
Jump-Miss Binary Erosion Algorithm

Anderson Fraiha Machado and Ronaldo Fumio Hashimoto

Institute of Mathematics and Statistics of University of Sao Paulo, SP, Brazil
dandy@ime.usp.br and ronaldo@ime.usp.br

Abstract

This work presents a new and fast algorithm for binary
morphological erosions with arbitrary shaped structuring
elements inspired by preprocessing techniques that are
quite similar to those presented in many fast string match-
ing algorithms (jumps and miss-matchings). The result of
these preprocessing techniques is a speed up for computing
binary erosions. A time complexity analysis shows that this
algorithm has clear advantages over some known imple-
mentations. Experimental results confirm this analysis and
shows that this algorithm has a good performance and can
be a better option for erosions computation.

I. Introduction

Mathematical Morphology (MM) is a general method
for studying mappings between complete lattices. In par-
ticular, mappings between binary images are of special
interest and they are called set operators [1]. A central
paradigm in MM is the representation of set operators
in terms of dilations, erosions, unions, intersections, com-
plementations and compositions. For example, it is well-
known that increasing set operators can be represented as a
union of erosions. Since erosion is the morphological dual
to dilation, a fast erosion algorithm can also produce an
efficient implementation of dilations. In many applications
(for example, granulometries), the time efficiency of set
operators is quite important. In this paper, we present an
efficient algorithm for binary erosion with arbitrary shaped
structuring elements inspired by preprocessing techniques
which is quite similar to those presented in many fast string
matching algorithms (jumps and miss-matchings). A time
complexity analysis shows that this algorithm has clear
advantages over some known erosion implementations.
Experimental results confirm this analysis and show that
this algorithm has a good performance and it can be a
better option for erosion (and dilation) computation.

II. Binary Mathematical Morphology

Let Z denote the integer set. Let P (Zd) denote the
power set of Zd. Let X,Y ⊆ Zd. The operations X ∪ Y ,
X∩Y , X\Y and Xc are the usual set operations of union,
intersection, difference and complementation, respectively.
Let ⊆ denote the usual set inclusion relation. The pair
(P (Zd),⊆) is a complete Boolean lattice [2].

For the purpose of computational time analysis, we need
to define the data structures that are used to store the
subsets of Zd. Although there many ways to store sets,
in this paper, a set X ⊆ Zd is stored using either a linked
list (denoted by LX), or a bound multidimensional array
(denoted by MX), which is a multidimensional matrix
representing some portion of the Zd grid that contains
X . When using linked list, points in X are directly
stored in LX (that is, only points x ∈ X are stored in
LX) and, consequently, |LX | = |X|. When using bound
multidimensional array MX , the points are stored in the
following way:

MX(z) =
{

1 z ∈ X,
0 otherwise.

Consequently, |MX | is the size of the portion grid of Zd
that contains X and it may be larger than |X|.

Let (Zd,+) be an Abelian group with zero element o ∈
Zd, called origin. Let h ∈ Zd and X ⊆ Zd. The set Xh =
{x + h : x ∈ X} is the translation of X by h. The set
Xt = {−x : x ∈ X} is the transpose of X . We say that
X is symmetric if and only if X = Xt.

Let X,B ⊆ Zd. The set operations X ⊕B = ∪b∈BXb

and X	B = ∩b∈BX−b are called Minkowski addition and
Minkowski subtraction, respectively. The set operations
X ◦ B = (X 	 B) ⊕ B and X • B = (X ⊕ B) 	 B
are called opening and closing, respectively. The operators
δB : P (Zd) → P (Zd) and εB : P (Zd) → P (Zd) defined
by δB(X) = X⊕B and εB(X) = X	B, ∀X ⊆ Zd, are,
respectively, the dilation and erosion by the structuring
element (SE) B. A well-known property for erosions and

dilations is that if o ∈ B, then εB(X) ⊆ X ⊆ δB(X). An-
other property is that if b ∈ B, then εB(X) = εB−b

(X−b).
Thus, we can compute εB(X) by computing εB−b

(X−b),
where b is any point of B. Note that o ∈ B−b. Then, in
order to compute εB−b

(X−b) ⊆ X−b, it is sufficient to find
the points h ∈ X−b in which B ⊆ X−b−h. Thus, for the
sake of simplicity, in this paper, we consider that o ∈ B.
Dilations and erosions are closely related. They are dual
operators of each other, that is, εB(X) = (δB(Xc))c and
δB(X) = (εB(Xc))c [1], [3], [4]. Therefore, as they are
dual operators of each other, an efficient implementation
of one of them may produce an efficient implementation
of the other. In this paper, we choose to investigate an
efficient implementation for the erosion operator. For that,
we use the equivalent definition [1], that is,

εB(X) = {h ∈ Zd : Bh ⊆ X}. (1)

In the following subsections, we present two well-
known important binary morphological operators (erosion
transform and morphological skeleton) which will be used
in the preprocessing step for our erosion algorithm.

A. Erosion Transform

The erosion transform of a set X by a SE A, is a
grayscale image fAX : Zd → Z built from a successive mor-
phological erosions. It is a generalization of the distance
transform [5]. Let us formally define the erosion transform.

Definition 2.1 (n-fold Minkowski subtraction): Let
X,A ⊆ Zd and n ∈ Z. The n-fold Minkowski subtraction
of X by A, denoted by (X 	n A), is defined as

X	nA =

∅ if n < 0,
X if n = 0,
X 	A	A	 · · · 	A︸ ︷︷ ︸

n operations

if n > 0. (2)

The n-fold erosion of a set X by a SE A is defined as
εnA(X) = X 	n A.

Definition 2.2 (Erosion Transform): The erosion trans-
form of X by A is the grayscale image fAX : Zd → Z
defined as

fAX(z) =
{

max{n : z ∈ (X 	n−1 A)} if z ∈ X ,
0 otherwise.

(3)
It is very known that once fAX has been computed, it
only requires a simple thresholding to compute the binary
erosion εnA(X) [6]. In fact, the idea to use a sort of
distance transform and to threshold it in order to compute
erosions was proposed in 1987 by Lay [7]. However, it is
important to keep in mind that it is not the case here. We

Algorithm 1 Erosion Transform (X,A)
Input: a set X stored as MX and an adjacent set A stored

as LA.
Output: the erosion transform fAX .

1: for all z ∈MX do
2: fAX(z)← +∞;
3: end for
4: for all v ∈ LA do
5: for all z ∈MX do
6: fAX(z)← Get Value (X, v, z);
7: end for
8: end for

Algorithm 2 Get Value (X, v, z)
Input: a set X stored as MX , a point v ∈ Z2 and a point

z ∈ X .
Output: the value of fAX(z).

1: if MX(z) = 0 /* that is, z 6∈ X */ then
2: return 0;
3: end if
4: return min{fAX(z),Get Value (X, v, z + v) + 1};

are just computing fAX as preprocessing step in order to
compute εB(X) for a given SE B (with arbitrary shape).
Typically, in this paper, A 6= B and is a subset of the 3×3
window centered at the origin. Although, A can be chosen
according to problem situation, the only requirement is that
|A| must be a small and constant. In order to avoid any
confusion between A and B, we will call A as adjacent set.
In 1995, Chen and Haralick [6] presented a fast recursive
algorithm to compute fAX . In this section, we present an
algorithm (very similar to Chen and Haralick’s algorithm)
to compute the erosion transform (see Algorithms 1 and 2).

B. Time Complexity Analysis of Erosion
Transform Algorithm

In order to compute fAX(z), the algorithm
Get Value (X, v, z) runs in O(|MX | · |LA|) and
so does the algorithm Erosion Transform. Observe
that once a point p has been visited by Get Value,
one can obtain fAX(p) in Θ(1). If |A| is a constant, the
algorithm Erosion Transform runs in linear time, that
is, it runs in Θ(|MX |).

C. Morphological Skeleton

The morphological skeleton of an image is useful for
binary shape recognition and compression [8]. Here, we
will use it as a preprocessing step for erosion computation.
Let us formally define the morphological skeleton of an
image.

Definition 2.3 (n-fold Minkowski addition): Let
X,A ⊆ Zd and n ∈ Z. The n-fold Minkowski addition of
X by A, denoted by (X ⊕n A), is defined as

X⊕nA =

∅ if n < 0,
X if n = 0,
X ⊕A⊕A⊕ · · · ⊕A︸ ︷︷ ︸

n operations

if n > 0. (4)

A disk of radius n centered at z ∈ Zd using an adjacent
set A is defined as {z}⊕nA. Let X,A ⊆ Zd and z ∈ Zd.
We define DA

X(z) ⊆ X as the set

DA
X(z) =

{
∅, if z 6∈ X;
({z} ⊕m A), otherwise,

where m = max{n : ({z} ⊕n A) ⊆ X}. Note that, if
z ∈ X , DA

X(z) is the maximal disk centered at z using the
adjacent set A within X . Now, let us define maximal disks
within X . Given a point x ∈ X , if there is no other disk
besides DA

X(x) lying within X and properly containing
DA
X(x), then we say that DA

X(x) is a maximal disk. The
centers of all maximal disks comprise the morphological
skeleton of the image. The morphological skeleton of an
image X using an adjacent set A, denoted by SAX , can be
obtained by using Lantuejoul’s formula [1], [9]:

SAX =
∞⋃
m=0

(X 	m A) \ [(X 	m A) ◦A]. (5)

A direct implementation of this equation yields an algo-
rithm with high computational time complexity. Maragos
and Schafer [8] presented a fast (linear) algorithm for SAX
computation, but it works only when A is a convex sym-
metric adjacent set. In this section, we present an efficient
algorithm to compute SAX using the erosion transform fAX
without imposing any restriction on the adjacent set A.
The next proposition gives some properties of skeleton and
erosion transform [1], [8].

Proposition 2.4: Let X,A ⊆ Zd. Then following state-
ments hold: (i) SAX ⊆ X , if o ∈ A; (ii) DA

X(p) ⊆ X ,
∀p ∈ Zd; and (iii) X =

⋃
s∈SA

X

DA
X(s).

The last statement of Proposition 2.4 corresponds to
the reconstruction from morphological skeleton [8]. As a
direct consequence of the last statement of Proposition 2.4,
we have the following proposition.

Proposition 2.5: Let X,A ⊆ Zd. Then, for each p ∈
X , there exists s ∈ SAX such that p ∈ DA

X(s).
Let X,A ⊆ Zd. Given a point z ∈ X , the next

proposition provides a relationship between DA
X(z) and

the erosion transform fAX .
Proposition 2.6: Let X,A ⊆ Zd. If z ∈ Zd, then

DA
X(z) = {z} ⊕m−1 A, where m = fAX(z).

Algorithm 3 Skeleton (X,A)
Input: an image X stored as both MX and LX , and an

adjacent set A stored as LA.
Output: the morphological skeleton SAX and the erosion

transform fAX .
1: SAX ← ∅;
2: fAX ← Erosion Transform (X,A);
3: for all x ∈ LX do
4: if max{fAX(x+ v) : v ∈ LAt} ≤ fAX(x) then
5: SAX ← SAX ∪ {x};
6: end if
7: end for
8: return (SAX , f

A
X);

Proof: By definition of erosion transform, if z 6∈ X ,
then fAX(z) = 0 and, consequently, DA

X(z) = {z} ⊕m−1

A = ∅, since m = 0. So, assume that z ∈ X . In this
case, we need to show that these two statements hold:
(i) ({z} ⊕m−1 A) ⊆ X and (ii) ({z} ⊕m A) 6⊆ X .
Now, let us prove (i). By definition of erosion trans-
form, {z} ⊆ (X 	m−1 A). Since dilation (and con-
sequently, Minkowski addition) is an increasing opera-
tor [10], ({z} ⊕m−1 A) ⊆ (X 	m−1 A) ⊕m−1 A. Note
that the right side of the previous inclusion is an opening
operator. Since opening is an anti-extensive operator [10],
we have that ({z} ⊕m−1 A) ⊆ X . Now, let us prove (ii).
Assume by contradiction that ({z} ⊕m A) ⊆ X . Since
erosion (and consequently, Minkowski subtraction) is an
increasing operator [10], ({z}⊕mA)	mA ⊆ (X 	mA).
Note that the left side of the previous inclusion is a closing
operator. Since closing is an extensive operator [10], we
have that X ⊆ ({z} ⊕m A) 	m A ⊆ (X 	m A). Since
z ∈ X , we have that z ∈ (X	mA). But, this is an absurd,
since by definition of erosion transform, z 6∈ (X 	m A).
Therefore, ({z} ⊕m A) 6⊆ X . ut

The following proposition guarantees the correctness of
our morphological skeleton algorithm (see Algorithm 3).

Proposition 2.7: Let X,A ⊆ Zd and x ∈ X . Then
max{fAX(x+v) : v ∈ At} ≤ fAX(x) if and only if x ∈ SAX .

D. Time Complexity Analysis of Skeleton
Algorithm

All points of MX have been visited by Ero-
sion Transform whose time complexity is Θ(|MX | ·
|A|). Thus, the time complexity of Skeleton is Θ(|MX | ·
|A| + |MX |) = Θ(|MX | · |A|). If |A| is a constant,
the algorithm Skeleton runs in linear time, that is, in
Θ(|MX |).

III. Jump-Miss Erosion Algorithm

In this section, we present a new and fast binary erosion
algorithm based on string matching techniques that will be
called jump-miss erosion algorithm.

A. String Matching Techniques

String matching algorithms are an important class of
string algorithms that search for locations where one or
several strings (also called patterns) are found within a
larger string or text.

Let Σ be an alphabet (finite set). Formally, both pattern
and searched text are concatenations of elements of Σ. A
naı̈ve algorithm for finding a pattern P within a text T is
O(|P | · |T |). However, there are faster search algorithms
based on preprocessing techniques which build data struc-
tures in order to reduce the size of the search space.

Some algorithms preprocess the input text (building a
suffix tree [11] in linear time [12]), some others preprocess
the pattern (KMP [13]), and others both pattern and text
(searching for regular expressions [14]). In general, prepro-
cessing techniques are linear-time algorithms proportional
to the input size. Another interesting feature presented
in string matching algorithms is the property to make
jumps while the searching is performing. These jumps
occur when a consecutive character sequence of the pattern
miss-matches a character subsequence of the text (see, for
example, the Boyer-Moore algorithm [15]).

By looking at the erosion definition (Eq. (1)), one can
easily see that the erosion computation can be viewed as
the search for translations of B into the input image X .
Thus, in the context of our work, the alphabet is Σ =
{0, 1}, corresponding to the pixel values in binary images;
while patterns and texts correspond respectively to SEs and
input images. In our case, the preprocessing step consists
of computing the erosion transform and the morphological
skeleton using a fixed adjacent set A. In the following, we
state some results needed to guarantee the correctness of
our algorithm. The next proposition gives a relationship
between the value of an erosion transforms at a point h
and maximal disks centered at h.

Proposition 3.1: Let X,Y,A ⊆ Zd and h ∈ X . If
o ∈ A and |A| > 1, then fAX(h) ≤ fAY (h) if and only
if DA

X(h) ⊆ DA
Y (h).

Proof: Let m = fAX(h) and n = fAY (h). Then, by
Proposition 2.6, DA

X(h) = ({h} ⊕m−1 A) and DA
Y (h) =

({h}⊕n−1A). (⇒) Let k a positive integer such that m =
k+n. Thus, DA

Y (h) = ({h}⊕m−1A)⊕kA = DA
X(h)⊕kA.

Since o ∈ A, the dilation by A (and consequently, the
Minkowski addition) is an anti-extensive operator [1], and,
therefore, DA

X(h) ⊆ DA
Y (h). (⇐) Since ({h} ⊕m−1 A) ⊆

({h}⊕n−1A), o ∈ A and |A| > 1, we have there exist an

integer k ≥ 0 such that ({h}⊕m−1A)⊕kA = ({h}⊕n−1

A) and, consequently, m ≤ n. ut

The next proposition guarantees that once fAB has been
computed, fABh

can be easily computed by translating
horizontally the grayscale image fAB by h, that is, given a
point s ∈ SABh

, fABh
(s) = fAB (s− h).

Proposition 3.2: Let B,A ⊆ Zd and h ∈ Zd. Then
fAB (s) = fABh

(s+ h) for all s ∈ SAB .
The next Theorem gives necessary and sufficient con-

ditions for a point h ∈ Zd to be in εB(X) using erosion
transforms using certain adjacent sets.

Theorem 3.3: Let A ⊆ Zd an adjacent set such that
o ∈ A and |A| > 1. Let B ⊆ Zd and h ∈ Zd. Let s ∈ SABh

.
Then, fABh

(s) ≤ fAX(s), if and only if Bh ⊆ X
Proof: (⇒) By Proposition 2.5, for each p ∈ Bh,

there exists s ∈ SABh
such that p ∈ DA

Bh
(s). Besides, by

Proposition 3.1, fABh
(s) ≤ fAX(s) if and only if DA

Bh
(s) ⊆

DA
X(s). By by the second statement of Proposition 2.4,

DA
X(s) ⊆ X , and, consequently, p ∈ X . Therefore,

Bh ⊆ X . (⇐) Since Bh ⊆ X , DA
Bh

(s) ⊆ DA
X(s), and, by

Proposition 3.1, we have fABh
(s) ≤ fAX(s). ut

As a corollary of Theorem 3.3, we have that it is not
necessary to verify all points of Bh in order to check
if Bh ⊆ X . It is sufficient to examine just the points
in the skeleton SABh

. This yields a faster algorithm to
compute εB(X) since |SABh

| is usually much smaller than
|Bh|. However, it is still possible to build an even faster
algorithm using jumps. The next two lemmas are used to
prove the jump-miss theorem.

Lemma 3.4: Let X,A ⊆ Zd and z ∈ Zd. If e ∈ At,
then fAX(z + e) ≤ fAX(z) + 1.

Proof: By contradiction. Assume that fAX(z + e) >
fAX(z)+1. By Proposition 2.6, we have that DA

X(z+e) =
({z + e} ⊕m−1 A) and DA

X(z) = {z} ⊕n−1 A, where
m = fAX(z+e) and n = fAX(z). By hypothesis, m > n+1.
But, if e ∈ At and m > n + 1, then DA

X(z) ⊕ A ⊆
DA
X(z + e), since DA

X(z) ⊕ A = ({z} ⊕n−1 A) ⊕ A =
({z}⊕(n+1)−1A) ⊆ {z+ e}⊕m−1A = DA

X(z+ e) ⊆ X .
But, this is a contradiction, since DA

X(z) is a maximal
disk of X , DA

X(z)⊕A could not be contained in X . Then
fAX(z + e) ≤ fAX(z) + 1. ut

Before presenting the jump-miss theorem, we need to
define a total order over Zd to make possible the jumps in
the searching process. Let C = {ei : 1 ≤ i ≤ d} denote
the canonical basis of Zd, that is, ei is the vector with 1
at the ith coordinate and 0 elsewhere. The vector ei ∈ C
defines a permutation πi of the sequence [1, 2, . . . , d] by
exchanging the numbers i and d in that sequence, that is,
πi = [1, 2, . . . , i−2, i−1, d, i+1, i+2, d−2, d−1, i]. For
example, π1 = [d, 2, 3, . . . , d−2, d−1, 1]. More formally,

for j = 1, . . . , d,

πi[j] =

 d if j = i;
i if j = d;
j otherwise.

(6)

The sequence πi defines a total order ≤i over Zd in the
following way (a1, a2, . . . , ad) ≤i (b1, b2, . . . , bd) if and
only if ∃m > 0 : (∀j < m, aπi[j] = bπi[j]) and (aπi[m] <
bπi[m]). For example, in Z2, for the rectangle R from (1, 1)
to (m,n), we have (1, 1) ≤2 (1, 2) ≤2 . . . ≤2 (1, n) ≤2

(2, 1) ≤2 . . . ≤2 (2, n) ≤2 . . . ≤2 (m,n) The order in
which the points in R are visited in this case is known as
raster order. Note that e2 = (0, 1) is the horizontal axis.

Given a set X = {x1, . . . , xm} ⊆ Zd, let LiX =
(xk1 , . . . , xkm

) denote the sequence of points of X such
that xkj

≤i xkj+1 . If z ∈ Zd such that xk1 ≤i z <i xkm
,

the next element to z in X , denoted by nextX(z) ∈ LiX ,
is defined as xkj ∈ X such that xkj−1 <i z ≤i xkj . If
z = xkm , then we define nextX(z) ∈ LiX as λ.

Theorem 3.5 (Jump-Miss Theorem): Let X,B ⊆ Zd.
Let A ⊆ Zd such that At ∩C 6= ∅ and o ∈ A. Let s ∈ SAB .
If fAX(s) < fAB (s), then there are at least (fAB (s)−fAX(s))
points h ∈ Zd such that Bh 6⊆ X .

Proof: Let e ∈ At∩C. By hypothesis, fAX(s) < fAB (s),
that is, there exists an integer k > 0 such that fAX(s)+k =
fAB (s). By definition, fAX(s) ≥ 0 and, by Proposition 3.4,
for i = 0, 1, ..., k, fAX(s+ i · e) ≤ fAX(s) + i. Thus, fAX(s+
i · e) ≤ fAB (s). Besides, by Proposition 3.2, for any i,
fAB (s) = fABi·e

(s + i · e). Then, for i = 0, 1, . . . , k − 1,
fAX(s+ i · e) < fABi·e

(s+ i · e). Since k = fAB (s)− fAX(s),
we have fAB (s)−fAX(s) positions h = i·e such that fAX(s+
h) < fABh

(s+ h). By Theorem 3.3, for each h, Bh 6⊆ X .
ut

Note that the order in which the pixels are visited (and,
consequently, the direction in which we have jumps) is
defined by the vector e ∈ C. Finally, in Algorithm 4, we
present the jump-miss erosion algorithm.

B. Time Complexity Analysis of Jump-
Miss Erosion Algorithm

The time complexity analysis of the algorithm depends
on the data structure. In this work, we have chosen
MX , LX and MB , LB for storing the sets X and B,
respectively. We can use a linked list to store SAB in order
to perform efficiently the comparison at Line 9. In addition,
we use the ordered set LiX to store the points of X to per-
form efficiently the instructions at Lines 7, 14 and 18. With
these optimizations, the time complexity, in the worst case,
is O(|MB |·|A|+|MX |·|A|+|SAB |·|X|). If |A| is a constant,
then the time complexity of Jump Miss Erosion is
O(|MB | + |MX | + |SAB | · |X|) which is much smaller

Algorithm 4 Jump Miss Erosion (X,B,E)
Input: an image X , a SE B such that o ∈ B, and an

adjacent set A such that o ∈ A and At ∩ C 6= ∅.
Output: the set Z = X 	B.

1: /* Begin Preprocessing Step */
2: (SAB , f

A
B)← Skeleton (B,A);

3: fAX ← Erosion Transform (X,A);
4: /* End Preprocessing Step */
5: Z ← ∅;
6: Let ei ∈ At ∩ C;
7: h← The first element of LiX ;
8: while h 6= λ do
9: if (∃s ∈ SABh

: fAB (s − h) > fAX(s)) /* miss-
matching */ then

10: /* jump */
11: jump← fAB (s− h)− fAX(s);
12: h← h+ jump · ei;
13: if MX(h) = 0 /* h 6∈ X */ then
14: h← nextX(h);
15: end if
16: else
17: Z ← Z ∪ {h};
18: h← nextX(h);
19: end if
20: end while
21: return Z;

than O(|MB | · |MX |), the time complexity for most known
erosion implementation, since usually, |SAB | � |MB |.

IV. Experimental Results

In this section, we will present some results obtained by
the application of our algorithm to bi-dimensional binary
images and compared it to other known erosion algorithms.
We did two experiments: (i) one using square SEs with
different sizes (in order to evaluate the performance of our
algorithm using simple SEs); (ii) and the other one using
various silhouettes1 as structuring elements (see Fig. 3).

The input image used for both experiments is a 2500×
2500 image and it has four sectors as you can see in Fig. 1.
Two sectors are composed by four silhouettes (correspond-
ing structuring elements), another sector by an image with
salt and pepper noise with uniform distribution, and the last
sector is composed by lines “equally” separated at slope
about 150 degrees.
In all these experiments, the appropriate adjacent set cho-
sen for our algorithm is A = {(0, 0), (0,−1)}. Implemen-
tations for these and others experiments can be found at
http://score.ime.usp.br/˜dandy/mestrado.php.

1These silhouettes can be found at
http://www.imageprocessingplace.com/

Fig. 1. The input image with dimension 2500×
2500.

Fig. 2. Average time execution of the erosion
algorithms using square SEs.

A. Square SEs

In order to show that our algorithm can be applied to
images using simpler SEs such as squares, rectangles, and
so forth, we have done experiments using square SEs with
different sizes.

The erosion algorithms used in our experiment are
the following: the first one is an algorithm that uses SE
decomposition [16] (Alg. 1), the second one uses Run-
Length Encoding (RLE) [17] (Alg. 2), the third one uses
bit vector [18] with SE decomposition (Alg. 3), and, finally,
our algorithm (Alg. A).

As you can see in Fig. 2, the execution time of the
algorithms Alg. 1 and Alg. 3 had a significant influence as

Beetle Butterfly

Cattle Deer

Dog Elephant

Fish Horse

Fig. 3. Silhouettes used as SEs.

the SE size increases. In particular, Alg. 3 seems to provide
a better alternative when SE size is smaller than 10, which
is a common situation in many applications. However, with
the advance of technology, the increase number of high
resolution images will require larger SEs, making Alg. A
more appropriate for these situations.

For algorithms Alg. 2 and Alg. A, we observe that
an increase in SE size has little effect on the execution
time. Thus, Alg. 2 and Alg. A have a good performance
as the SE size increases. Moreover, there is a wide range
of SE size where Alg. 2 is slightly faster than Alg. A. This
performance profile shows that our algorithm and Alg. 2
are comparable. However, observe that Alg. A is the fastest
from a certain SE size. This efficiency can be explained,
since the more is fAX(z), the larger are the jumps.

B. Arbitrary Shaped SEs

We have also compared our algorithm using arbitrary
shaped SEs. For this experiment, we have used various
silhouettes as structuring elements (see Fig. 3). The size
of this silhouettes is around 600× 600.

The erosion algorithms used in our experiment are the
following: the first one is an algorithm that uses Run-
Length Encoding (RLE) [17] (Alg. 3), the second one uses

Binary Decision Diagrams (BDD) [19] (Alg. 4), the third
one uses bit vector [18] (Alg. 5), and, finally, our algorithm
(Alg. A).

Table I shows the average time execution (in seconds)
of the algorithms for ten repetitions using the silhouettes
indicated in its first column as the SEs. The average time
execution of the erosion algorithms marked by boldface
corresponds to the fastest algorithm. The values ‘-’ indi-
cated in the table correspond to average time execution
bigger than 2,000 seconds.

SEs Alg. 3 Alg. 4 Alg. 5 Alg. A
beetle 10.53 36.14 1282.74 2.64

butterfly 33.37 3.59 − 1.81
cattle 10.42 5.28 − 1.83
deer 11.01 6.27 − 1.72
dog 6.64 2.71 − 1.55

elephant 6.48 21.19 − 1.61
fish 4.91 82.33 − 1.84

horse 5.85 63.05 − 1.90

TABLE I. The average time execution of the
erosion algorithms.

As you can see in Table I, the average execution time of
the algorithms Alg. 3 and Alg. 4 had a significant influence
depending on the type of the SE. For algorithm Alg. A,
we observe that these SEs have little effect on the average
execution time. Thus, Alg. A has good performance for
arbitrary SEs. As for the first experiment, this efficiency
can be explained, since the more is fAX(z), the larger are
the jumps.

V. Conclusion

In this paper, we have proposed an efficient algorithm
for binary erosion inspired by preprocessing techniques
which is quite similar to those presented in many fast string
matching algorithms (jumps and miss-matchings). We have
also shown that the time complexity of this algorithm has
clear advantages over some known erosion implementa-
tions. Tests comparing the execution time of some known
erosion algorithms confirm the theoretical analysis and
show that our algorithm has a good performance and it
is a better option for erosion computation.

An important issue that remains for future research
is to find the appropriate adjacent set A that minimizes
SAB and, consequently, the execution time of the erosion
algorithm. Other problem is to select the adjacent set A that
maximizes the value of fAX(s), where s ∈ SAX . Currently,
we are investigating strategies to solve these problems
using optimization techniques.

VI. Acknowledgments

This work was supported by CNPq (Conselho Nacional
de Desenvolvimento Cientı́fico e Tecnológico), CAPES
(Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior), and FAPESP (Fundação de Amparo a Pesquisa
do Estado de São Paulo).

References

[1] Dougherty, E.R., Lotufo, R.A.: Hands-on Morphological Image
Processing. SPIE International Society for Optical Engine (2003)

[2] Birkhoff, G.: Lattice Theory. American Mathematical Society
Colloquium Publications, Rhode Island (1967)

[3] Serra, J.: Image Analysis and Mathematical Morphology. Academic
Press, New York (1982)

[4] Serra, J.: Image Analysis and Mathematical Morphology. Volume
2: Theoretical Advances. Academic Press (1988)

[5] Borgefors, G.: Distance Transformations on Digital Images. Com-
puter Vision and Image Processing 51(34) (1986) 344–371

[6] Chen, S., Haralick, R.M.: Recursive erosion, dilation, opening, and
closing transforms. IEEE Transactions on Computers 4(3) (March
1995) 335–345

[7] Lay, B.: Recursive algorithm in mathematical morphology. Acta
Stereologica 6 (1987) 691–696

[8] Maragos, P., Schafer, R.: Morphological skeleton representation and
coding of binary images. IEEE Transactions on Acoustics, Speech
ans Signal Processing 34 (October 1986) 1228–1244

[9] Lantuejoul, C.: Skeletonization in quantitative metallography. In
Haralick, R.M., Simon, J.C., eds.: Issues in Image Processing.
Sijthoff and Noordhof (1980) 107–135

[10] Heijmans, H.J.A.M.: Morphological Image Operators. Academic
Press, Boston (1994)

[11] Weiner, P.: Linear pattern matching algorithm. In: 14th Annual
IEEE Symposium on Switching and Automata Theory, ACM/IEEE
(1973) 1–11

[12] Ukkonen, E.: On-line construction of suffix trees. Algorithmica
3(14) (1995) 249–260

[13] Knuth, D., James H. Morris, J., Pratt, V.: Fast pattern matching in
strings. SIAM Journal on Computing 2(6) (1977) 323–350

[14] Baeza-Yates, R.A., Gonnet, G.H.: Fast text searching for regular
expressions or automaton searching on tries. Journal of the ACM
(43) (1996) 915–936

[15] R. S. Boyer, J.S.M.: A fast string searching algorithm. Comm.
ACM 20 (1977) 762–772

[16] Xu, J.: Decomposition of Convex Polygonal Morphological Struc-
turing Elements into Neighborhood Subsets. IEEE Transactions on
Pattern Analysis and Machine Inteligence 13(2) (February 1991)
153–162

[17] Kim, W.J., Kim, S.D., Kim, K.: Fast Algorithms for Binary Dilation
and Erosion Using Run-Length Encoding. ETRI Journal 27(6)
(December 2005) 814–817

[18] Bloomberg, D.S.: Implementation Efficiency of Binary Morphol-
ogy (April 2002) http://www.leptonica.com/papers/binmorph.pdf.

[19] Madeira, H.M.F., Barrera, J., Jr., R.H., Hirata, N.S.T.: A New
Paradigm for the Architecture of Morphological Machines: Binary
Decision Diagrams. In: SIBGRAPI’99 - XII Brazilian Symposium
of Computer Graphic and Image Processing, IEEE Computer Soci-
ety (November 1999) 283–292

