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Abstract—In this paper we present a fully automatic method-
ology for underwater image restoration which is based on
classical physical models of light propagation in participating
media. The technique uses pairs of images acquired from
distinct viewpoints under the same environmental conditions.
At the kernel of the method is an iterative algorithm that is
based on a contrast metric that automatically estimates all
parameters of the model with good accuracy at a significantly
low computational cost. We then present an algorithm that
uses the model with the estimated parameters to improve
the quality of images of underwater scenes taken under
natural illumination, (i.e. without any special light source).
First we show the quality of parameters estimated by our
approach by comparing against the same parameters obtained
manually like in other works in the literature. Once better
estimated parameters greatly influence the quality of restored
images, we performed experiments with images taken from
both synthesized and real scenes to verify the performance
of the proposed method. Two main aspects were considered:
image quality and quality of disparity maps produced by
a standard stereo algorithm. Image quality was assessed by
a quantitative measure of contrast, which is typically used
in related literature. We also compare the results obtained
by our methodology with those obtained with classic image
enhancement tools. The results obtained with our methodology
demonstrate improvement both in scene contrast of recovered
underwater images and in the accuracy of the disparity maps
under different water turbidity levels.

Keywords-underwater; physics based vision; stereo; image
restoration; visibility; scattering; attenuation

I. INTRODUCTION

Computer Vision algorithms have been designed based on

assumptions about the environment, one of them being that

the medium between the camera and the scene is immaterial.

Nonetheless, in several cases this assumption does not hold,

such as foggy and rainy days and underwater environments.

Visibility in such cases may be strongly reduced to the point

that useful images may not be obtained [1] at all.

There is an ever growing volume of underwater imagery

being produced in research and actual applications in oceanic

engineering and mapping, water fauna identification and

assessment [2], [3], [4], autonomous underwater robotics [5],

[6], [7], and underwater archaeology [8] to name a few.

In this work we focus on imagery acquired in under-

water environments where the interaction of light with the

medium produces side effects that are not negligible, such

as attenuation and scattering, which are commonly present

in underwater scenes. Furthermore, we are interested in

automatically reducing, and if possible, canceling the impact

of these effects on underwater images.

Several methodologies that deal with underwater images

have been proposed in the literature. Broadly speaking, such

methodologies may bundled into two main groups: image

based and model based approaches. Image processing tech-

niques are typically used in the first case [9], [10], [11], [12].

Since they do not assume any model for spatially varying

dependencies and other environmental characteristics, these

methods are limited in their ability to recover visibility [13].

In model based approaches, however, light propagation and

interaction with the medium are taken into account. There

are some works where active illumination hardware is used

[14], [15], images of the same scene taken with the medium

in different conditions [16], dense stereo algorithm [17]

or different states of a polarizing filter [15], [18]. Even

though a light propagation model is used, those methods

either require expensive equipments such as those used in

[14], [16], [15], or are very time consuming like the work

reported in [16] and [17], where two images of the same

scene with significantly distinct properties may take several

days to be acquired and the computation of model’s param-

eters uses complex and expensive optimization algorithms

respectively. Furthermore, with except of [17], most of these

methodologies are not amenable to realtime applications,

such as underwater live species identification or autonomous

underwater robot navigation and guidance [5], [6], [7].

This paper presents a methodology, which like other

works such as [13] and [17], is based on a physical model

that describes light propagation in water proposed in [19],

that is used to estimate this model’s parameters in order

to minimize the effects on image formation. One of the

key issues is the estimation of the model parameters, which

frequently is performed by a manually ad-hoc procedure.

Our technique builds upon the approach described in [17],

and as in that work, we use pairs of images acquired



from distinct viewpoints under the same environmental

conditions. However, we introduce a novel procedure that

automatically estimates all model parameters with better

accuracy and with a low computational cost. The is used

to both recover. Based on this calibrated model, we de-

sign an algorithm which improves the quality of images

of underwater scenes taken under natural illumination, i.e.

without any special lighting, thus enhancing scene visibility

which enables the accomplishment of tasks such as the

reconstruction underwater scenes.

The quality of the results are demonstrated by comparing

the model’s parameters obtained automatically against those

fine-tuned manually. A contrast metric [13], computed on

images restored by our methodology and on classic image

enhancement tools, quantifies the improvement introduced

by our methodology.

II. IMAGE FORMATION MODEL

Light rays traversing a liquid medium will interact with it

generating different artifacts which will affect characteristics

such as intensity and color at the sensor. There are two main

effects caused thereof, namely, absorption and scattering as

illustrated in Fig. 1. The physical process in which light

rays interacting with particles in suspension in the medium

is converted into other forms of energy is called absorption.

As a result, the intensity of a point in the image will

decay as the distance between the scene and the camera

increases. Scattering is caused by the change in direction of

a ray of light after colliding with a particle in suspension.

For small angular changes in direction the effect is called

forward scattering), whereas for larger angles up to 180

degrees, which effectively causes the ray to bounce back

at the camera, it is called backscattering. As a result of

the scattering effect, objects located farther away from the

camera appear to be brighter. Therefore, a suitable model

for light propagation underwater should incorporate, at least,

these two effects.

Our approach assumes that as far as image formation is

concerned, both effects are additive, and as such, they can

be combined into a simple sum. Thus, the intensity I of a

pixel at position (x, y) may be written as:

I(x, y) = L(x, y) + B(x, y), (1)

where L(x, y) is the component of the light ray attenuated by

absorption and B(x, y) is the contribution of the backscatter-

ing effect. Our model is an approximation of the Equation

of Radiative Transfer [20] and it is inspired in the works

described in [13], [17] and [21].

A. Attenuated light

Consider the radiance of a narrow light beam, like a

collimated beam, emanating from a source and traveling

through a medium. The decrease in radiance ∆L is due to
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Figure 1. Components of light propagating in a underwater environment:
direct component (—–), light ray which is reflected by an object’s surface
(· · ·) and the backscattered component (— · · —), the light scattered by the
medium.

the interaction of the light ray with the medium. For an

infinitesimal distance ∆x we have that

∆L(x)

L(x)
= −c∆x, (2)

where c is the attenuation coefficient, given in m−1 units.

The attenuation coefficient is a function of the wavelength

λ and is given by the sum of the absorption and the total

scattering coefficients. The latter represents the capability an

infinitesimal volume has to scatter flux in all directions.

By integrating both sides of Eq. 2 between the limits x =
0 and x = z we obtain:

L(z) = L0e
−cz, (3)

which is known as Bouguer’s exponential law of at-

tenuation [19], where L0 is the object’s radiance without

attenuation and z is the distance traveled by the collimated

beam.

B. Scattered light

In order to model the scattering effect, consider a cone

with its vertex at the observer’s position and truncated by

the surface of a physical object at distance d (Fig. 2). The

irradiance due to scattering in the direction of the observer,

produced by an infinitesimal volume at distance z, may be

described as [21]:

dB(z) =
dI(z)ecz

dωz2
, (4)

where dω is the cone’s solid angle, c is the total scattering

coefficient and dI(z) is the intensity of the infinitesimal.
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Figure 2. The cone between the observer and an object immersed in water.
The backscattering light increase the brightness of objects in pathlength
acting like a source of light.

Here dI(z) = dωz2dzβc, where β is called Volume Scat-

tering Function. This function describes the nature of the

illumination and the characteristics of the scattering.

The total radiance along the path between the observer

and the object is calculated by integrating both side of Eq.

4 within the limits x = [0, d], which results in:

B(d) = β(1 − e−cd). (5)

For infinite distances (d = ∞), such as objects in the

horizon, the radiance received by the camera’s sensor is

B(∞) = β. Re-writing Eq. 5 we have:

B(d) = B∞(1 − e−cd). (6)

Substituting B(d) and L(d) in Eq. 1 and using z as depth

we obtain the model:

I(x, y, z) = L0e
−cz + B∞(1 − e−cz). (7)

where I(x, y, z) is the intensity of pixel (x, y) at depth z.

III. VISIBILITY RECOVERY

The main goal of this section is to show that the model

described by Eq. 7 can be successfully used to recover

the visibility of underwater scenes and improve the quality

of disparity maps. The model requires that the depth of

each point in the scene and the parameters c and B∞ be

known. As depicted in Figure 3, our methodology consists of

three main steps: i) compute the scene’s depth; ii) estimate

the model’s parameters, and iii) recover the visibility (or

estimate the object’s radiation for a transparent medium).

These steps are executed iteratively while the attenuation

coefficient, estimated in the second step, is greater than zero.

A. Computing scene depths

Like in [17], the depths maps are obtained from a stereo

pair obtained from two geometrically calibrated cameras.

The disparity map was obtained using Kolmogorov and

Zabih’s algorithm [22] due to its ability to handle occlusions.

Using the disparity maps and the geometrical parameters,

we estimate the depths of each pixel of the images of left

1.Stereo

System

2.Estimation

of Model’s

parameter

3.Image

Recovery

{ci, B }8

It
e
ra

ti
o
n
 i

Figure 3. Image restoration process. Two images taken from an underwater
scene are used for depth map estimation, after which the computed disparity
maps are used to estimate the model’s parameters. Based on the depth maps
and the model’s parameters the image is finally restored.

and right cameras. In experiments performed, we used a

baseline of 33 cm and the average distance from the cameras

reference to scene was 140 cm.

The correspondence between pixels, one of the key

problems with stereo algorithms, is severely aggravated in

underwater environments. The methodology handle this in

each iteration. After ci is estimated in iteration i, another

correspondence process is performed to find a new disparity

map. As some of underwater effects were removed in i-1th

iteration, the difference between corresponding pixels, due

to attenuation and scattering effects, will be minimized.

B. Estimating the model’s parameters

Given a pair of rectified stereo images of the same scene

was acquired, for each pixel at location (x, y) the intensities

of each pixel for the left and right cameras are Il and Ir,

respectively. Since absorption and scattering effects are a

function of distance, the intensity I of corresponding pixels

in both images of the same scene point tends to be different

because the distances zr and zl of a scene point to the

right and left cameras are different. Assuming the water

properties to be the same for both images (they are captured

synchronously) and assuming that B∞ is the same regardless

of position, for each scene point we can write Il and Ir as:

Il(x, y, z) = L0e
−czl + B∞(1 − e−czl) (8)

Ir(x, y, z) = L0e
−czr + B∞(1 − e−czr ). (9)

Rewriting Eq. 7 as:

ln(I(x, y, z) − B∞) = −cz + ln(L0 − B∞) (10)

and solving the system of Equations 8 and 9, we find that:



ln(Ir − B∞) − ln(Il − B∞) = −c(zl − zr). (11)

Hence c, the attenuation coefficient, may be estimated by

fitting a line to the points given by Eq. 11. B∞ can be

extracted from the observed intensity of points in the scene’s

horizon, like in [16], [18], [21].

C. Recovering the visibility

Recovering visibility is a straightforward process. The

radiance that an object would have if it was immersed in

a transparent medium is given by:

L0 =
I(x, y, z) − B∞(1 − e−cz)

e−cz
. (12)

IV. EXPERIMENTS

Several experiments were carried out, both in simulation

and in a real environments, in order to evaluate the proposed

methodology.

As mentioned before, our approach has a module to

compute pixel depth using a stereo image pair. Alos, as

we mentioned, the disparity map is obtained by running

Kolmogorov and Zabih’s algorithm [22], and we fit the data

to Eq. 11 using the linear least squares technique.

A. Generating Synthetic Scenes

Synthetic scenes with objects at different locations were

generated with [23], and the real depth information was

obtained for each pixel. For each scene, two images were

synthesized from two different viewing angles, thus simulat-

ing a stereo pair. One pair of images from the synthetic scene

were obtained for each value of the absorption coefficient c,

simulating different turbidity levels. A zero mean gaussian

noise was added to the pixel intensity (σ = 3 pixels) and

depth information (σ = 2 meters).

The quality of disparity maps computed by our method-

ology was measured using RMS (root-mean-squared) error

and the percentage of bad matching pixels based on a known

ground truth scene. As described in [24], the RMS error

between the computed disparity map dc(x, y) and ground

truth map dgt(x, y) is given by:

R =

(

1

N

∑

x,y

|dc(x, y) − dgt(x, y)|2

)
1

2

, (13)

where N is the number of pixels.

Table I shows the results obtained with the simulation.

We used both low (c = 0.13m−1), medium (c = 0.21m−1)

and high turbidity (c = 0.39m−1) conditions. The stereo

algorithm we called regular stereo is the one described

in [22], and it was chosen because due to its ability in

dealing with occlusions. As it can be seen, our methodology

produced disparity maps with small RMS error.

Table I
SIMULATION RESULTS. COMPARING THE RMS ERROR BETWEEN THE

DISPARITY MAPS PRODUCED BY A REGULAR STEREO (RMSr ) AND

USING OUR UNDERWATER METHODOLOGY (RMSuw ).

c (m−1) RMSr(pixels) RMSuw(pixels)

0.13 157.56 154.65
0.21 177.53 159.23
0.39 174.55 168.31

(a) (b)

(c) (d)

Figure 4. (a) Disparity map using a regular stereo; (b) using our
underwater approach; (c) underwater image simulation of high turbidity
(c = 0.39m−1) and the restored image (d). Observe how the brick wall
becomes visible after the recovering process and the disparity information
of the scene is more accurate with the use of our underwater methodology.
The disparity values of the brick wall and the background are pratically the
same for the regular stereo in (a), and are very distinct in the map produced
by our underwater stereo technique (b).

Fig. 4 depicts underwater images that were restored using

our methodology, and the disparities maps computed using

a regular stereo and the our underwater methodology. It can

be readily seen that even objects farther away in the scene,

such as the brick wall, in a high turbidity condition, becomes

visible after restoration and presents better disparity values.

B. Real Underwater Scene

Several experiments were performed with real imagery

obtained from the experimental set-up depicted in Fig. 5.

Two geometrically calibrated Dragon Fly cameras [25] (f=8

mm, resolution of 640x480 at 30 FPS), with a a baseline

of 33 cm were positioned fronto-parallel facing the smaller

side of a glass fish tank measuring 168 cm x 47 cm x

45 cm, which accommodates 320 liters of water. Two sets

of experiments were performed using multiple objects with

simple shapes. Besides the images acquired in clear water,

different amounts of green tea were dissolved in the tank

water to simulate two levels of turbidity: low (70g of green

tea) and high (110g of green tea). All the experiments were

performed under controlled lighting. The only illumination



Figure 5. Experimental setup. The fish tank has dimensions 168 cm x
47 cm x 45 cm and is filled with 320 liters of water. A pair of calibrated
Dragon Fly cameras with a baseline of 33 cm is positioned front-parallel
facing the smaller side of the fish tank.

source was composed of four pairs of fluorescent lamps

disposed 2 meters above the fish tank.

The value for the attenuation coefficient was estimated

using both manual and automatic approaches. The manual

approach consists in computing the average intensity of the

pixels corresponding to the target’s black patch (like in

[15] and [17]) in an image acquired with the known object

positioned at a known distance z from the cameras and

fitting a line to the following equation:

cz = −ln

(

B∞ − I(z)

B∞

)

, (14)

note that it is necessary to know original radiance and each

position that the object was placed.

Results using the value of c estimated manually and our

automatic methodology can be qualitatively compared by

observing Fig.7. It is important to note that the values

estimated by the manual approach is not considered to be

the ground truth. We chose this comparison method because

it is a standard procedure and because it is easy to use with

manual approaches to obtain the attenuation coefficient c.

Similarly to the criteria used in [18], we evaluated the

recovered images by performing a contrast analysis. This

metric can be considered as a reasonable performance index

for restored underwater images and its use is justified

because stereoscopic acuity and the determination of the

MTF (Modulation Transfer Function) [26] are related to

contrast measurement.

The procedure to compute the contrast was based on

equations described in [18]. For an image I with N pixels,

the contrast C(I) can be estimated by

C(I) =

√

1

N

∑N

v=1

∑

χ=r,g,b(I
χ
v − Īχ)2

∑

χ=r,g,b Īχ
, (15)

where χ is the index of the chromatic band (red, green

and blue) and

Īχ =
1

N

N
∑

v=1

Iχ
v . (16)

Tables II and III show the improvement obtained with

the restoration using the value of c estimated with our

methodology, which is completely automatic, and with the

corresponding value which was obtained manually. The

position of each object in the scene is known a priori.

This enabled us to compute the contrast of the surface of

each object, which corresponds to a fixed distance to the

camera. The distances and their respective contrast values

are presented in the tables below.

As it can be seen from the data, there was an improvement

in image contrast for all experimental data sets. Observe

that for objects located farther away from the camera there

was an increase in the contrast similar to nearby objects.

For images recovered using histogram equalization one may

observe that there is a decrease in the contrast when objects

are distant from the camera. This behavior is clearly seen

in experiments under high turbidity conditions (Table III).

For the farther away object in the higher turbidity trial, our

methodology obtained a increase of 7.64% in the contrast

value while the histogram equalization technique was only

3.61%.

Table II
THE CONTRAST OF THE RAW IMAGE C(I) FOR MEDIUM TURBIDITY

(70G OF GREEN TEA DISSOLVED IN 320 LITERS OF WATER), AND THE

RECOVERED IMAGES WITH HISTOGRAM EQUALIZATION C(Ihist), AND

BY OUR METHODOLOGY C(Î).

Distance (m) C(I) (%) C(Ihist) (%) C(Î) (%)

1.10 17.47 24.25 25.69
1.20 14.00 59.99 29.15
1.40 14.28 45.86 27.42
1.60 7.42 18.92 18.33

The images in Fig.7 depicts the result of the disparity

map estimation using the methodology that computes c by a

manual approach (Figs. 7 (b) and (e)) and by the automatic

method described in this paper (Figs. 7 (c) and (f)). It can

be seen that the disparity maps for both techniques are quite

similar, and there is a significant enhancement in the map

quality when compared to the one produced by a regular

stereo algorithm (Figs. 7 (a) and (d)). It can be seen that

Table III
THE CONTRAST OF THE RAW IMAGE C(I) FOR HIGH TURBIDITY (110G

OF GREEN TEA DISSOLVED IN 320 LITERS OF WATER), AND THE

RECOVERED IMAGES WITH HISTOGRAM EQUALIZATION C(Ihist), AND

BY OUR METHODOLOGY C(Î).

Distance (m) C(I) (%) C(Ihist) (%) C(Î) (%)

1.10 14.94 24.66 28.67
1.20 8.42 42.01 23.29
1.40 11.48 39.40 24.68
1.60 5.29 8.90 12.93



(a) (b)

(c) (d)

Figure 6. Results of our underwater image recovering algorithm for a real scene immersed in (a,b) 70g and (c,d) 110g dissolved tea in water. Figures (a)
and (c) are the acquired images of left camera and (b) and (d) are their respectively recovered versions.

the disparities of the object with green and black strips

is incorrectly computed by the regular stereo algorithm.

However, the values estimated with our underwater approach

(with model parameters computed automatically) are clearly

more accurate.

From the restoration results shown in Fig. 6 we are able

to observe a number of artifacts and distortions that can be

directly attributed to the depth map computed from the stereo

pairs obtained from the scene. This shows that our methodol-

ogy is quite robust to noise, artifacts and inaccuracies in the

depth maps estimated from stereo pairs. If depth maps are

not sufficiently accurate, it is still possible to achieve good

quality restoration. In such cases, if the relative distances

between the scene background and the camera is small, as

we happen to have in our experiments, we can consider

the mean value of the distances to restore the whole image

instead of using the depth map. Thus, we are able to retrieve

the real color (the color of the scene as imaged without

water) of a large area of the image and we can also avoid

problems related to color saturation in the image. These

features of our methodology come to par with the major

challenges for conventional methods for image enhancement

using digital image processing techniques alone.

V. CONCLUSIONS

We have presented a methodology that addresses the

problem caused by images degradation effects typically

present in underwater scenes. Our method builds upon a

physical model that explains the light propagation in liquid

medium. The technique does not require any calibration

of the environmental parameters and can be used with

other Computer Vision algorithms to recover the visibility

of underwater scenes. The methodology was used with a

stereo algorithm, however it can be readily adapted to work

with other algorithms which provide depth information, such

as depth from motion. All parameters in the model are

estimated automatically. We performed experiments with

simulations and real scenes to verify the quality of the results

obtained with the proposed method. As it can be can be

seen in Figs. 7 and 6, as well as in simulation results,

our methodology is able to greatly improve the quality of

the disparity map. The methodology seems to have good

potencial to restore underwater images of scenes under a

wide spectrum of turbidity levels. For environments were

artificial light sources are used, as is deep-water exploration,

the methodology may fail. The second limitation is the

method’s dependence on depth estimation. If an estimation

of the scene is not available, the method may produce

large errors and the model parameters may not be correctly
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Figure 7. Results for disparity map estimation for a real underwater scene with 70g (a,b,c), and with 110g (d,e,f) of tea dissolved in water. The disparity
maps (a) and (d) produced by a regular stereo, (b) and (e) estimated using the an attenuation coefficient that was manually estimated, and (c) and (f)
obtained with parameters automatically estimated using our methodology. A significant improvement can be seen in the disparity values for the square
object. Observe in images (c) and (f) how the dark region, which is erroneously indicated as being farther away, is correctly shown in gray when our
underwater methodology is used.

estimated. Future research will address the two main con-

straints currently imposed to method by improving the model

structure and by introducing an iterative procedure to infer

scene depth.
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