
Fast Medial Axis Transform for Planar Domains With General Boundaries

Francisco de Moura Pinto Carla Maria Dal Sasso Freitas
Universidade Federal do Rio Grande do Sul — Instituto de Informática

{ fmpinto | carla } @inf.ufrgs.br

Figure 1. Medial axes of planar shapes. The left shape has analytically drawn boundaries; the middle shape has boundaries drawn with Catmull-Rom
splines and straight segments; and the right shape is a simple polygon.

Abstract—The medial axis, also known as symmetry axis, is
a special type of skeleton that has a number of interesting
properties. It is a powerful tool in applications involving
pattern recognition, image analysis, path planning and mesh
generation, to name a few. Since the proposal and definition
of the medial axis, in 1967, much effort has been done to
develop fast and accurate methods for calculating the medial
axis transform. Fast and exact solutions were found for planar
domains enclosed by simple polygons, however, domains with
curved boundaries are still a terrain for further research.
This paper presents a new algorithm for approximating the
medial axis of general planar domains that is much faster
than previous approaches. The algorithm is based on a new
but very simple form of representing the medial axis.

Keywords-medial axis; shape description; curved boundaries;

I. INTRODUCTION

The medial axis (MA) was introduced by Blum [1], in
1967, for describing shapes and has attracted the attention of
researches from many areas along the years. Two equivalent
definitions of the MA of planar shapes (planar domains)
are probably the most popular: the grass-fire model and the
maximal disk model [2], [3]. One can imagine the planar
domain, restricted by its boundaries, as a carefully shaped
garden covered by grass. If we set fire to all the boundaries
of the garden at the same time, and the fire fronts propagate
with homogeneous velocity across the garden, all points
where a fire front folds or collides with itself, or other fire
front, belong to the medial axis. Alternatively, a more precise
definition is based on the maximal disk model: the MA is
the locus of the centers of all maximal disks in the domain.
A maximal disk touches the boundary of the planar shape
in at least two points (footprints) without crossing it.

Based on the maximal disk model, one can define the
medial axis transform (MAT) as the MA together with its
associated radius function (also known as quench function),

which gives the radius of the maximal disks associated
to points of the MA. Figure 1 shows examples of planar
shapes with their respective medial axes. Applications of
the MAT are well known in several fields [4]. Many so-
lutions exist for MAT of binary images (discrete MAT),
being pattern recognition and image analysis among its first
and main applications. Other approaches handle continuous
description of domain boundaries (continuous MAT), and
find use in path planning and mesh generation [5]. In fact,
the medial axis transform is a powerful tool for reasoning
about geometry or shape due to its interesting properties
(See [4] for a summarized description). The MAT of an
object is unique and allows its perfect reconstruction with
no additional information. The MA is also topologically
equivalent to the original object and invariant to rotation [2].

The medial axis transform has been investigated for
many years and several algorithms were proposed for its
construction. However, very few of them impose no re-
striction about the nature of the object’s boundary. The
scope of this paper is restricted to the class of continuous
MAT approaches. Regarding this class of methods, most
algorithms were developed for calculating the medial axis
of simple polygons, and there exist a linear time solution for
this particular case [6], as well as other efficient solutions
that are easier to implement [7]. Notwithstanding, there are
few proposals of MAT algorithms for handling objects with
general boundaries [2] and, to the best of our knowledge,
none can be considered efficient for complex domains,
having at least quadratic execution time. We introduce a new
method for calculating the MAT of general planar objects.
Our contributions can be summarized as follows.

• A new representation of MA. We introduce an implicit
representation of the medial axis through a distance
function defined along the object’s boundary.



• New MAT algorithms. We outline three algorithms
to calculate medial axis transform of general domains,
which construct the proposed medial axis represen-
tation: a brute force algorithm; an efficient, easy-to-
implement divide-and-conquer algorithm; and a linear
time algorithm.

• MA extraction algorithm. We present a linear time
algorithm for extracting a graph-like explicit represen-
tation of the MA from the implicit representation.

In the next section we review the closest related work and
the state-of-art on MAT algorithms. In Section III we present
our method to construct the implicit MA representation,
and in Section IV we provide a detailed description of the
proposed MAT algorithms. The extraction of the explicit
representation of the MA is detailed in Section V. Results
and discussion are shown in Section VI and we conclude in
Section VII also pointing directions for future work.

II. RELATED WORK

Medial axis transform is not a new research topic and
giving a wide overview of the related literature is beyond
the scope of this paper. This section neglects discrete MAT
algorithms and brings to attention the state-of-art on con-
tinuous MAT focusing mainly on the approaches that are
closely related to ours.

Most methods for continuous MAT are restricted to
domains enclosed by simple polygons and take advantage
of the large background that exist for the construction of
Voronoi diagrams. MA and Voronoi diagrams are closely
related and, in fact, the MA of a simple polygon [7], [6] is
a subset of the edges of the Voronoi diagram constructed tak-
ing as sites the polygon’s edges and reflex vertices (vertices
associated to inner angles greater than π). Lee [7] developed
an easy-to-implement algorithm with execution time propor-
tional to n log(n), where n is the number of polygon edges.
Most previous approaches were slower (O(n2)) and those
who also achieved O(n log(n)) complexity were harder to
implement. Despite the popularity of MAT and the amount
of research in finding efficient algorithms, a linear time
solution for the MAT of a general simple polygon was only
found in 1995 by Chin et al. [6], who established the state-
of-art in such MAT algorithms.

Continuous MAT for arbitrarily shaped planar domains
encounters solid foundations in the works by Choi et al. [8],
[9] and Ramamurthy and Farouki [3], [10]. Their achieve-
ments provided basis for the efforts that are closest to
ours: Ramanathan and Gurumoorthy [4] and Cao et al. [2].
Ramanathan and Gurumoorthy [4] assume the existence of
a convex vertex (a vertex that forms an acute angle) in the
domain boundary and start tracking the locus of the centers
of the maximal disks from one of these vertices. The chosen
vertex is the center of the first disk, which has radius equal
to zero. From this vertex, by stepping along the boundary in
the two opposite directions simultaneously, their algorithm

tracks the footprints of the maximal disks, i. e., the points
where the maximal disks are tangent to the boundary. From
the footprints, the location of MA points is straightforward.
Their algorithm, however, suffer from the high computation
cost of finding the MA branching points, where the MA
tracking process must split. Recently Cao et al. [2] improved
this strategy by defining the tracking of MA points as an
integration process. Their algorithm integrates the Taylor’s
expansion of the differential equation that defines the MA
line. The coefficients of the expansion are obtained from
the differential properties of the boundary at the disk’s
footprints. This algorithm can be considered exact, since
the employed expansion may use as many coefficients as
one wants.

Our fastest algorithm is similar to the method by Ra-
manathan and Gurumoorthy [4] in the sense that we also
track the medial axis by the footprints of the maximal disks
and our approach is also an approximation. However, our
representation of the medial axis avoids additional cost in
finding branching points and we do not need to assume
the existence of a convex vertex. While their method has
quadratic execution time as a function of the number of
discretization intervals, ours achieves linear time. In the next
sections we describe our method in details.

III. MEDIAL AXIS REPRESENTATION USING A
DISTANCE FUNCTION AND THE GRASS-FIRE MODEL

We propose representing the medial axis as a distance
function (DF) defined along the object’s boundary. At any
point on the boundary, the evaluation of this function must
yield the distance from this point to the medial axis walking
along the direction of the boundary’s normal. In other words,
the function must yield the radius of the maximal disk that
touches the boundary at that point (see Figure 2a). The
calculation of the this function, which implicitly define the
MA, is the goal of our MAT algorithms.

(a) DF and maximal disk (b) Dummy segments

Figure 2. A maximal disk is shown in (a). The point C belongs to the
medial axis and is the center of the maximal disk, whose radius is r. The
point P is a footprint of the disk and the DF at this point must evaluate to
r. Dummy segments for the reflex vertex R are shown in (b). The segments
d1, d2 and d3 have zero length, but they are stretched when displaced along
the normals of their extrema, maintaining the boundary closed during the
simulation of the grass-fire model.

The exact calculation of the DF is a very difficult task, so
we use an approximation based on the discretization of the
domain boundaries into straight segments with normalized
normals defined on its extreme points. The exact domain



boundary must be sufficiently sampled, producing the points,
together with their normals (pointing inside), that define
the extrema of the segments. The discretized version of the
boundaries is thus a set of one or more closed chains of
straight segments, depending on the domain’s genus. It must
be noticed that the discretized boundary is not equivalent to a
set of polygons because the boundary’s original normals are
taken into account in MAT calculation. The DF is defined per
segment in the [0, 1] interval, being zero and one the start and
the end of the segment, respectively. Because the boundary
discretization, our approach is in fact an approximation of
the MAT.

Discretizing the curved domain boundaries with regular
sampling usually leads to good results, but better MAT
approximations can be obtained if the sampling density is
guided by the boundary curvature. Polygonal boundaries do
not need additional discretization. However, reflex vertices
must be split into a few segments with zero length and
normals constantly varying for created vertices from the
normal of the previous incident edge to the normal of the
next incident edge. The new vertices displaced in normal
direction are shown in Figure 2b. On curved boundaries, a
point of normal discontinuity (having only C0 continuity)
that forms an inner angle greater than π must also be
considered a reflex vertex. The same strategy was used by
Ramanathan and Gurumoorthy ( [4]), who named the extra
segments “dummy edges”. The number of extra segments
must be proportional to the difference between the inner
angle and π (we use one dummy segment per π/18).

Our strategy to calculate the distance function is based
on simulating the grass-fire model. The idea is to simultane-
ously displace the segments, by moving their extrema along
the normal direction, until they collide with other segments.
The splitting of reflex vertices maintains the boundary closed
during this process, as shown in Figure 2b. The DF for a
boundary point is the distance at which the first collision
occurs. We check the collision between two segments by
verifying whether the extrema of one segment collides with
any point of the other segment. Four tests are required to
check the collision, since both extrema of the first segment
must be checked against the second segment and vice-versa.
The following equation defines the collision between a point
and a segment.

(1−t)×(P1+d×N1)+t×(P2+d×N2) = Q+d×M (1)

The points P1 and P2 are the extrema of one segment
and N1 and N2 are respectively their normal vectors, while
Q is an extreme point of the other segment and M is its
associated normal. d is the length of the displacement of
the extreme points and t, belonging to the [0, 1] interval,
parameterizes the segment from its start to its end point.

For our purposes, the interaction between two displaced
segments can be sufficiently characterized by solving this

equation for all four point-segment combinations. Equation
1 is actually a system of two equations and two variables
(d and t) that yields two solutions, since the substitution
method leads to a quadratic equation. It appears that we can
have up to eight point-segment interactions, but we must dis-
card every solution having a negative value for d or a value
outside the [0, 1] interval (beyond the segment extrema) for t.
Usually only two or none valid interactions last, respectively
indicating colliding and non-colliding segments.

Figures 3a and 3b show the two most common types of
interactions between colliding segments, which are parame-
terized by t ranging from zero (starting point) to one (ending
point). In Figure 3a, first the point B from the segment
AB collides with the segment CD and, after, D from CD
crosses AB. Analogously, A may cross CD and then C
may cross AB. In Figure 3b, first B and, after, A collides
with CD. Based on these observations, we characterize the
interaction between segments by sorting the valid point-
segment collision events (ti, di) by the value of d. There
is a third type of collision that occurs only for adjacent
segments that share a normal vector, as shown in Figure
3c. Such segments come from a curved boundary and have
a special treatment, since only one valid collision event may
occur. In the example, A crosses CD.

(a) Collision type 1 (b) Collision type 2

(c) Collision type 3 (d) Overlapping DF pieces

Figure 3. The three basic types of segment collisions (a, b, and c). The
segment extrema are being displaced along their normal vectors, which
are vertically aligned only to simplify the illustration. t parameterizes the
segments ranging from zero to one. In (a), B crosses CD at the point
defined by t1 and then D crosses AB at the point defined by t2. In (b),
B and then A cross CD at the points defined by t1 and t2, respectively.
The collision between adjacent segments from a curved boundary is shown
in (c), where A crosses CD at the point defined by t. Two overlapping
DF pieces ([t1, t2] and [t3, t4]) are shown in (d). The minimum operator
results the DF defined by linking the points (t1, d1), (t, d) and (t4, d4).

The representation of the distance function of a segment is
updated as the collision tests are performed. We approximate
the segment’s DF by a piecewise linear function whose
pieces are defined in the following way. Being (t1, d1) and



(t2, d2) the parameters of the first and second collision
events, respectively, in the first case (Figure 3a), a piece
of the DF is defined for the segment CD in the [t1, 1]
interval, linearly ranging from d1 to d2. For the segment
AB, a piece is defined in the [t2, 1] interval ranging from
d2 to d1. In the second case (Figure 3b), a DF’s piece is
defined for CD in the [t1, t2] interval, linearly ranging from
d1 to d2. For AB, a piece is defined in the [0, 1] interval
ranging from d2 to d1. If the point A collides with CD
exactly on D, two redundant collision events occur: A with
CD and D with AB. In such situations, one of the events
must be discarded. If A collides with CD exactly on C, both
events must be discarded. Such situations are not considered
collisions. Redundant events are adjacent in the list of sorted
collision events, which makes it easy to verify them. One
needs only to check whether they have the same d value and
occur at the same spatial location. In the third case (Figure
3c) a DF’s piece is defined for AB in the [0, 1] interval with
constant value set to d, while for CD a piece is defined in
the [0, t] interval with constant value set to d.

A segment may collide with several others during the
grass-fire simulation, but only the first collision is relevant
for the MAT. Overlapping DF pieces (see Figure 3d) gen-
erated by multiple collision tests are thus combined by the
minimum operator, which may imply clipping the pieces.
Our implementation maintains for each segment a list of DF
pieces, where each linear piece is represented as an interval
of the parameter t and the distance values at the interval
extrema, i. e., the pieces are defined by four parameters:
(tstart, dstart, tend, dend). If all relevant collision tests are
performed, the result is a continuous distance function de-
fined along the discretized domain boundary. Our algorithms
for calculating the MAT are based on strategies to identify
the necessary collision tests, avoiding computational effort
on pairs of segments that do not collide or do not contribute
to the final DF.

IV. OBTAINING THE DISTANCE FUNCTION

Based on the collision test described in the previous sec-
tion, we propose three algorithms that simulate the grass-fire
model to obtain the distance function (DF). In the following
subsections these algorithms are described in details from
the simplest to the most complex and fastest one.

A. Naı̈ve Algorithm

The naı̈ve approach to construct the DF is to apply the
collision test to every pair of segments. Being n the number
of segments, there are n(n−1)/2 different pairs and thus the
algorithm has quadratic complexity. There is also the cost
of maintaining, per segment, the ordered list of DF pieces
generated by the collision tests, but it can be considered
constant (O(1)) since the list is usually small (about 2 DF
pieces in average) and is updated only for the small number
of actually colliding segments.

B. Divide-and-Conquer algorithm
Unlike the naı̈ve algorithm (Subsection IV.A), our divide-

and-conquer approach is unable to deal with domains having
genus (number of “holes”) greater than zero. However, it
is efficient and easy to implement, and many problems
involving MAT are defined on domains with genus equal to
zero. Implementing this algorithm requires a small change
on the representation of the linear pieces of the distance
function outlined in Section III. We added to the DF piece
representation the index of the segment that generated that
specific piece by colliding with the segment where the
DF is defined. This index, which we call peer segment
index or just peer segment, makes it easy to find pairs of
colliding segments by just looking at the distance function
representation.

Figure 4. Illustration showing that we can split the discretized domain
boundary (gray lines with highlighted segments in black) into two inde-
pendent groups of segments in order to reduce the number of collision
tests: segments s1 and s2 are a pair of colliding segments, as described
in Subsection IV.B. s1 is the first colliding segment for some part of s2

and vice-versa. No segment from one segment chain that connects s1 to s2

can be a peer of any segment from the other chain because, for instance,
if s3 was a peer of s4, they would collide, one of them passing between
s1 and s2 during the simulation of the grass-fire model. If such situation
could happen, s1 and s2 would first collide with segments from a chain,
being their peers instead of being each other’s peers.

To construct the MAT we first randomly choose a segment
of the discretized domain boundary and check its collision
against all other segments. Then, we look at the DF defined
on this segment and choose any DF piece to identify a
peer segment. The chosen peer segment is also checked
against all others for collisions, and then we have a pair
of segments whose DFs are fully defined. This pair of
segments is connected by two chains of segments, closing
the domain boundary. As can be observed in Figure 4, no
segment from one chain can be responsible for the first
collision of any segment of the other chain, so we can
perform the collision tests locally in the individual chains.
We then considered each segment chain as a closed chain
and repeat the process recursively for both. The pair of
segments is not included into any chain and flags are set
to indicate that all relevant collision tests involving those
segments have already been done. When looking for peer
segments in deeper recursion levels, the segments whose
flag are already set are ignored and other DF piece, having
other peer segment, must be chosen. Being n the number



of segments, we estimate a number of recursion levels near
log2(n), and since 2n collision tests are performed at each
level, the expected execution time is nearly proportional to
n log(n).

It is possible to adapt the divide-and-conquer algorithm
to non-zero genus domains, which are discretized as more
than one segment chains. One would need to first find pairs
of colliding segments belonging to different chains. The
pairs would then be removed from the collision tests and
the chains would be merged until only one chain remains,
leading to the original definition of the algorithm. We have
not implemented this strategy because our fastest algorithm
handles domains with arbitrary genus.

C. Linear Algorithm

To apply the linear time algorithm one needs to store the
segments of the discretized boundary into a data structure
that allows random access to segments through indexes
and records the connectivity of the segments, being able
to retrieve the next and the previous segments for a given
segment. The connected segments form chains: one for
the outer domain’s boundary, defined counterclockwise, and
others for the inner boundaries, defined clockwise, if the
genus is greater than zero.

Our implementation requires that the distance function
produces a new value named s, which are also defined at the
collision tests (Section III). s is the value of the parameter t
that defines the point of the peer segment responsible for the
collision with the point where the DF is evaluated. This way,
by evaluating the DF at a point P on a segment, we obtain
the tuple (d, s, PSindex), which tells us that the point that
collided with P is the point parameterized as s on the peer
segment identified by PSindex. The point was displaced by
a distance d until the collision. The parameter s is simply
added to the DF’s piece representation at both interval ex-
trema, and thus it is also piecewise linearly approximated. As
seen in Section III, clipping a DF’s piece implies redefining
one of its extrema through linear interpolation (See Figure
3d). The same interpolation must be applied to s.

Our fastest algorithm has three main routines: Find MA
Extrema, Follow MA and Fix MA.

Find MA Extrema searches for MA’s extrema, which
are associated to convex vertices and points of locally
maximal positive curvature (LMPC [4]). This routine visits
every segment and performs the collision test against its
next segment. Fortunately, only adjacent segments that are
incident to a convex vertex or are near a point of LMPC
actually collide (see Section III). After the collision test, the
DF is evaluated at the end of the segment (t = 1) to obtain
the peer segment. If the DF is defined at this point and the
peer segment is the next segment, the visited and the next
segments are possibly responsible for an MA extremum.
From this pair of segments, a branch of the MA can be
tracked by the Follow MA routine. Reflex vertices always

start a valid MA branch. LMPC points start invalid MA
branches when the associated curvature radius represents
a disk that is not contained in the domain. Invalid MA
branches will be later overwritten by valid branches.

Follow MA follows a branch of the medial axis partially
defined by a given pair of segments. These segments contain
footprints of a set of maximal disks and we can follow the
footprints of other disks by walking along the boundary (see
[4], [2]) from this pair of segments. From one segment we
walk in the next segment direction, while from the other
we walk in the previous segment direction, or vice-versa
to follow the footprints in the opposite direction. However,
from pairs of adjacent segments, as those found by Find MA
Extrema, only one direction can be followed.

This procedure defines two indexes – left and right –
that initially refer to the given pair of segments. Left is the
segment at the left side of the MA branch to be followed,
while right is at the right side.

Firstly, left remains static and right successively becomes
the next segment, being tested against left for collisions, until
no DF change occurs or an MA branching point’s footprint
is found. Then, right steps back (one previous operation)
and a similar process is performed, but maintaining right
static and moving left through the previous operation. Then,
left steps back (one next operation). The steps described
above are repeated while changes were made to the DF
through collision tests, and no branching point’s footprint
was found. This way, a branch of the MA is followed by
setting the corresponding DF pieces through collision tests.
It is important to note that the DF is updated when new DF
pieces are defined for undefined DF intervals, or new DF
pieces has smaller d values for an already defined interval.

When the MA branch being followed encounters another
already tracked MA branch (a joint), the branching point
that joins them can be identified by its footprint, which has
a clear signature on the constructed DF. Such event stops the
tracking of the current branch and starts the tracking of the
branch originated from that joint. Thus, after every collision
test, it is necessary to analyze the updated DF searching
for a branching point’s footprint. This is characterized by
two consecutive DF pieces continuous in the parameter d
and having either peer segments that are not adjacent, or
values of s different from 0 and 1 at the point where the
pieces meet. The branching point’s footprint is the point
where those DF pieces meet, and their peer segments are
the pair of segments from which the new MA branch (after
the joint) is followed.

At each step of Follow MA, our approach only requires
an O(1) operation (local DF analysis) to identify MA
branching points by their footprints, while the approaches by
Ramanathan and Gurumoorthy [4] and Cao et. al. [2] require
an iterative operation that costs O(n), being n the number
of discretization steps along the boundary. This explains the
higher efficiency of our algorithm.



Find MA Extrema and Follow MA do not take into
account interactions between different chains of segments. In
domains discretized as more than one chain (genus greater
than zero), the DF can not be correctly computed using only
these routines. We need and additional step to complete the
DF: the Fix MA routine.

Fix MA visits all segments searching for those where
the DF is undefined or presents discontinuities. Once such
segment is found, it is tested against all others for collisions.
This segment and a peer segment form a new pair, and the
Follow Axis routine is used to track new MA branches in
both directions from it. Usually the number of pairs found by
this search is small (about the number of inner boundaries)
because Follow MA defines the DF for many segments by
following several new branches consecutively.

Summarizing, the algorithm starts with the Find MA
Extrema routine, which may call Follow MA several times.
The last step is calling Fix MA, which is only necessary in
domains having genus greater than zero.

The MA branches followed can be invalid or temporarily
overestimated, which implies overwriting the DF for several
segments when Follow MA joins two branches and tracks
the new branch, which corresponds to smaller collision
distances than those from the overestimated or invalid one.
Even when no branch joint occurs, the tracking of branches
stops at certain boundary configurations [4], such as convex
vertex and LMPC, which are responsible for other branches’
extrema. Being n the number of segments and k the number
of branches’ extrema and joints, the average cost of tracking
a branch is roughly proportional to n and inversely propor-
tional to k, since more complex domains lead to shorter (less
segments) branches. However, there are about k branches
to be followed, thus tracking all branches costs O(n), plus
O(n) to find extrema (Find MA Extrema). The presence
of inner boundaries implies overwriting the DF for many
regions, which raises the complexity to O((genus+1)×n).
Next section describes our method for constructing the
explicit MAT.

V. EXTRACTING EXPLICIT MEDIAL AXIS

One can approximate the medial axis by a set of uncon-
nected points obtained by sampling the discretized domain
boundaries, evaluating the distance function at the sample
points, and then displacing the sample points along the
direction of the respective normal vectors (interpolated from
the segments’ extrema) by a distance d, which is obtained
through the evaluation of the DF. One of the problems of this
method is ambiguity, since each point of the MA is defined
twice because the associated maximal disk has at least two
footprints. This way one has two estimatives of the same MA
point by sampling the DF at the footprints. These estimatives
can be subtly different due to the fact that the calculated
DF is an approximation. This problem can be reduced by
using the peer segment and the s value (see Subsection

IV.C) from the evaluation of the DF to approximate the
location of the other footprint. Having both footprints one
can produce an MA point by averaging two estimatives. Also
due to the ambiguity, calculating the connectivity between
the estimated MA points is not straightforward. Stepping
along the boundary, estimating MA points, and successively
connecting them would lead to MA branches defined twice.
We developed a simple linear algorithm for extracting the
unambiguous, connected MA from the calculated DF.

For each chain of adjacent segments (note that more than
one chain occur only in domains with genus greater than
zero), by applying successive next operations, our algorithm
visits every segment searching for branching points’ and
extreme points’ footprints, which can be recognized by
patterns in the DF, as described in Subsection IV.C. For
each chain of segments, a circular list of such special
footprints is constructed. Branching points’ and extreme
points’ footprints are stored into the corresponding list, in the
order that they appear, with labels B and E, respectively. A
third footprint label, named auxiliary (A), can be produced
during the MA extraction procedure. Each stored footprint
also carries an index to the segment where it occurs and an
index to the first DF’ piece after its occurrence.

Using simple rules, the algorithm iteratively constructs
connected MA branches as it trims the footprints’ circular
lists. The rules are as follows: a sequence BiEjBk turns
into Al, which inherits the indexes of Bk, while an MA
branch is constructed by successively sampling the boundary
from the footprint Bi (identified by the associated indexes)
to the next special footprint found on the boundary. The
produced MA points are successively connected. AiEjBk

turns into El, which inherits Bk’s indexes, while an MA
branch is traced from Ai. Sequence BiEjAk turns into El,
which inherits Ak’s indexes, while an MA branch is traced
from Bi. Sequence EiEj turns into no element and an MA
branch is extracted from the footprint Ei. If the footprint
lists are empty, or no more such sequences can be found,
this procedure stops. The second stopping criteria is met
only in domains with genus greater than zero. Besides, if
there exist exactly two segment chains and the footprints’
lists are initially empty, the MA is certainly a simple ring
and can be obtained by successively sampling the DF on
one of the two boundaries.

Figure 5. Several representative results of our approach.

The steps for trimming the circular footprint’s list of the
triangular “dot” above the last “I” from “SIBGRAPI” in



Figure 5 are used as example: BEBEBE → AEBE →
EE → (empty). The three steps (arrows) correspond to the
three extracted MA branches. If the algorithm stops with
non-empty lists, we trace MA branches from the remaining
special footprints in the lists. When new branches are drawn
by sampling the DF on a boundary, we mark DF’s pieces
on the opposite boundary, which can be found through the
DF using the values produced for peer segment index
and s. Branches traced by sampling any marked DF’s piece
are discarded. However, this marking strategy is subtly less
efficient than the rule-based list trimming. Knowing the
common branching points’ footprints, we connect medial
axis branches as they are extracted, forming the complete,
connected medial axis.

VI. RESULTS AND DISCUSSION

This section presents several results generated by our
linear time algorithm. The same results can be generated
by the naı̈ve and the divide-and-conquer algorithms, for
domains with genus equal to zero. Figure 1 shows the medial
axis of several domains that reveal the strengths of our
approach. The boundaries of the left one were analytically
defined by a horizontally stretched senoidal function in
polar coordinates. The normal vectors were also analytically
calculated using derivatives. This example illustrates the
ability of our algorithms to deal with curved boundaries. The
domain depicted in the middle has genus equal to four and
is defined with curved and straight boundaries, illustrating
the generality of our proposal. Figure 1 (right) domain is a
simple polygon, for which our approach also yields correct
results. Figure 5 shows other representative results.

One of the applications of the medial axis is tracing
level set curves, which are important in path planning.
For instance, they are useful in tracing paths for automatic
cutting tools in industrial environments. A level set curve is
the set of all points in the plane having a certain distance
from the domain boundary. As stated before, the medial
axis transform (MA with the associated radius function)
is invertible, allowing perfect reconstruction of the original
domain. The level sets can be constructed from the MA
and the radius function plus an offset that gives the level of
the curve. In Figure 6 we show some level set curves of a
domain with genus equal to one, which were reconstructed
from the calculated MAT using regularly spaced offsets.
Although the computed medial axis is an approximation,
visually the original boundary is precisely on the zero level
curve, which enforces the correctness of our MAT approach
and the object’s reconstruction. We visually reconstructed
the level set curves by drawing many overlapping disks. The
reader is referred to [2] for a well-founded algorithm.

The structuring element used to define and construct
the medial axis is the disk, but other medial axis-like
skeletons can be obtained by changing only the structuring
element in the definition of the MAT. Our method can

Figure 6. Level set curves of a domain depicted as the boundaries of dark
gray and light gray regions. The domain boundaries are drawn in black.

employ ellipsoidal structuring elements with displaced cen-
ters through a transformation of the boundary’s normalized
normal vectors before the grass-fire simulation, as illustrated
in Figures 7a and 7b. The transformation function (Tr : {x ∈
<2 | length(x) = 1} → <2) finds on the boundary of the
structuring element the point whose normalized normal vec-
tor is equal to the input normal. The output is the vector from
that point to the possibly displaced center (see Figure 7b)
of the structuring element. The transformed normal vector
must not be normalized. The results are modified versions
of the MA, as shown in Figures 7c and 7d. These interesting
effects can be achieved through simple alternative ways
involving rotation and non-uniform scaling of the domain
boundary. For structuring elements with displaced centers,
a post processing of the MAT result is also necessary.
However, we can obtain such effects using a single, well-
defined normal transformation, which is another degree of
freedom of our approach. A modified MAT that employs an
ellipsoidal structuring element can be used, for instance, to
generate level set curves based on the Mahalanobis distance.
We still have to test our normal transformation scheme on
other convex, C1 continuous structuring elements. Below we
discuss the limitations of our MAT method as well as simple
strategies to overcome them.

Our algorithms for medial axis transform fail in domains
fully or partially defined by circles or circular arcs, i.
e., having boundaries with regions of constant curvature.
The distance function for the segments that discretize such
regions cannot be properly calculated because when these
segments are displaced along the normal vectors of their ex-
trema, they shrink to zero length at the exact moment of the
collision with segments on the same region, and thus their
intersection distance profile is undefined. We might add tests
to the algorithms to identify regions of constant curvature
and give their segments a special treatment, but we chose
a simpler solution. In such cases we apply a small change
to the boundary definition in order to transform regions of
constant curvature into regions of subtle curvature variation.
This can be done, for instance, by replacing circular arcs
for near-circular elliptical arcs. The reformulation of the
boundary using this strategy is trivial and describing the
involved equations is beyond the scope of this paper.



(a) Transformation 1 (b) Transformation 2

(c) Result 1 (d) Result 2

Figure 7. Illustration of our normal transformation scheme (a and b)
and respective results (c and d). In (a) and (b), the boundary’s normalized
normal (N ) is replaced by the vector that links the point P where the normal
of the structuring element is equal to N to the possibly displaced element’s
center (point C). This vector is the normal transformation function (Tr)
applied to N . The skeleton in (b) was generated with an ellipse with
horizontal major axis as structuring element, while in (d) a disk with
displaced center was used, pushing the skeleton toward the bottom part
of the domain boundary.

The implicit representation of the MA can be built without
giving any special treatment to branching points whose max-
imal disk has more than three footprints because the axis is
traced by our linear time algorithm from its extreme points,
while this issue is irrelevant for the other two algorithms.
However, the method for extracting the explicit MA suffers
from this peculiarity. We solve this problem with a very
small perturbation of the object’s boundary.

The degenerated cases described above are extremely
rare in natural or hand-designed domains and only deserve
attention in carefully analytically drawn geometries.

VII. CONCLUSIONS AND FUTURE WORK

We presented a novel method to calculate the medial
axis transform of general planar domains. An implicit rep-
resentation of the medial axis through a distance function
defined along the domain boundaries was introduced, and
three algorithms for constructing the MAT based on this MA
representation scheme were developed. Previous approaches
have quadratic execution time – as our naı̈ve algorithm –
while our fastest algorithm has linear complexity. Using
our MA representation, the branching points can be found
with no significant additional cost, which leads to the no-
ticeable efficiency improvement. We also proposed a simple
method for obtaining the explicit MAT approximation from
its implicit representation. Our approach may suffer from
degenerated cases, but these can be avoided with simple
strategies. The results show the strengths of our method,
which are able to deal with simple polygons as well as
curved boundaries, having arbitrary genus in a seamless way.

We believe that extending and implementing our linear
time algorithm for three-dimensional domains would be an
extremely difficult task. We aim at developing an approach
for 3D MAT by either adapting the brute force algorithm
and using GPU acceleration or adapting the O(n log(n))
algorithm. Both attempts rise interesting challenges. An
effort was made for finding a fast and simple algorithm to
construct an explicit skeleton from the implicit representa-
tion of the MA, but we think that in some applications,
such as path planning, the implicit representation may be
even more useful than the explicit MA. An ongoing work
is the investigation of the strengths and applications of the
implicit MA representation.

REFERENCES

[1] H. Blum, “A transformation for extracting new descriptors of
shape,” in Models for the Perception of Speech and Visual
Form, W. W. Dunn, Ed. Cambridge: MIT Press, 1967, pp.
362–380.

[2] L. Cao, Z. Jia, and J. Liu, “Computation of medial axis and
offset curves of curved boundaries in planar domains based on
the cesaro’s approach,” Computer Aided Geometric Design,
January 2009.

[3] R. Ramamurthy and R. T. Farouki, “Voronoi diagram and me-
dial axis algorithm for planar domains with curved boundaries
1. theoretical foundations,” J. Comput. Appl. Math., vol. 102,
no. 1, pp. 119–141, 1999.

[4] M. Ramanathan and B. Gurumoorthy, “Constructing medial
axis transform of planar domains with curved boundaries,”
Computer-Aided Design, vol. 35, no. 7, pp. 619–632, 2003.

[5] M. Meyer, R. Whitaker, R. M. Kirby, C. Ledergerber, and
H. Pfister, “Particle-based sampling and meshing of surfaces
in multimaterial volumes,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 14, no. 6, pp. 1539–1546,
2008.

[6] F. Y. Chin, J. Snoeyink, and C. A. Wang, “Finding the
medial axis of a simple polygon in linear time,” Discrete and
Computational Geometry, vol. 21, no. 3, pp. 405–420, 1999.

[7] D. T. Lee, “Medial axis transformation of a planar shape,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 4, no. 4, pp. 362–369, 1982.

[8] H. I. Choi, S. W. Choi, and H. P. Moon, “New algorithm for
medial axis transform of plane domain,” Graphical Models
and Image Processing, vol. 59, no. 6, pp. 463–483, November
1997.

[9] H. I. Choi, C. Y. Hana, H. P. Moona, K. H. Roha, and
N.-S. Wee, “Medial axis transform and offset curves by
Minkowski Pythagorean hodograph curves,” Computer-Aided
Design, vol. 31, no. 1, pp. 59–72, January 1999.

[10] R. Ramamurthy and R. T. Farouki, “Voronoi diagram and me-
dial axis algorithm for planar domains with curved boundaries
2. detailed algorithm description,” J. Comput. Appl. Math.,
vol. 102, no. 2, pp. 253–277, 1999.


