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Abstract—In this paper we propose a novel iterative algo-
rithm for wavelet-based image denoising following a Maximum
a Posteriori (MAP) approach. The wavelet shrinkage problem
is modeled according to the Bayesian paradigm, providing a
strong and extremely flexible framework for solving general
image denoising problems. To approximate the MAP estimator,
we propose GSAShrink, a modified version of a known combi-
natorial optimization algorithm based on non-cooperative game
theory (Game Strategy Approach, or GSA). In order to modify
the original algorithm to our purposes, we generalize GSA by
introducing some additional control parameters and steps to
reflect the nature of wavelet shrinkage applications. To test
and evaluate the proposed method, experiments using several
wavelet basis on noisy images are proposed. Additionally to
better visual quality, the obtained results produce quantitative
metrics (MSE, PSNR, ISNR and UIQ) that show significant
improvements in comparison to traditional wavelet denoising
approaches known as soft and hard thresholding, indicating
the effectiveness of the proposed algorithm.

Keywords-Image Denoising; Wavelets; Bayesian Estimation;
Maximum a Posteriori; Game Strategy Approach

I. INTRODUCTION

Image denoising is a required pre-processing step in most
image processing, computer vision and pattern recognition
applications, since in many situations they may be corrupted
by noise during acquisition and transmission stages. There-
fore, estimating a signal that is degraded by additive noise
has been of interest to a wide community of researchers. Ba-
sically, the goal of denoising is to remove the noise as much
as possible, while retaining important image features, such
as edges and finer details. Traditional denoising methods
are based on linear filtering, where the most usual choices
are Wiener and convolutional filters. Lately, a vast literature
on non-linear filtering has emerged, especially those based
on wavelets [1],[2], [3] inspired by the remarkable work of
Donoho [4].

In the wavelet-based noise reduction method called
wavelet shrinkage, the wavelet coefficients of a noisy image
are divided into important and non-important coefficients
and each one of these groups are modified by certain
rules. Usually, in most denoising applications soft and hard
thresholding are considered. Basically, filtering is performed
by comparing each wavelet coefficient to a given threshold
and setting it to zero (hard) or attenuating it (soft) if

its magnitude is less than the threshold; otherwise, it is
kept untouched. Soft-thresholding rule is generally preferred
over hard-thresholding for several reasons. First, it has
been shown that soft-thresholding has several interesting
and desirable mathematical properties [5], [4]. Second, in
practice, the soft-thresholding method yields more visually
pleasant images over hard-thresholding because the latter is
discontinuous and generates abrupt artifacts in the recovered
images, especially when the noise energy is significant.
Last but not least, some results found in the literature [1]
conclude that the optimal soft-thresholding estimator yields
a smaller estimation error than the optimal hard-thresholding
estimator.

However, for some classes of signals, hard-thresholding
results in superior estimates to that of soft-thresholding,
despite some of its disadvantages [2]. To tackle this problem,
several different thresholding functions are proposed in the
literature. The basic idea consists in defining custom thresh-
olding functions, which are similar to hard thresholding,
but having a smooth transition around the threshold [3].
Examples of this kind of custom thresholding functions
are semisoft or firm shrinkage and non-negative garrote
thresholding function [6]. In [2], a custom function that
can be viewed as a linear combination of hard-thresholding
function and soft-thresholding function is proposed. Results
of the application of this kind of functions usually show
better performance when compared with traditional hard and
soft-thresholding techniques.

In this work, we propose GSAShrink, a novel adaptive
algorithm for wavelet-based image denoising following a
Bayesian approach. Basically, there are three main motiva-
tions for the proposed method. First, to achieve results that
are not so smooth as the ones provided by soft-thresholding
neither so coarse as the results of hard-thresholding. We
want to smooth homogeneous regions, keeping relevant im-
age information as edges and finer details. In this sense, the
Bayesian inference is an excellent solution, since it provides
a robust and extremely flexible mathematical framework for
stochastic image modeling. The fundamental principle of
Bayesian philosophy is to regard all observable variables as
unknown stochastic quantities, assigning probability distri-
butions based on our subjective beliefs and prior knowledge



[7]. Second, traditional wavelet thresholding methods oper-
ates on one single coefficient at a time, completely ignoring
its neighborhood. Contextual information can be useful in
determining how a given coefficient should be modified. Our
choice is to incorporate a Markov Random Field (MRF)
model, since MRF’s are powerful mathematical tools for
contextual modeling in image processing applications [8],
[9], [10]. Finally, the use of an iterative approach has
several advantages over traditional one-step methods, as the
convergence control, the incorporation of local information
(or heuristics) according to the nature of the problem and
also, in this specific case, the fact that a given wavelet
coefficient can be updated in more than one way all along the
iterative process, depending on its current status (adaptive
method).

To test and evaluate the proposed method, we built a
series of experiments on simulated image data (Lena image),
using several wavelet bases. The obtained results show the
effectiveness of GSAShrink, indicating a clear improvement
on the wavelet denoising performance in comparison to the
traditional approaches.

The remaining of the paper is organized as follows.
Section 2 briefly introduces the discrete wavelet transform
(DWT) and the wavelet denoising problem. In Section 3
we discuss the proposed method, as well as the statistical
modeling and the estimation of the necessary parameters.
Section 4 is concerned about metrics for image quality
assessment and performance evaluation. The experiments
and results are described in Section 5. Finally, Section 6
brings the conclusions and final remarks.

II. THE WAVELET TRANSFORM

The wavelet transform is a mathematical tool that de-
composes a given signal in a basis of orthogonal functions.
However, differently from the Fourier Transform, which uses
periodic, smooth and unlimited basis functions (sines and
cosines), DWT uses wavelets, that is, non-periodic, non-
smooth and finite support basis functions, allowing a much
more meaningful representation through multi-resolution
analysis. In practice, the Discrete Wavelet Transform (DWT)
can be implemented by a Perfect Reconstruction Filter
Bank (PRFB), being completely characterized by a pair of
Quadrature Mirror Filters (QMF) h[], a low-pass filter, and
g[], the corresponding high-pass filter.

A. Wavelet Denoising by Thresholding

The problem of wavelet denoising by thresholding can be
stated as follows. Let g = {gi,j ; i, j = 1, 2, . . . ,M} denotes
the M ×M observed image corrupted by additive Gaussian
noise:

gi,j = fi,j + ni,j (1)

where fi,j is the noise-free pixel, ni,j has a N(0, σ2)
distribution and σ2 is the noise variance. Then, considering
the linearity of the DWT:

yj,k = xj,k + zj,k (2)

with yj,k, xj,k and zj,k denoting the k-th wavelet coefficient
from the j-th decomposition level of the observed image,
original image and noise image, respectively. The goal
is to recover the unknown wavelet coefficients xj,k from
the observed noisy coefficients yj,k. One way to estimate
xj,k is through Bayesian inference, by adopting a MAP
approach. We propose a novel iterative method based on
the combinatorial optimization algorithm GSA. By iterative
method we mean that an initial solution x(0) is given and
the algorithm successively improves it, by using the output
from one iteration as the input to the next. Thus, the
proposed method updates the current wavelet coefficients
given a previous estimative according to the following MAP
criterion:

x̂
(p+1)
j,k = arg maxxj,k

{
p
(
xj,k|x(p)

j,k , yj,k,
~Ψ
)}

(3)

where p
(
xj,k|x(p)

j,k , yj,k,
~Ψ
)

represents the a posteriori prob-
ability obtained by adopting a Generalized Gaussian distri-
bution as likelihood (model the observations) and a MRF
model called Generalized Isotropic Multi-Level Logistic
(GIMLL) as a priori knowledge (for contextual modeling),
x

(p)
j,k denotes the wavelet coefficient at p-th iteration and ~Ψ is

the model parameter vector. This vector contains the param-
eters that control the behavior of the probability laws. More
details on the statistical modeling and how these parameters
are estimated are shown in Section (3.2). In the following,
we will derive an algorithm for approximating the MAP
estimator by iteratively updating the wavelet coefficients.

III. ALGORITHMS FOR BAYESIAN INFERENCE

Now that the wavelet denoising is stated as a Bayesian
inference problem, algorithms for approximating the MAP
estimator are required. It has been shown, in combinatorial
optimization theory, that convergence to the global maxi-
mum of the posterior distribution can be achieved by Sim-
ulated Annealing (SA). However, as SA is extremely time
consuming and demands a high computational cost, sub-
optimal combinatorial optimization algorithms, which yield
computationally feasible solutions to MAP estimation, were
proposed. Some of the most popular combinatorial optimiza-
tion algorithms found in image processing literature are:
the widely recognized Iterated Conditional Modes (ICM)
[11], Maximizer of the Posterior Marginals (MPM) [12],
Graduated Non-Convexity (GNC) [13], Highest Confidence
First (HCF) [14] and Deterministic Pseudo Annealing [15].
In this work, we propose a modified version of an alternative
algorithm, named Game Strategy Approach (GSA) [16],



based on non-cooperative game theory, originally proposed
for solving MRF image labeling problems.

A. Game Strategy Approach

In a n-person game, I = {1, 2, . . . , n} denotes the set
of all players. Each player i has a set of pure strategies
Si. The game process consists in, at a given instant, each
player choosing a strategy si ∈ Si. Hence, a situation (or
play) s = (s1, s2, . . . , sn) is yielded, and a payoff Hi (s) is
assigned to each player. In the approach proposed by [16],
the payoff Hi (s) of a player is defined in such a way that it
depends only on its own strategy and on the set of strategies
of neighboring players.

In non-cooperative game theory each player tries to maxi-
mize his payoff by choosing his own strategy independently.
In other words, it is the problem of maximizing the global
payoff through local and independent decisions, similar to
what happens in MAP-MRF applications with the condi-
tional independence assumption.

A mixed strategy for a player is defined as a probabil-
ity distribution defined over the set of pure strategies. In
GSA, it is supposed that each player knows all possible
strategies, as well as the payoff given by each one of them.
Additionally, the solutions for a non-cooperative n-person
game are given by the set of points satisfying the Nash
Equilibrium condition (or Nash points). It has been shown
that Nash Equilibrium points always exist in non-cooperative
n-person games [17]. A play t∗ = (t∗1, t

∗
2, . . . , t

∗
n) satisfies

the Nash Equilibrium condition if none of the players can
improve you payoff by changing his strategy unilaterally, or
in mathematical terms:

∀i : Hi (t∗) = maxsi∈Si
Hi (t∗||t) (4)

where t∗||t is the play obtained by replacing t∗ by t.
The connection between game theory and combinatorial

optimization algorithms is demonstrated in [16]. Actually,
still according to [16], the GSA fundamentals are based on
two main propositions:

PROPOSITION 1. The set of local maximum points of the
a posteriori probability in MRF image labeling problems
is identical to the set of Nash equilibrium points of the
corresponding non-cooperative game.

PROPOSITION 2. The GSA relaxation algorithm con-
verges to a Nash equilibrium when the number of iterations
increases.

Actually, a complete analogy between game theory and
the wavelet denoising problem can be made, since the
wavelet denoising process can be viewed as a generalization
of the image labeling problem, where instead of discrete
labels, the unknown coefficients are continuous random vari-

ables. In Table I we show how concepts of non-cooperative
game theory and our proposed method are closely related.

Table I
CORRESPONDENCE BETWEEN CONCEPTS OF GAME THEORY AND THE

PROPOSED WAVELET DENOISING APPROACH.

Wavelet Denoising Game Theory
sub-band lattice n-person game structure

sub-band elements players
wavelet coefficients pure strategies

an entire sub-band at p-th iteration a play or situation
posterior distribution payoff

local conditional densities mixed strategies
local maximum points (MAP) Nash equilibrium points

B. Statistical Modeling

1) Generalized Gaussian Distribution: It has been shown
that the distribution of the wavelet coefficients within a sub-
band can be modeled by a Generalized Gaussian (GG) with
zero mean [18], [19]. The zero mean GG distribution has
the probability density function:

p (w|ν, β) =
ν

2βΓ (1/ν)
exp

{
−
(
|w|
β

)ν}
(5)

where ν > 0 controls the shape of the distribution and β
the spread. Two special cases of the GG distribution are
the Gaussian and the Laplace distributions. When ν = 2
and β =

√
2σ, it becomes a standard Gaussian distribution.

The Laplace distribution is obtained by setting ν = 1 and
β = 1/λ. According to [20], the parameters ν and β
can be empirically determined by directing computing the
sample moments χ = E [|w|] and ψ = E

[
w2
]

(method of
moments), because of this useful relationship:

ψ

χ2
=

Γ
(

1
ν̂

)
Γ
(

3
ν̂

)
Γ2
(

2
ν̂

) (6)

and we can use a look-up table with different values of ν and
determine is value from the ratio ψ/χ2. After, it is possible
to obtain β̂ by:

β̂ =
ψΓ
(

1
ν̂

)
Γ
(

3
ν̂

) (7)

2) Generalized Isotropic Multi-Level Logistic: Basically,
MRF models represent how individual elements are influ-
enced by the behavior of other individuals in their vicinity
(neighborhood system). In this work, we adopt a model orig-
inally proposed in [9] that generalizes the standard isotropic
Multi-Level Logistic (MLL) MRF model for continuous ran-
dom fields. According to the Hammersley-Clifford theorem
a MRF can be defined by a Gibbs joint distribution or by
a set of local conditional density functions (LCDF’s). We
will call this model Generalized Isotropic MLL MRF model
(GIMLL). Due to our purposes and also for mathematical



tractability, we define the following LCDF to characterize
this model.

p (xs|ηs, θ) =
exp {−θDs (xs)}∑
y∈G exp {−θDs (y)}

(8)

where Ds(y) =
∑
k∈ηs

[
1− 2exp

(
− (y − xk)2

)]
, xs is

the s-th element of the field, ηs is the neighborhood of
xs, xk is an element belonging to the neighborhood of
xs, θ is a spatial dependency parameter that controls how
the central element is influenced by its neighbors, and G
is the set of all possible values of xs, given by G =
{g/m ≤ g ≤M}, where m and M are respectively the
minimum and maximum sub-band coefficients. This model
provides a probability for a given coefficient depending
on the similarity between its value and the neighboring
coefficient values.

For the estimation of the θ parameter in each sub-band,
we adopt Maximum Pseudo-Likelihood (MPL) estimation.
The main advantage of MPL estimation is its mathemati-
cal tractability and computational simplicity. The pseudo-
likelihood function for the GIMLL model is defined as:

PL(X; θ) =
N∏
s=1

p (xs|ηs, θ) =

=
N∏
s=1

exp {−θDs(xs)}∑
y∈G exp {−βDs(y)}

(9)

where N denotes the number of elements in the sub-band.
Taking the logarithms, differentiating on the parameter and
setting the result to zero, lead to the following expression
(pseudo-likelihood equation):

∂

∂θ
logPL(X; θ) = −

N∑
s=1

Ds (xs) + (10)

+
N∑
s=1

∑y∈GDs (y) exp
{
−θ̂Ds (y)

}
∑
y∈G exp

{
−θ̂Ds (y)

}
 = 0

In the experiments, the solution is obtained by finding the
zero of the resultant equation. We chose Brent’s method, a
numerical algorithm that does not require the computation
(or even the existence) of derivatives. The advantages of this
algorithm are: it uses a combination of bisection, secant, and
inverse quadratic interpolation methods, leading to a very
robust approach. Besides, it has superlinear convergence
rate.

C. GSAShrink for wavelet denoising

Given the observed data y (noisy image wavelet coeffi-
cients), and the estimated parameters for all the sub-bands
~Ψr =

{
ν̂r, β̂r, θ̂r

}
, r = 1, . . . , S, where S is the total

number of sub-bands in the decomposition, our purpose is
to recover the optimal wavelet coefficient field x∗ using a
Bayesian approach. As the number of possible candidates for
x∗ is huge, to make the problem computationally feasible,
we adopt an iterative approach, where the wavelet coefficient
field at a previous iteration, let’s say x(p), is assumed to be
known. Hence, the new wavelet coefficient x(p+1)

j,k can be
obtained by:

x
(p+1)
j,k = argmaxxj,k

{
log p

(
xj,k|x(p), yj,k, ~Ψj

)}
(11)

Basically, the proposed method consists in, given an initial
solution, improve it iteratively by scanning all wavelet coef-
ficients sequentially until the convergence of the algorithm
or until a maximum number of iterations is reached. In
this work, we are setting the initial conditions as the own
noisy image wavelet sub-band, that is, x(0) = y, although
some kind of previous preprocessing may provide better ini-
tializations. Considering the statistical modeling previously
described, we can define the following approximation:

log p
(
xj,k|x(p), yj,k, ~Ψj

)
∝ log

 ν̂j

2β̂jΓ
(

1
ν̂j

)
− (12)

[
|yj,k|
β̂j

]ν̂j

− θ̂j
∑

(`∈ηj,k)

[
1− 2exp

(
−
(
x

(p)
j,k − x

(p)
j,`

)2
)]

Therefore, we can define the following rule for updat-
ing the wavelet coefficient x(p)

j,k , based on minimizing the

negative of each player payoff, denoted by Hj,k

(
x, y, ~Ψj

)
,

considering x(0) = y:

x
(p+1)
j,k = argminxj,k

{
Hj,k

(
x, y, ~Ψj

)}
(13)

where

Hj,k

(
x, y, ~Ψj

)
= (14)[

|xj,k|
β̂j

]ν̂j

+ θ̂j
∑

(`∈ηj,k)

[
1− 2exp

(
−
(
x

(p)
j,k − x

(p)
j,`

)2
)]

The analysis of the above functional (the payoff of each
player), reveals that while the first term favors the appear-
ance of low valued strategies (coefficients near zero), since
the mean value of wavelet coefficients in a sub-band is zero,
the MRF term favors strategies that are similar to the nearest
neighbor players (coefficients close to the neighboring ones),
defining a kind of regularization procedure. An observation
can be set forward to explain why there are a large number
of ”small” coefficients but relatively few ”large” coefficients
as the GGD suggests: the small ones correspond to smooth
regions in a image and the large ones to edges, details or



textures [1]. Therefore, application of the proposed method
in all sub-bands of the wavelet decomposition leads to
smoother version of the image, since it attenuates the noise.
In the following, we present the algorithm for GSAShrink
for wavelet-based image denoising.

Algorithm 1: GSASHRINK FOR WAVELET SHRINKAGE

INPUT: Sub-bands of the wavelet decomposition (LH1, HL1,
HH1, . . .), a payoff function (Hj,k), the probability
of acceptance of new strategies (α), the attenuation
parameter for noisy coefficients (β), the gain parameter
for relevant image coefficients (γ), the threshold (T ) and
the number of iterations (N ).

OUTPUT: Shrinked wavelet sub-bands.

1. Repeat for every wavelet sub-band, while p ≤ N .
2. For each wavelet coefficient of the sub-band
3. Choose the coefficient x∗j,k that minimizes the negative

of the payoff:
4. x∗j,k = argminxj,k

{
Hj,k

(
x, y, ~Ψj

)}
5. If

(
H
(
x∗j,k

)
≤ H

(
x
(p−1)
j,k

))
6. If

(∣∣x∗j,k

∣∣ ≥ T
)

or
(
max

{∣∣ηj,k

∣∣} ≥ T
)

7. x
(p)
j,k

= x
(p−1)
j,k

× (1 + γ)

8. Else
9. Accept x∗j,k w. p. α;
10. Otherwise,
11. x

(p)
j,k

= x
(p−1)
j,k

× (1− β) w. p. (1− α) ;

12. END
13. END
14. END

Basically, the GSAShrink algorithm works as follows: for
each wavelet coefficient, the value that maximizes the payoff
is chosen and the new payoff is calculated. If this new payoff
is less than the original one, then nothing is done (since in
the Nash equilibrium none of the playes can improve its
payoff by uniterally changing its strategy). Otherwise, if the
absolute value of the wavelet coefficient xj,k or any of its
neighbors is above the threshold T , which means that we
are probably dealing with relevant image information such
as edges or fine details, then xj,k is amplified by a factor
of (1 + γ). However, if |xj,k| ≤ T , then we accept the new
coefficient with probability α, or attenuate the coefficient
by a factor of (1− β) with probability (1− α), since its
likely that we are dealing with noise information (low valued
coefficient). The only parameter existing in the original GSA
algorithm for image labeling is α. In this work, we adopt
α = 0.9, β = 0.01, γ = 0.1 and N = 10.

D. Metrics for Image Quality Assessment

In order to perform quantitative analysis of the obtained
results, we compare several metrics for image quality assess-
ment. In this work, we selected four different metrics that
are: the traditional Mean Square Error (MSE), Improvement
in Signal-To-Noise-Ratio (ISNR) and Peak Signal-To-Noise
Ratio (PSNR) and Universal Image Quality Index (UIQ),
a metric that takes perceptual fidelity into account using a

combination of three factors: loss of correlation, luminance
distortion, and contrast distortion [21], given by:

UIQ (x, y) =
4µxµyσxy(

µ2
x + µ2

y

) (
σ2
x + σ2

y

) (15)

where µx and µy are the mean values of original and filtered
images, σx and σy are the standard deviations of original and
filtered images, and σxy is the sample cross-correlation.

For an excellent discussion on how challenging is to mea-
sure image quality and also the drawbacks and advantages
of each measure, as well as a complete definition of each
metric, the reader is referred to [22].

IV. EXPERIMENTS AND RESULTS

In order to test and evaluate the proposed GSAShrink
method for wavelet-based image denoising, we performed
some experiments using noisy image data. In the first
experiment, we compared the performance of the proposed
method against soft and hard-thresholding techniques, by
using several wavelet basis: Haar, Daubechies4, Symlet4
and Biorthogonal6.8, a kind of wavelet transform that has
filters with symmetrical impulse response, that is, linear
phase filters. The motivation for including this basis is that
it has been reported that in image processing applications
filters with non-linear phase can introduce artifacts that are
visually annoying.

In all experiments we considered the adaptive Universal
Threshold, which means that we calculated a different
threshold Tj , j = 1, 2, . . . , 6, for each sub-band, except the
LL2 (approximation), since we are using a Level-2 wavelet
decomposition, resulting in the six sub-bands known as
LL2, LH2, HL2,HH2, LH1,HL1 and HH1. The Universal
Threshold is calculated by Tuniv =

√
2logNσ, where N is

the number of coefficients of the sub-band and σ2 is the
noise variance. Table II shows the results for GSAShrink
denoising on the Lena image, corrupted by additive Gaussian
noise MSE = 131.268, PSNR = 26.949 dB.

Note that in all situations the proposed method outper-
forms both soft and hard-thresholding techniques. Figures 1
and 2 shows the noisy image and the results of wavelet de-
noising using Biorthogonal6.8 wavelets. As the quantitative
metrics suggests, the GSAShrink denoised image presents a
significant better visual quality. Note also that GSAShrink
provides a result that is smoother and with less artifacts
than hard-thresholding does, but at the same time preserving
much more high frequency content such as edges and details
in comparison to soft-thresholding.

Despite the improvement in the image quality, the pro-
posed method has a limitation regarding the computational
cost. In our experiments, GSAShrink performed about 50
times slower than traditional one-step methods. Such differ-
ence in computational time is due to the iterative nature
of the proposed method, since it has to be applied to
all wavelet sub-bands in the decomposition, sequentially.



Also, the maximization procedure demands the calculation
of the payoff of each player for all possible strategies,
increasing the computational complexity. While traditional
methods take just a few seconds (average execution time: 10
seconds), GSAShrink can take minutes to perform wavelet-
based image denoising (average execution time: 500 sec-
onds). However, an alternative to attenuate this problem
would be the use of parallel programming techniques, since
coefficients within a wavelet sub-band do not depend on
coefficients from different sub-bands.

Table II
PERFORMANCE OF WAVELET DENOISING ALGORITHMS ON LENA IMAGE

CORRUPTED BY ADDITIVE GAUSSIAN NOISE (PSNR = 26.949 DB).

Basis Metrics
Soft Hard GSAShrink

MSE 159.947 118.512 114.707
HAAR ISNR -0.8484 0.4388 0.5823

PSNR 25.613 27.032 27.777
UIQ 0.9365 0.9546 0.9609

Soft Hard GSAShrink
MSE 117.268 88.778 77.157

DB4 ISNR 0.4864 1.6952 2.2662
PSNR 27.067 28.705 29.365
UIQ 0.9509 0.9647 0.9717

Soft Hard GSAShrink
MSE 112.725 86.475 75.551

SYM4 ISNR 0.6580 1.8093 2.3455
PSNR 27.257 28.662 29.266
UIQ 0.9533 0.9656 0.9723

Soft Hard GSAShrink
MSE 108.258 83.012 71.325

BIOR6.8 ISNR 0.8336 1.9868 2.587
PSNR 27.549 28.856 29.829
UIQ 0.9543 0.9666 0.9731

In order to demonstrate the quality of the GSAShrink
results, we compared our results with the truly optimal
sub-band adaptive thresholds in a MSE sense for soft and
hard-thresholding, assuming the original image is known:
OracleShrink and OracleThresh, proposed by [1]. The Ora-
cleShrink threshold is defined as:

T ∗OS = argminT

{
N∑
k=1

(ηT (yk)− xk)2
}

(16)

where N is the number of wavelet coefficients in the
sub-band and ηT denotes the soft thresholding operator.
Similarly, the OracleThresh threshold is given by:

T ∗OT = argminT

{
N∑
k=1

(ψT (yk)− xk)2
}

(17)

(a) Noisy Lena (b) Soft Thresholding

(c) Hard Thresholding (d) GSAShrink

Figure 1. Visual results for wavelet denoising using Biorthogonal6.8
wavelets with sub-band adaptive Universal threshold (Table II).

(a) Noisy Lena (b) Soft Thresholding

(c) Hard Thresholding (d) GSAShrink

Figure 2. Visual results for wavelet denoising using Biorthogonal6.8
wavelets with sub-band adaptive Universal threshold (Table II) (Zoom in).

where ψT denotes the hard threshold operator. Table III
shows the metrics for OracleShrink, OracleThresh and
GSAShrink on several wavelet basis. Note that all MSE-
based metrics show the superiority of GSAShrink over both
soft and hard Thresholding. Figure 3 shows a comparison



between the visual results for OracleShrink and GSAShrink
using the theoretic optimum minimum MSE threshold. The
obtained results indicate that the proposed method is capable
of achieving better performances in all situations, by filtering
the noise, but at the same time preserving fine and relevant
image details.

(a) B6.8 + OracleShrink

(b) B6.8 + GSAShrink

Figure 3. Visual results for wavelet denoising using Biorthogonal6.8
with OracleShrink and GSAShrink + theoretic optimum minimum MSE
Threshold (from Table III).

V. CONCLUSION

In this paper, we proposed a novel iterative algorithm
for wavelet-based image denoising, named GSAShrink. Ba-
sically, it uses the Bayesian framework and Game Theory
concepts to build a flexible and general approach for wavelet
shrinkage. The Generalized Gaussian distribution and a
MRF model are combined to derive a payoff function which
gives a rule for updating the current value of a wavelet coeffi-
cient. Experiments with simulated data provided good results
that were validated by several quantitative image quality
assessment metrics. The obtained results indicated a signif-
icant improvement in the denoising performance, showing
the efectiveness of the proposed method. Future works may
include the use of other types of thresholds (SUREShrink,
BayesShrink, etc.), more wavelet decomposition levels and

Table III
PERFORMANCE OF OPTIMAL MSE SOFT AND HARD THRESHOLDS ON
LENA IMAGE CORRUPTED BY ADDITIVE GAUSSIAN NOISE (PSNR =

26.949 DB).

Basis Metrics
OrShrink OrThresh GSAShrink

MSE 75.389 103.587 76.665
HAAR ISNR 2.4051 1.0252 2.3322

PSNR 28.930 28.062 29.526
UIQ 0.9716 0.9645 0.9735

OrShrink OrThresh GSAShrink
MSE 64.630 76.329 59.008

DB4 ISNR 3.0738 2.3513 3.4691
PSNR 29.761 29.242 30.547
UIQ 0.9767 0.9722 0.9784

OrShrink OrThresh GSAShrink
MSE 65.535 86.589 62.399

SYM4 ISNR 2.9921 1.8036 3.2060
PSNR 29.687 28.738 30.007
UIQ 0.9763 0.9695 0.9772

OrShrink OrThresh GSAShrink
MSE 59.950 69.927 56.438

BIOR6.8 ISNR 3.3713 2.7318 3.6462
PSNR 30.045 29.586 30.729
UIQ 0.9778 0.9736 0.9790

the filtering of other kinds of noise such as multiplicative
speckle (by applying a logarithmic transformation to the
image) and signal-dependent Poisson noise (by using the
Anscombe Transform) in real images. Different statistical
models are also an object of study, since each model leads to
a specific payoff function. Also, the analysis of other image
quality assessment measures is definitely a very important
issue, since it has been shown that MSE often fails in
predicting human perception of image fidelity and quality
[22]. Finally, we intend to proposed and study the viability
of other combinatorial optimization shrinkage methods as
ICMShrink and MPMShrink, based on modified versions of
ICM and MPM algorithms respectively, as well as the use
of wavelet packets.

ACKNOWLEDGMENT

The authors would like to thank FAPESP for the financial
support through Alexandre L. M. Levada student scholarship
(grant n. 06/01711-4).

REFERENCES

[1] S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet
thresholding for image denoising and compression,” IEEE
Trans. on Image Processing, vol. 9, no. 9, pp. 1532–1546,
September 2000.

[2] B. J. Yoon and P. P. Vaidyanathan, “Wavelet-based denoising
by customized thresholding,” in Proceedings of International
Conference on Acoustics, Speech, and Signal Processing,
vol. 2, 2004, pp. 925–928.



[3] M. Nasri and H. Nezamabadi-pour, “Image denoising in the
wavelet domain using a new adaptive thresholding function,”
Neurocomputing, vol. 72, pp. 1012–1025, 2009.

[4] D. L. Donoho, “De-noising by soft-thresholding,” IEEE
Trans. on Information Theory, vol. 41, no. 3, pp. 613–627,
1995.

[5] D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation
via wavelet shrinkage,” Biometrika, vol. 81, pp. 425–455,
1994.

[6] H. Y. Gao and A. G. Bruce, “Wavelet shrinkage denoising
using the non-negative garrote,” Journal of Computational
and Graphical Statistics, vol. 7, no. 4, pp. 469–488, 1998.

[7] A. K. Katsaggelos, R. Molina, and J. Mateos, Super Resolu-
tion of Images and Video. Morgan & Claypool, 2007.

[8] C. S. Won and R. M. Gray, Stochastic Image Processing.
Springer-Verlag, 2004.

[9] S. Z. Li, Markov Random Field Modeling In Image Analysis.
Springer-Verlag, 2001.

[10] G. Winkler, Image Analysis, Random Fields and Markov
Chain Monte Carlo Methods: A Mathematical Introduction.
Springer, 2006.

[11] J. Besag, “On the statistical analysis of dirty pictures,” Jour-
nal of the Royal Statistical Society B, vol. 48, no. 3, pp. 192–
236, 1986.

[12] J. Marroquin, S. Mitter, and T. Poggio, “Probabilistic solu-
tion of ill-posed problems in computer vision,” Journal of
American Statistical Society, vol. 82, pp. 76–89, 1987.

[13] A. Blake and A. Zisserman, Visual Reconstruction. MIT
Press, 1987.

[14] P. B. Chou and B. C. M., “The theory and practice of bayesian
image labeling,” International Journal of Computer Vision,
vol. 4, pp. 185–210, 1990.

[15] M. Berthod, Z. Kato, and J. Zerubia, “Dpa: Deterministic
approach to the map problem,” IEEE Transactions on Image
Processing, vol. 4, no. 9, pp. 1312–1314, 1995.

[16] S. Yu and M. Berthod, “A game strategy approach for
image labeling,” Computer Vision and Image Understanding,
vol. 61, no. 1, pp. 32–35, 1995.

[17] J. F. Nash, “Equilibrium points in n-person games,” Proceed-
ings of the National Academy of Sciences, vol. 36, pp. 48–49,
1950.

[18] S. G. Mallat, “A theory of multiresolution image decompo-
sition: The wavelet representation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 11, no. 7,
pp. 647–693, 1989.

[19] P. H. Westerink, J. Biemond, and D. E. Boekee, Sub-band
Image Coding. Kluwer Academic, 1991, ch. Sub-band
coding of color images.

[20] K. Sharifi and A. Leon-Garcia, “Estimation of shape pa-
rameter for generalized gaussian distributions in sub-band
decompositions of video,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 5, no. 1, pp. 52–56, 1995.

[21] Z. Wang and A. C. Bovik, “A universal image quality index,”
IEEE Signal Processing Letters, vol. 9, no. 3, pp. 81–84,
2002.

[22] ——, “Mean squared error: Love it or leave it ? a new look at
signal fidelity measures,” IEEE Signal Processing Magazine,
vol. 26, no. 1, pp. 98–117, 2009.


