
multigrid integrator recovers the new image in real-time.
Different gradient blending modes are shown. In our work,
the entire pipeline is composed of local operations.

In [15], Taubin defines a specialized laplacian operator
for filtering normals on a mesh. He then integrates this
normal field to obtain filtered positions. Different smoothing
filter for normal maps have been developed for mipmapping.
In [16], the author smooths normals and shows how the
shortening they introduce can be used to reduce aliasing of
specular highlights. In [17], the authors formalize normal
map filtering using convolution between normal distribution
functions and the BRDF.

III. FILTERING

The simple way to filter an RGBN is to consider each
channel of a 6D (color + normal) image separately and
convolve it with a kernel. Since the resulting normals would
not have unit norm, a normalization step would follow. As

Toler-Franklin et al [8] pointed out the problem with naive
filtering is that due to foreshortening the area of each pixel
will be underestimated by cos θ, θ the angle being between
normal and viewing directions. To simplify the analysis the
authors assume a constant viewing direction as in the case
of a far away viewer. In this case the viewing direction is the
z direction and cos θ = nz . This analysis means we should
replace the normal vector (n1, n2, n3) by (n1/n3, n2/n3, 1),
which we call foreshorten corrected. In this representation,
filtering is now a linear operation as long as the third
component is preserved. We next show, that we can actually
ignore the third component, allowing us to use any linear
filter.

We are interested in establishing the equivalence between
a filter in a height map representation of a surface and its
normal representation. We do not want to obtain a height
map explicitly, but it is a good abstraction to develop
filters for normals. Assume our surface is given by z =
z(x, y). We can write the normal field as a function of its
derivatives zx(x, y), zy(x, y). Using the surface parametriza-
tion ψ(x, y) = (x, y, z(x, y)) whose tangent vectors are
ψx(x, y) = (1, 0, zx), ψy(x, y) = (0, 1, zy). We obtain the
normal vector:

N(x, y) =
ψx × ψy

|ψx × ψy|
=

(−zx,−zy, 1)√
z2
x + z2

y + 1

The above formula lets us convert from zx, zy to N . In
fact the foreshorten correction scheme shown above is the
reverse process. Given a unit normal N = (n1, n2, n3):

−n1/n3 = zx,−n2/n3 = zy

This can be done as long as n3 6= 0, otherwise there is
no height map that represents this surface. What we have
shown is a one-to-one mapping between the N and zx, zy ,
as such, we can work with one or the other indiscriminately.
Note that we use the terminology zx, zy loosely here, since
this field might not be the gradient of any height function.
We defer a detailed discussion to section VI.

So we are looking for a filtering algorithm that takes the
normals of a height map Nz and produces the normals of
the filtered height map Nz∗g . Conceptually we can go from
Nz to zx, zy and then to z itself. We proceed by convolving
z with a kernel g. With this new surface at hand, we can
simply differentiate and take the vector product to obtain
Nz∗g , as shown below:

z
∗g−−−−→ z ∗ g

↑ ↓
zx, zy

(1),∗g−−−−→ (z ∗ g)x, (z ∗ g)y

↑ ↓
Nz ?−−−→ Nz∗g

(a) Smoothed Normals (b) Enhanced Normals

Figure 1. Normal filtering can be applied locally as a brush.

We want to avoid surface reconstruction. Fortunately, the
arrow (1) above will provide a shortcut since derivatives and
convolution satisfy the relation (z ∗ g)x = (zx ∗ g).

This means when the normal is foreshorten corrected
(−zx,−zy, 1) we can convolve it with any kernel. Since
we are only interested in filtering zx, zy , we can simply set
the third component to 1, whether the kernel would preserve
it or not. After filtering we simply normalize the vector to
get a unit normal back. Notice that the resulting field is
guaranteed to be conservative, since it is by definition the
normals of a height function.

Having developed this filtering framework, we now dis-
cuss some applications. Gaussian Filtering, in fact, any
low-pass filtering would smooth the normals. We are also
interested in Sharpen Filters to enhance detail, i.e, an all-
pass filter + high-pass filter. The problem with sharpening
is that by enhancing high-frequencies we also enhance noise
(Figure 1). A simple solution is using an Edge Enhancement
Filter using all-pass + band-pass.

All of the above filters preserve the DC frequency. Filters
that do not have this property can be useful for editing
normals. For example, we might be interested in extracting
a normal texture from an RGBN. In this case, we look
for eliminating the low-frequencies related to shape and

(a) Original Normals

(b) High-pass filter result

Figure 2. A high-pass filter was used to remove the shape and retain
a flat normal texture. All shaded images in this work are generated with
directional lights.

Figure 3. The detail normals nh defined in R are combined with the
image normals.

retaining the high-frequencies related to texture (Figure 2).
A Difference of Gaussians and a Laplacian of Gaussian
provide simple band-pass filters giving us the texture but also
eliminating high-frequency components like noise. Another
application is simply scaling the surface represented by the
normals generating shallow surfaces.

We have developed a local filtering operator by applying
the above filtering procedure in a small neighborhood. The
user defines the shape and radius of the region. In Figure
1, we show smoothed and enhanced normals. Noise was
also enhanced in this example. The local filter works well
in practice, but it can be regarded as a filter with a spatially
varying kernel, since it leaves most of the image unaffected.
For this reason, the above integrability property may not
hold.

IV. LINEAR COMBINATION

In this section, we investigate a method of adding details
to RGBNs. Details could be an applied stamp (Figure 4) or
bumps painted by the user (Figure 6).

Given a base normal field nb defined in the entire image I
(Figure 3) and a detail normal field nh defined in R ⊂ I , the
problem of combining normals is generating a new normal
field w which agrees with nb everywhere, but is influenced
in R by nh. We refer to their respective height functions as
b and h. We would like combination to be:

1) integrability preserving - lead to normal fields that
correspond to a real surface;

2) frequency preserving - respect or replace selective
bands.

Notice that simply adding the normal vectors and renor-
malizing does not satisfy any of the above properties. We
propose the linear combination model which is integrability
and frequency preserving. This is crucial for editing normal
maps, since we usually want to edit mesostructure (normals)
without affecting macrostructure possibly encoded in a dif-
ferent representation.

In the linear model we would rather look at the normal
fields as derivatives. Just like in the previous section, suppose
we could add height functions b and h, respectively base
and details. By linearity of the gradient, w = O(b + h) =
Ob + Oh. So even if we do not have heights, we can
still obtain the new gradient and thus the new normals. By
construction the linear model preserves integrability, details
in section VI. It is also frequency preserving, if a frequency
band is not present in the details, it will be unharmed in
w. To replace a given band, we can use a band removal
filter in the original RGBN either globally or only in R,
thus building the nb normals which can then be transformed
in the Ob used above. This way we can respect not only
low shape frequencies but also high texture frequencies,
only changing mesostructure. In section VII a nonlinear
combination method is also proposed.

Now that we have a good understanding of combination,
we can look at how to specify the details. The first local
operator we propose is inserting a small RGBN (stamp) in
a neighborhood of a point (Figure 4). The stamp can be an
entire RGBN itself or extracted from one. In the last case, we
may want to eliminate the lower frequencies through filtering
when creating nh. Notice that if we want to apply any
2D linear transformation A to the stamp, gradients will not
be simply copied like colors, instead we should transform
them by (A−1)T . This allows us to scale, rotate or shear.
Translations do not affect normals. In the next section, a
more advanced construction of the detail nh is proposed.

Figure 4. The leaf was used as a stamp and added as detail to the soldier’s
skirt. Notice how the results of each stamp are different, depending on the
base normals.

V. CREATING FEATURES

To create line features we use the pen operator. In Figures
5 and 6, custom profiles are used to create bumps, creases
or scratches on the surface 1 . A deformation h(u, v) defined
in a canonical domain has to be warped along an input path.
We call this mapping from (u, v) = φ(x, y) (Figure 7). We
then define the new gradient (or normals):

w = Oh ·Dφ =
(

∂h
∂u

∂h
∂v

)(∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
These normals will be used to define the details and the

combination proceeds like described in section IV. The
above formula simplifies if we only want to transfer a profile,
that is, if h(u, v) does not depend on v.

The first step is to establish this mapping in a tubular
neighborhood of the path (Figure 7) drawn by the user. The
u(x, y) coordinate can be regarded as a radial displacement
from the path (distance), while the v(x, y) coordinate as a
displacement along the path (ideally arc-length parameter-
ized). In the pen operator the profile is independent of the
v coordinate, which simplifies the calculations.

To avoid slow distance field calculations, we use geomet-
rical methods using point to segment distance functions and
projections to build φ(x, y). This might not be the exact
distance field because we calculate it locally and online
as the user draws. Instead of the distance field approach,
one could define the mapping f(x, y) by extracting control
points based on the input path and building a spline surface.
This mapping can be built C1 everywhere. After editing
the normals, does the resulting normal field correspond to a
surface? We analyze this question in the next section.

1Matching profiles and deformations is left as an exercise for the reader.

Figure 5. Custom height profiles along a path are transfered to the normals
with the pen operator.

Figure 6. This cucumber was edited using the four profiles above. Height
profiles are an intuitive way of specifying deformations.

VI. INTEGRABILITY

In the analysis that follows, it pays to look at normal
image as 2D vector field w. If this field is the gradient of a
C1 height function, we say it is a conservative vector field.
This means our normal image does correspond to a surface.
We cay say w = Oh, even if we cannot build h explicitly.

The linear combination takes as input two conservative
fields: base normals Oh1 and added detail Oh2. It then
combines the gradients. Since w = Oh1+Oh2 = O(h1+h2),
the new field is trivially conservative. One hypothesis used
above is that the added detail is conservative. This holds for
the stamp operator, but requires proof for the pen operator,
since the wrapping could destroy this property.

Let’s assume the curve C defining the edited region is a
C2 regular curve (C ′(t) 6= 0). We can always approximate
discontinuities with high curvatures. Under this hypothesis,
there is a tubular neighborhood T where the mapping defined
by φ is a diffeomorphism [18]. In fact this holds if T does
not intersect C’s medial axis M (Figure 7). We have defined
the curved profile normals as w = Oh ·Dφ = O(h◦φ), so w
is conservative and C1, assuming h is C1. Note that we do
not have h ◦ φ, but we know this function exists. Nowhere
in the above demonstration, we used that h(u, v) depends
only on u (as is the case for profile editing), so our method
works for more patterns like normal textures.

The problem with the above hypothesis is that M can be

Figure 7. The distance field is used to build a mapping around the curve.
It is discontinuous only over the path’s medial axis.

Figure 8. Notice how the shading of an impossible object (left) resembles
a rotated version of a bump (right).

arbitrarily close to the curve, making R a very thin region.
If this does not hold, we can still show equivalency with
a continuous surface. If we require h(u, v) to depend only
on the distance parameter u, we can show that w is C1

everywhere, except for the points of M , where w is not
defined. In fact, there is a C0 function h2 defined in the
image I such that w is the gradient of h2 in I\M where
h2 = h ◦ φ. φ is C1 outside M . h2 is continuous on M
because h depends only on u(x, y) which is a continuous
function even on M . This discontinuous derivative will lead
to discontinuous normals (creases) in the final continuous
surface. This characteristic might be desirable or not. If
h(u, v) depends also on v, w is the gradient of a height
function which may be discontinuous in I\M .

Both the stamp and the pen operator are only defined
locally, this is equivalent to defining h as being zero outside
the edited region R. This requires Oh to fall smoothly to
zero close to ∂R and be equal to 0 outside. For an open
curve C, this is not enough. A counter-example based on
Escher’s infinite stairs is the image below on which many
deformations were made. The paths are radial and the height
profile was a step function as shown in Figure 8. Each edit
is a step up, so we could climb this stair infinitely up. To
fix this issue, we ask one more property of w:

a, b /∈ R⇒
∫ b

a

w ds = 0

This means open curves cannot introduce level changes

Figure 9. All carving was done with the pen operator. We can raise (lower)
a region by tracing its border with a pen operator that introduces a level
change.

outside R. For closed curves with no self-intersections the
integral restriction above can be made weaker, the integral
between the left side (inside of the curve) and the right
side (outside) needs only to be a constant, not necessarily
0. Editing with this kind of profile raises (or shallows) the
region inside the curve (Figure 9), but w is still guaranteed
to be conservative. Notice that in this case h(u, v) should
be defined in a domain with the topology of a cylinder. By
invariance of line integrals through diffeomorphisms, these
properties can be checked in h(u, v). Further care needs to
be taken near the medial axis. For the local filtering operator,
the integral restriction does not necessarily holds, as such the
resulting field may not be conservative.

VII. NONLINEAR NORMAL EDITING

In the linear combination method, deformations are biased
towards the camera (Figure 10). This problem is most
noticeable near object silhouettes (Figure 12), since in these
regions the normal is farther from the camera direction. This
same problem is found in mesh deformation methods. We
would like a method that wraps the deformations in the
direction of the smooth normal. In this section we propose

Figure 10. Comparison of the linear and nonlinear combination method.

a nonlinear combination method that works in the local
tangent plane, thus eliminating camera bias.

Deformations in the rotation method are in the base
normal direction, but since it is a nonlinear method we
need a different way to control integrability. We propose
a two-band separation scheme. The signal is split in smooth
frequencies and details. Our operator will only affect the
details and respect the smooth frequencies. For this reason,
the rotation model can only be applied to small scale
features. This approach leads to good visual results. The
extension of this framework for editing normal maps on
arbitrary meshes should follow naturally by assuming the
base normals to be the fixed mesh normals.

As in Figure 3, nb denotes the base normal field and
nh a detail normal field defined in R ⊂ I . We want nb to
be smooth. The problem with building nb with linear filters
is that edges are not preserved. Even though pixels near an
edge are very close spatially their colors (or normals in our
case) are not correlated. The idea of bilateral filtering [19] is
to take into account not only domain weights (distance) but
also range weights (color similarity). In [8], bilateral filtering
was extended to RGBNs, using also normal similarity (see
Figure 11). This filter produces great results visually, but it
is not know if it is an integrability preserving operation.

In the rotation model, we define a local coordinate system
in each point (tangent space) using nb. We interpret nh as
being in this local system. We compose the two normals
with rotations. Our local operations are transformations in a
local tangent coordinate system u, v, n defined by the base
normal vector n and an orientation vector o in the xy plane.
Using rotations, it is easy to work on the tangent plane as
well as interpolate operations. Editing the normal starts by
specifying a desired normal vector b. We can simply replace
the existing normal a with b. Another option is to blend the
two vectors. Blending can be very useful for fading smoothly
the effect of the new normals as distance from the edited
area increases. We can also preserve frequencies if we rotate

Figure 11. The original normal image is smoothed with bilateral filtering
producing the base normals.

the existing normal a (including high frequencies) by the
direction and angle specified by b (medium frequencies) in
the local tangent system nb (low frequencies). This strategy
fails when b (in global coordinates) has a negative z value.
In this case we actually need to replace b by a saturated
vector k, defined as the maximum displacement along the
great arc which has positive z values larger than a threshold.

VIII. CONCLUSION

Requiring the deformations to extend to 0 outside R
is a limitation of our method, blending techniques should
be investigated in the future to enforce this property on
any deformation. Since the Jacobian Dφ is used to warp
the normals, the method would profit from high quality
mappings around the curve. This is a problem only for
deformations that depend on the arc-length parameter in high
curvature regions.

If real-time feedback is not required, an exact distance
transform can be calculated. This would allow curves of
topology different from the unit real interval, like a T or H-
shaped curve which are currently not supported by our local
distance calculation. For profile editing, even curves with
self-intersections would be possible. A different approach
with the current system is to use the closed line pen operator
to trace the border of a thin region, approximating the curve.

As discussed above Toler-Franklin et al. [8] have devel-
oped many rendering algorithms for RGBN. In this work we
focused on editing geometry, but more visualization methods
could be designed, building on our general filtering method.

Another line of work, focusing on appearance, is to work
on the relation between reflectance properties, illumination
conditions and geometry. We could paint highlights and find
the appropriate light positions, or fix lighting and indirectly
edit reflectance all on top of an RGBN.

One important limitation of RGBNs (2.5D in general) is
that no change of viewpoint is allowed. In future work, a
3D mesh coupled with a projective atlas [9] will allow the
extension of the above tools to any 3D model by editing
chart by chart. A more general approach is to project an
RGBN on demand and reflect the changes back to texture
using any surface parametrization. Zbrush allows the user to
edit attributes in the viewing plane and project back using
the uv texture coordinates. RGBNs fit well in this framework
since normals are also available, both for being edited
themselves but also to simulate editing of other attributes
on the surface. In this point of view, the RGBN encodes the
surface’s metric per pixel.

It is already possible to simulate normal texture synthesis
with the stamp operator (Figure 12). More advanced results
would be possible extending the work of Fang et al [20],
[12] where the distortions encoded by the normals are taken
into account for color synthesis on RGBNs. This would
allow more advanced editing of normals and color in large
regions. Our combination methods would easily apply. Just
like texture synthesis, filtering methods for attributes should
be developed taking into account the local metric.

We have shown the need for software specifically de-
signed to edit RGBNs. Our system can filter normals al-
lowing for low-pass, high-pass and edge enhancement. It
contains brushes for adding detail and creating new features
giving the user great control. Conditions were established
that guarantee integrable results.

ACKNOWLEDGMENT

We thank Szymon Rusinkiewicz and the Princeton Graph-
ics Group for the RGBN dataset used in this paper. We
thank the anonymous reviewers for their valuable comments.
We also thank Emilio Vital Brazil and Adriana Schulz for
reviewing this manuscript. This research has been developed
in the VISGRAF Laboratory at IMPA. The Laboratory
is supported by the agencies CAPES, CNPq, FINEP, and
FAPERJ and also by gifts from the companies IBM Brasil
and Alias.

REFERENCES

[1] J. F. Blinn, “Simulation of wrinkled surfaces,” SIGGRAPH
Comput. Graph., vol. 12, no. 3, pp. 286–292, 1978.

[2] T.-P. Wu, C.-K. Tang, M. S. Brown, and H.-Y. Shum,
“Shapepalettes: interactive normal transfer via sketching,”
ACM Trans. Graph., 2007.

Figure 12. Branches were created on the soldier’s skirt. On the left, the RGBN with the branches and a binary mask used to diffuse the regular square
borders. The stamp was applied 3 times and segmentation methods were used to restrict editing to the skirt.

[3] J. Cohen, M. Olano, and D. Manocha, “Appearance-
preserving simplification,” in SIGGRAPH ’98: Proceedings
of the 25th annual conference on Computer graphics and
interactive techniques, 1998, pp. 115–122.

[4] P. Cignoni, C. Montani, R. Scopigno, and C. Rocchini, “A
general method for preserving attribute values on simplified
meshes,” in VIS ’98: Proceedings of the conference on
Visualization ’98, 1998, pp. 59–66.

[5] R. J. Woodham, “Photometric method for determining surface
orientation from multiple images,” pp. 513–531, 1989.

[6] F. Bernardini, H. Rushmeier, I. M. Martin, J. Mittleman,
and G. Taubin, “Building a digital model of michelangelo’s
florentine pieta,” IEEE Computer Graphics and Applications,
vol. 22, no. 1, pp. 59–67, 2002.

[7] D. Nehab, S. Rusinkiewicz, J. Davis, and R. Ramamoorthi,
“Efficiently combining positions and normals for precise 3d
geometry,” ACM Trans. Graph., vol. 24, no. 3, pp. 536–543,
2005.

[8] C. Toler-Franklin, A. Finkelstein, and S. Rusinkiewicz, “Il-
lustration of complex real-world objects using images with
normals,” in International Symposium on Non-Photorealistic
Animation and Rendering (NPAR), Aug. 2007.

[9] L. Velho and J. Sossai Jr., “Projective texture atlas construc-
tion for 3d photography,” Vis. Comput., vol. 23, no. 9, pp.
621–629, 2007.

[10] Pixologic, “Online documentation,”
http://www.pixologic.com.

[11] S. Zelinka, H. Fang, M. Garland, and J. C. Hart, “Interactive
material replacement in photographs,” in GI ’05: Proceedings
of Graphics Interface 2005, 2005.

[12] H. Fang and J. C. Hart, “Textureshop: texture synthesis
as a photograph editing tool,” in SIGGRAPH ’04: ACM
SIGGRAPH 2004 Papers, 2004, pp. 354–359.

[13] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,”
ACM Trans. Graph., vol. 22, no. 3, pp. 313–318, 2003.

[14] M. Bammann Gehling, C. Hofsetz, and S. Raupp Musse,
“Normalpaint: an interactive tool for painting normal maps,”
Vis. Comput., vol. 23, no. 9, pp. 897–904, 2007.

[15] J. McCann and N. S. Pollard, “Real-time gradient-domain
painting,” ACM Trans. Graph., vol. 27, no. 3, pp. 1–7, 2008.

[16] M. Toksvig, “Mipmapping normal maps,” journal of graphics
tools, vol. 10, no. 3, pp. 65–71, 2005.

[17] C. Han, B. Sun, R. Ramamoorthi, and E. Grinspun, “Fre-
quency domain normal map filtering,” ACM Trans. Graph.,
vol. 26, no. 3, p. 28, 2007.

[18] M. D. Carmo, “Differential geometry of curves and surfaces,”
1976.

[19] C. Tomasi and R. Manduchi, “Bilateral filtering for gray
and color images,” in ICCV ’98: Proceedings of the Sixth
International Conference on Computer Vision, 1998.

[20] S. Zelinka and M. Garland, “Jump map-based interactive
texture synthesis,” ACM Trans. Graph., vol. 23, no. 4, pp.
930–962, 2004.

