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Abstract

Mosaic sculptures are a form of art where the sculpture
is made from a collection of individual elements called tiles
which are distributed over the surface of a given 3D shape.
To add expressiveness, artists distribute the tiles following
a high-level design over the shape, in order to emphasize
some features. In the method known by mosaicists as Opus
Palladium, or simply “crazy paving”, tiles with irregular
shapes are used, improving the expressivity of the final re-
sult. In this work, we present a method to simulate this
kind of 3D mosaic by representing tiles as Voronoi poly-
gons computed from a distribution of points on the surface
of the 3D object. Previous work on this topic have used
only square-shaped tiles. Special mosaic-like effects are ob-
tained with the help from texture maps, which control the
high-level design of the tiles.

1 Introduction

Traditional art forms are a source of inspiration for
much computer graphics work. A lot of the work in two-
dimensional expressive rendering, for instance, use as in-
spiration art forms such as oil painting [17, 8], watercolor
painting [6, 18], pen-and-ink [24], and others [5, 16]. Less
common are three-dimensional art forms, such as sculp-
tures. Our work in this paper targets a particular type of
sculptures – mosaic sculptures – where the artist covers a
given 3D shape with a collection of small pieces called tiles.
Tiles are usually made of ceramics or glass and can be used
in regular or arbitrary shapes. Previous work on this topic
have successfully addressed 3D or surface mosaics, as they
are sometimes called, using tiles of the same shape and size
[15] and, more recently, of the same shape but variable sizes
[7].

Here we present a solution for the case where the tiles
have an arbitrary shape. Among mosaicists [14] this type
of mosaic is called Opus Palladium, or “crazy paving”,
a reference to the artistic freedom that comes from using
arbitrarily-shaped tiles. In Figure 1 an example of this mo-
saic is given.

Figure 1. Example of a real opus palladium
mosaic (detail from the Lizard sculpture in
Park Guell, Barcelona).

In Figure 2 we show a result from our simulation on an
eagle model. The placement, size and distribution of tiles
were computed automatically. Parameters used in all simu-
lations are given in Table 1.

2 Previous Work

In Computer Graphics, 2D mosaics have been explored
since the early 1990s, when Haeberli [12] used Voronoi
polygons to draw beautiful mosaic-like effects from images.
From this seminal work a lot of progress has been made and
S. Battiato and colleagues summarize the recent contribu-
tions in [2, 1]. According to this survey, there are three gen-
eral types of 2D mosaics: ancient, photomosaics, and puz-
zle image mosaics. We are interested only in the first type,
and our review below is restricted to this type of mosaics. In
this type, the digital mosaics use as a source of inspiration
actual mosaics. The mosaics themselves are composed by
grouping together a collection of small pieces called tiles.

After the pioneering work by Haeberli, it was not until
2001 that mosaics attracted attention again in graphics re-
search. Hausner [13] presented beautiful mosaics computed
from a given image. The tiles are mostly square but rectan-
gular tiles were also used. Tile positioning was obtained
with an iterative process which moves the points represent-
ing the tiles towards a centroidal Voronoi diagram.

In 2003 Elber and colleagues [9] introduced a mosaic-
ing technique where the tiles are arranged in rows along
free-form feature curves computed for the image, much like
level curves that spread outwards from a source. In the work



Figure 2. Example of result from our simula-
tions. The size and placement of tiles auto-
matically computed with our solution.

by Di Blasi and colleagues, titled Artificial Mosaics [4],
the authors used inspiration from the work of mosaicists to
drive their solutions with impressive-looking results. The
work called RenderBots [19] uses a multi-agent approach
for rendering mosaics. A number of RenderBots are dis-
tributed in the image. These bots are configured according
to the desired visual effect. The bots can be configured in
their physical behaviour to account, for instance, for differ-
ent painting styles, among them mosaic-like. More recent
work express the problem of artificial mosaic generation as
a gradient vector flow computation [3].

Comparatively, there has been very little work address-
ing 3D or surface mosaics. The work presented in [15]
posed the problem of tile placement on a surface as a global
optimization problem. Their solution used square tiles of
same size. In [7] we presented a solution for 3D mosaics
where the tiles are still square, but the individual sizes are
adjusted according to a local metric based on geometric
properties of the surface receiving the tiles, such as ap-
proximated curvature. Our work in this paper shares many
similarities with this last work, the main difference is that
we compute tiles of many shapes, instead of only square-
shaped ones.

In the next section we explain how we implemented our
solution.

3 Method

Our main goal is to achieve variation in the shape of tiles.
As a second goal, the distribution of tiles should follow a
high-level design as seen in many of these types of mo-

saics, and illustrated in Figure 1. Our solution computes
a distribution of tiles of variable size on the surface, subject
to constraints imposed by the geometry, and also constraints
imposed by the design, computed with the help from texture
maps. Our solution is an extension of the work presented in
[7], and therefore we will quickly review this work and then
we will discuss our solution for the two above mentioned
goals.

3.1 Distribution of square tiles of variable
sizes

The solution presented in [7] computes square tiles with
variable sizes in two steps, as follows:

3.1.1 Random Tile Distribution on the Surface of a
Polyhedral Model

Tiles are represented as points, and an initial distribution of
points over the model’s surface is computed using a modi-
fied version of the algorithm presented by Turk in [21]. In
Turk’s approach, only the relative areas Ai of each polygon
i are used for point placement. In the algorithm presented
by Passos and Walter [7], point placement takes also into
account the relative capacity Ci of each polygon. This ca-
pacity is a function not only of the polygon’s area, but also
of its curvature. With this extension, the initial configura-
tion of tiles naturally places less tiles over flat areas, and
more tiles over curved areas. A similar idea in 2D was pre-
sented by Faustino and Figueiredo [10], where the size of
tiles was adaptively computed as a function of how close
the tiles were from main features of the image.

In our approach, the curvature on each vertex was ap-
proximated with the algorithm presented also by Turk in
[22]. Finally, a function f maps radii of curvatures to size
ts of tiles. f is a simple linear function with two thresholds,
tsmin and tsmax. The threshold values are given in terms
of an average tile size ts, which is proposed by [15] as the
average tile size if we were to cover the entire surface using
an user-specified number N of tiles with the same size.

3.1.2 Point Relaxation on the Surface

The step described above places tiles randomly on the sur-
face. In order to achieve an even distribution over the sur-
face, we use a relaxation process. This process will spread
the points such that they are at approximately the same dis-
tance from one another. The algorithm considers each point
as an interacting particle that produces a force field around
it. This field is repulsive, so that points will repel each other.
The repulsive force Fij between points i and j is given ac-
cording to equation below:
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Fij =
{

kf (1− d
ri+rj

) d ≤ ri + rj

0 elsewhere

where ri and rj are the values obtained from the mapping
function f applied to the radii of curvature on each point
location, d is the distance between points i and j, and kf is
a parameter that controls the overall time for the system to
reach a steady state. We used kf = 0.04 in our results.

Measuring these distances on a mesh is not trivial, and
an approximation presented in [23] is used. Basically, all
computations are made on the supporting plane of the point
being considered. For artistic purposes, using an approx-
imated planar distance between the points is not critical.
With an increase in cost we could use more sophisticated
solutions for computation of geodesics, as proposed in [20].

Figure 3. Section of a flattened cube. For the
black triangle we show the primary (blue) and
secondary (white) neighbors.

With this approximation, the only neighboring points
considered are the ones located in either primary (share an
edge), or secondary faces (share a vertex), with the support-
ing polygon. Figure 3 illustrates this idea. The black trian-
gle is the reference triangle. All particles will be mapped to
the supporting plane of this triangle. The blue triangles are
the primary neighbors and the white triangles are the sec-
ondary neighbors. The number of primary and secondary
neighbors is not fixed and depends on the topology of the
mesh.

The distances are computed on the supporting plane and
therefore the algorithm needs to map the primary and sec-
ondary neighbors to this plane. For each pair of faces R and
S that share an edge, we precompute two matrices MR→S

and MS→R that operate the rotation from one plane into an-
other. For the primary neighbors we use these matrices. For
secondary neighbors, we use a sequence of rotations around

edges which are shared by the supporting face and the sec-
ondary neighbor being projected. In order to update the po-
sition of points due to the relaxation forces, points travel
freely and can eventually move to another face. When a cell
changes face we find which edge the cell crossed and using
the precomputed rotation matrices we bring the point’s posi-
tion onto the plane of the new face. This process is repeated
until the point rests on some face, as illustrated in Figure 4.

Figure 4. A point pushed away from its orig-
inal face is rotated around the crossed edge
until it falls over the neighboring face.

3.2 Rendering Variable-Shaped Tiles Us-
ing Voronoi Diagrams

In this work, we propose to simulate the crazy paving
style using Voronoi polygons to represent individual tiles.
Voronoi polygons have enough shape variation and are a
good candidate for tiles with variable-shape. At this stage of
the algorithm, for each polygon on the mesh, we have a col-
lection of evenly spaced points that represent the tiles. As in
the relaxation step explained above, we use an approxima-
tion for the computation of the Voronoi diagram presented
in [23]. We compute the Voronoi diagram of this collection
of points on the plane of the supporting polygon, and map
all neighboring faces to this same plane. Again, since our
application is mainly artistic, it makes sense to use an ap-
proximation instead of the full cost of an exact computation.

An important visual component of mosaics is the space
among tiles, filled with grout. Our Voronoi computation
results in tiles with no space among them. We introduce
a global scaling factor in order to simulate and control the
amount of grout. We decrease globally the size of each tile
according to a user-supplied amount of grout g, a number
between 0 and 1. This reduction in size is computed with
a simple scaling of the tile in its local frame of reference.
We have used g typically as 10%. In order to give a more
realistic feel, one could vary randomly or according to tile
sizes or shapes (restricted to a range of values) the amount
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of grout between the tiles. We will implement this as future
work.

The size difference between the initial and the final shape
of the tile is described as a collection of quadrilateral poly-
gons, and should be included on the mesh representing the
full mosaic sculpture, as shown in Figure 5. These grout
polygons receive a flag identifying them as such, in order to
render them differently from mosaic polygons.

Figure 5. Grout generated after tile reduction.

Once we have computed all grout polygons, we clip the
entire set against the supporting polygon using the Suther-
land clipping algorithm [11]. The resulting set is then pro-
jected back to 3D. Once we have all tiles and grout poly-
gons, if needed, we are able to discard the original mesh.
At the rendering step, polygons identified as grout are ren-
dered using a gray color, and those identified as tiles will
use the reference to the point that generated it. This ref-
erence contains texture information, which will determine
the color of the tile, and also contains the normal N at that
point on the original mesh. The normal vector is used for
computing the height of tiles. Each tile’s vertex will be dis-
placed by some value in the direction of N . Figure 6 shows
a result without texture information yet.

3.3 Control of the design

Most 3D mosaics exhibit a high-level design for tile po-
sitioning. As illustrated in Figure 1, tiles are positioned fol-
lowing bands of different colors. In order to implement this
style, we use texture maps for specification of the design
and implemented a small modification in the particle re-
laxation process: we force the tiles to align with the edges
present in the texture map.

The problem of tile alignment for 2D mosaics was inves-
tigated by Di Blasi and Gallo [4], where a solution based on
directional guidelines was presented. In their work the di-
rectional guidelines are the main features of the image and
from these they compute three matrices: a distance trans-
form matrix, a gradient and a level line matrix. These last
two matrices are used to align the tiles.

Figure 6. Mosaic generated according to
crazy-paving style.

Our idea is to include in the force field artificial forces
due to the edges present in the texture map. These forces
should repel the particles from the locations that are mapped
near the edges on the texture. Therefore, the closer the point
is to the edge, stronger is the force. The information of this
distance, between the point and the closest edge, is found
in a second texture that is pre-computed according to the
following process, illustrated in Figure 7.

First, we obtain a black/white representation of the edges
from the image (Figure 7(a)). This might be automaticaly
produced using any edge detection algorithm, or it could
be hand-made by the user. Edges are assumed to be white,
and background black. Then we iterate over this image m
times, and for each pixel, its color will be diffused amongst
its 4-neighbors – up, down, left and right. The diffusion
rate dr will determine the velocity of diffusion, and m will
determine the range. This process is equivalent to applying
a weighted mean filter on the image.

At the iteration k, pixel’s color Pk(i, j) at coordinates i
and j is evaluated as:

Pk(i, j) =
dr

4
S + (1− dr)Pk−1(i, j)

where S is the sum of the 4-neighbor’s color. The value
is then saved into the red component of the new texture.
The closer the pixel is from the edge, the higher is its red
value. In the green and blue components of the image, we
save the gradient information from the x and y directions.
These values are evaluated as the differences between the
two neighbors’ red value on each direction, normalized to
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(a) Original texture (b) Resulting texture after 50 itera-
tions

Figure 7. Texture for controlling the design.
dr = 0.7 and m = 50

fit in the range [0, 255]. The equations below compute the
gradient in the blue B(i, j) and green G(i, j) components
respectively, of the new texture:

B(i, j) =
R(i + 1, j)−R(i− 1, j) + 255

2

G(i, j) =
R(i, j + 1)−R(i, j − 1) + 255

2
Zero values of the gradient will be mapped to 177.5,
rounded to 177. Negative values will be in the range [0, 176]
and positive values in the range [178, 255]. Figure 7(b)
shows the resulting texture computed as explained above
with dr = 0.7 and m = 50.

Once we have the texture with the information about the
gradient, we are able to use it in our particle relaxation
method. For each particle, we query the blue and green
components from the computed texture. Subtracting 177
from each, we obtain directly the force vector in the coor-
dinate system of the texture. We then map this vector into
the coordinate system of the base polygon and add it to the
resulting repulsive force due to the neighboring particles.
This force can be multiplied by a scaling factor w that better
suits the particular number of tiles being used. Particles will
be pushed away from the edges, and due to repulsive forces
between them, they will be forced to align near edges.

After the Voronoi computation, as illustrated in Figure
8, the tiles are properly aligned with the edges from the tex-
ture, and the final configuration still follows the opus palla-
dium mosaic style.

4 Results

In this section we illustrate a few results of our technique.
In Table 1 we list the parameters used: number of tiles,
mapping of tile sizes to curvatures, and amount of grout.

(a) Without edge forces (b) With edge forces

Figure 8. Comparison between mosaics with-
out and with edge control.

Timings on a 2.26Ghz processor with 1.25GB RAM are
around 10sec for 15000 tiles, mostly due to computation of
the Voronoi cells.

Table 1. Parameters and their values for the
results presented.

Figure # of tiles tsmin tsmax g

2 20000 1 ts 4 ts 0.1
6 17000 0.5 ts 1.4 ts 0.1
9 5000 1 ts 1 ts 0.1
10 / 11 15000 0.5 ts 3 ts 0.1
12 20000 0.5 ts 1.5 ts 0.15

Our renderings emphasize just the overall distribution of
tiles and did not use any particular realistic rendering mate-
rial model, except in Figure 11 where a wood-like material
was used.

First we show a result on a mesh with the same overall
curvature, a sphere. In Figure 9, we can see that the planar
approximation of the Voronoi computation handles well the
covering of the mesh. The Voronoi tiles spread over more
than one polygon from the original mesh but nevertheless
there are no visible discontinuities on the Voronoi cells. The
bear mosaic sculpture in Figure 10 illustrates the variation
in size of tiles on the 3D surface according to the approxi-
mated local curvature of the mesh. In this example we did
not use any texture information, assigning random colors to
the tiles.

For Figure 11 we saved the final mosaic sculpture as a
mesh and loaded it in 3D Studio Max for the realistic ren-
dering. The same distribution of tiles from Figure 10 was
used, but with an uniform color for all tiles instead, a wood-
like material property, and special lighting effects.

The final image in Figure 12 shows a dinosaur model
with texture information defining the different parts of the
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Figure 9. Example of our 3D mosaic on a
sphere.

mosaic. Notice the slightly higher amount of grout used,
15% instead of 10%.

5 Conclusions

We presented a technique for building 3D textured mo-
saics with variable-shaped tiles. Previous work on this topic
have only used squared-shaped tiles. The tiles are computed
using Voronoi polygons to simulate the crazy paving style,
and are positioned according to a high level control pro-
vided by texture maps. The tiles are also of variable size,
adapted to the local geometry of the surface, and the amount
of grout, or space among tiles, is precisely controlled. One
drawback of our approximated Voronoi polygons is that, for
some configurations of the original mesh, the primary and
secondary neighbors do not take into account all possible
neighbors. Therefore, some tiles are missed from the com-
putation, causing discontinuities in the tiles. This can be
avoided at the expense of including more faces in the search
space.

For future work we are investigating hybrid mosaics,
where there is a combination of square and variable-shaped
tiles. Finally, we would like to render the tiles with material
properties of real tiles, such as glass and ceramics.
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