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Abstract 
 

Bayesian inference methods are commonly applied 

to the classification of brain Magnetic Resonance 

images (MRI). We use the Maximum Evidence (ME) 

approach to estimate the most probable parameters 

and hyperparameters for models that take into account  

discrete classes (DM) and models accounting for the 

partial volume effect (PVM). An approximate 

algorithm was developed for model optimization, since 

the exact image inference calculation is 

computationally expensive. The method was validated 

using simulated images and a digital phantom. We 

show that the Evidence is a very useful figure for error 

prediction, which is to be maximized respect to the 

hyperparameters. Additionally, it provides a tool to 

determine the most probable model given measured 

data. 

  

 

 

1. Introduction 
 

A wide variety of techniques are available for 

statistical inference of magnetic resonance images of 

the brain. An extensive review can be found in the 

literature [1]. Another set of useful algorithms are 

based on anisotropic filtering [2-5]. 

In this work we use unsupervised algorithms to infer 

tissue distribution in brain MRI [1]. Such unsupervised 

algorithms do not require previous training for tissue 

classification, since the user introduces the known 

image data in the a priori model. One example is the 

discrete algorithm [6], which accounts for magnetic 

field heterogeneities [7] and includes an interaction 

potential between pixels in the a priori distribution 

[8,9].   

The main motivation is to develop an automatic 

algorithm that is able to determine the typical spatial 

scales that appear in the image. In this way, we are able 

to discriminate structures as small as possible, but 

without  fitting spurious signals generated by noise. 

This objective is achieved by introducing two new 

features that were added to the discrete algorithm: 

partial volume effect correction and the approximate 

estimation of the pixel interaction factor. We chose the 

Maximum Evidence criterion (ME) [10], as the 

Bayesian method for model optimization and 

comparison.  

Model optimization usually involves the 

minimization of an energy function, which can be done 

by Simulated Annealing [8,9]. To compare different 

models, it is often necessary to solve complex integrals 

using Monte Carlo tools [11]. Both procedures are so 

computationally intensive that they become  

impractical for medical applications. It is therefore 

attractive to develop approximate Bayesian methods, 

capable of reducing calculation time considerably.  

This paper focuses on the calculation of the 

approximate Evidence for the hyperparameters 

(parameters that control the behavior of many pixels) 

and for the different models. We show that Evidence is 

a very useful figure for error prediction.  

The nomenclature and notation used throughout the 

work are introduced in Section 2. Section 3 

summarizes the Maximum Evidence method [10,11], 

used for the estimation of optimal parameters and 

hyperparameters. This procedure is carried out in three 

steps. First, parameters are optimized for each pixel. 

Second, optimization is done for the hyperparameters. 

In the last step, the different models are compared. In 

Section 4, the same steps are implemented for the 

discrete model, whereupon the Zhang algorithm [6] is 

obtained, including the approximate Bayesian 

estimation for the pixel interaction factor. Section 5 



describes the same procedure for the partial volume 

model. In Section 6 the algorithm is tested on simulated 

images. Finally, its validation is assessed using a digital 

phantom [12]. 

 

2. Nomenclature and Notation 
 

1)Models: The different models are denoted as Hi.   

H1: Discrete Model (DM), H2: Partial Volume 

Model (PVM)  

2) Data: vector d represents the image, tipically  

N=256×256  

3) Parameters and hyperparameters: The parameter 

vector of model H1 is denoted by c. Each component ci  

(i = 1,..,N), belongs to one of L tissue classes, 

associated with gray matter (GM), white matter (WM), 

cerebrospinal fluid (CSF) and background (BKG).  The 

hyperparameter of H1 is: γ1 = (µ , σ ,β ,L). Where µ  

and σ  are the mean intensity and standard deviation for 

each class (1,..,L) and β  is the pixel interaction factor.  

The parameter vector of model H2  is denoted by a, 

i.e. ai is the fraction of the most probable class for pixel 

i. Likewise, the hyperparameter of H2  is: γ2 = (µ,σ,β 
,L). 

 

3. Maximum Evidence Criterion 
 

The Bayesian inference is formulated in three steps: 

1st Step) Search for the most probable parameters 2nd 

Step) Search for the most probable hyperparameters 

and 3rd Step) Determination of the most probable 

model [10]. 

 

3.1 Most probable parameters (1
st
 Step) 

 

Given measured data d and model Hi , which are the 

most probable parameters w (where w corresponds to c 

or a according to the model) in the model ? According 

to Bayes' rule: 
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where P(d|w,γi,Hi) is the Likelihood distribution 

(noise model), P(w|γi ,Hi) is the a priori distribution 

and P(d|γi ,Hi) is the Evidence of hyperparameter γi . 

The distribution in the denominator of Eq. (1) can be 

written as: 
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If w is discrete, the integral in Eq. (2) becomes a 

summation over all possible values of w. Since       

P(d|γi ,Hi) does not depend on w, 
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The most probable parameter wMP in the confidence 

interval σσσσMP (error bars) can be found by maximizing 

the posterior distribution with respect to w. This 

calculation is the first step of the Bayesian inference. 

As the posterior distribution is usually a very complex 

function, the absolute maximum can be found using 

Simulated Annealing and Monte Carlo techniques 

[8,9].  However, such methods are computationally 

expensive, and a faster alternative is provided by the 

Quadratic Approximation [10], the Gradient Descent 

method for continuous variable models [5] or 

approximate techniques such as Iterated Conditional 

Modes for the discrete case [13]. 

 

3.2 Most probable hyperparameters (2
nd

 Step) 
 

Given a set of hyperparameters γi for model Hi and 

measured data d, which is the most probable γi? The 

posterior probability of hyperparameter γi can be found 

using Bayes' rule: 
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Assuming that all hyperparameters are equally 

probable a priori, 
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It follows that the posterior probability of each 

hyperparameter is proportional to its evidence: 
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Under the above assumptions, the most probable 

hyperparameter is the one with the maximum evidence. 

As described in [10], (6) can be approximated by: 
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where OF =σσσσw|d / ∆∆∆∆
0
w is the Occam factor, ∆∆∆∆0

w is the 

volume of the a priori distribution in parameter space 



and f  is some fitting function. As an example, suppose 

that our model Hi fits data d with a γi-degree 

polynomial f with coefficients w. Note that  

Log[Evidence] can behave in two different ways with 

increasing γi. Log[Evidence] increases as the term (d-

f(wMP))
2
 is smaller, but on the other hand, it decreases 

due to a larger ∆∆∆∆0
w and decreasing OF. In this way, the 

image inference models can be described as algorithms 

which fit surfaces of varying flexibility (controlled by 

hyperparameter γi). The most probable γi can be found 

by maximizing (6). 

In general, our current models have many degrees of 

freedom and the integration in (2) is performed over  

LN possible class configurations. One possibility is to 

evaluate such integration by Monte Carlo method. Our 

approach, as described in the following sections, is to 

approximate the Evidence. In this way the number of 

configurations to evaluate is N*L. 

 

3.3 Most probable model (3
rd

 Step) 
 

Given the set of models H1,......,Hn for measured data 

d. Which one is most probable? From the previous 

section, the Maximum Evidence model is the most 

probable one: 
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with P(γi | Hi)=1/∆0γi, where ∆0γi is the volume of the 

a priori distribution for hyperparameter γi.  

 

4. The Maximum Evidence Method for the 

Discrete Model 
 

The Evidence of a model can be increased by 

reducing its flexibility. For that reason, we shall first 

consider the discrete model, since it has few degrees of 

freedom. Next, the complexity of the model will be 

increased in order to reduce the quadratic error 

(correction of partial volume). 

 

4.1 Discrete Model Assumptions 
a) The mean intensity µj for each tissue (class j) is 

well defined.  

b) Each pixel belongs to only one of four possible 

classes cj: BKG, CSF, WM and GM.  

c) Gaussian noise distribution [14].  

d) In most cases, each pixel belongs to the same class 

as its neighbors. 

 

From the above assumptions, the probability 

distribution for pixel i can be written as: 
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Moreover, if the noise is uncorrelated: 

 

( ) ( )∏ =
=

N

i ccii HcdPHP
ii1 11 ,,,, σµσµ,,cd  (10) 

 

4.2 "A priori" distribution 
With hypothesis d), image pixels in the same 

neighborhood are 'a priori' expected to have similar 

intensity values. This property allows the MR image to 

be described as a MRF (Markov Random Field) [8-10] 

where each pixel ci is related to K neighbors cm in 

neighborhood N(i) through an interaction potential: 
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where Ndiff is the number of pixels of N(i) with a class 

other than ci  
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and Zc(β) is the partition function (or normalization 

constant) which depends on  hyperparameter β (pixel 

interaction factor). 

 

4.3 Bayesian inference for the Discrete Model 

(1
st
 step) 

 

Approximating the joint distribution (Appendix A) 

and setting w=c, we obtain the approximate posterior 

distribution: 
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In this way, maximizing the posterior probability of 

class c is equivalent to minimizing e(ci,cm) for each 

pixel, evaluating its neighbors for their most probable 

class. 

 

 



4.4 Bayesian inference for the Discrete Model 

(2
nd

 step) 
 

As shown in (2), the exact calculation of the 

evidence requires the addition of LN terms. Using A.4  

we approximate Log[Evidence] for the whole image as 

the sum of the evidence for each pixel (with 

neighboring pixels cN(i) in their most probable 

configuration ). With this approach, the number of 

terms needed drops to N*L. Using  w=c: 
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with the joint distribution for pixel i: 
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To obtain the most probable hyperparameter γ1, we 

derive the approximate evidence: 
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The solution of (16) yields a set of equations for the 

most probable hyperparameters: 
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For the discrete model case, the most probable 

hyperparameter β can be found analytically: 
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where K is the number of neighbors of a given pixel  or 

pixel and: 
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4.5 Algorithm for the Discrete Model 
 

The discrete algorithm, obtained by the Maximum 

Evidence approach, turns out quite similar to that of 

Zhang [6], except we now determine the most probable 

interaction factor β using (18), after having estimated  

µµµµ  and σσσσ.   

 

 

5. Partial Volume Model 
 

As stated in section IV, one of the assumptions of 

the Discrete Model is that there is only one tissue per 

pixel. This is obviously not valid for those pixels with 

more than one tissue. Therefore, in the next approach 

two classes are allowed for each pixel [15,16].  

In the new scheme, the parameter w=a is a N×2 

matrix where [a]i,1=ai,a  and [a]i,2=ai,b (0<ai,.<1)  are 

the fractions of most probable tissue and second most 

probable tissue for pixel i , respectively. Assuming the 

noise as Gaussian and independent, we write the 

Likelihood of the PVM model: 
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As in (10), the noise is assumed not correlated. 

 

5.1 ‘A priori’ distribution for the PVM 
 

The ’A priori ‘ distribution for the PVM is: 
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Adopting a square potential (associated with a low-

pass filter): 
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In this way, the PVM can be considered as an 

extension of the Discrete Model. 

 

 



5.2 Bayesian inference for the PVM (1
st
 step) 

 

To simplify the algorithm, it is assumed that tissue 

fractions for pixel i can take the Np values:  ai,a=(1/Np, 

.....,(Np-1)/Np, 1). 

From approximation A.4, the number of evaluations 

increases linearly with Np. The approximate energy to 

be minimized in this case will be:  
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In this way we find the ai,a that minimizes the energy 

for each pixel with its neighbors in the most probable 

configuration. This procedure is repeated for all image 

pixels. 

 

5.3 Bayesian inference for the PVM (2
nd

 step) 
 

Using the Evidence approximation (see appendix A) 

and setting w=a: 
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where Zc
(i) is:  
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The optimal values for β  and Np can be selected by 

maximizing Log[Evidence] (24). 

 

5.4 Algorithm description 
 

As previously stated, the Partial Volume Model can 

be thought of as an extension of the Discrete Model. To 

optimize the PVM, the energy E will be minimized 

relative to the DM and then for the PVM. The 

procedure is as follows: 

 

1) Classify using the discrete algorithm. 

2) Determine the partial volume pixels (PV). To do 

that, we find the posterior probability that pixel i 

belongs to class j (19). We define PV pixels as those 

with P(d|w,γ1,,H1)<0.95.  PV pixels are mostly found in 

tissue transition regions. 

3) Use (19) to determine the two most probable classes 

for PV pixels. 

4) Take ai,a=(1/Np, 2/Np ,…..,(Np-1)/Np, 1) and 

minimize the energy e(ai,a) in (23) for each case. This is 

done across all PV pixels.  

 5) If e(ai,a) decreases, the pixels in the neighborhood 

of i are considered as PV pixels. 

6) Calculate the evidence (14). Go back to step 4 until 

the Evidence converges to a local maximum. 

 

The optimizations of models DM and PVM only 

differ in PV pixels. However, that distinction is not 

really necessary and it was done only to reduce the 

Occam Factor and to save calculation time (thus all 

image pixels can be defined as PV pixels). The optimal 

values for β  and Np can be selected by maximizing the 

approximate Log[Evidence] (24).  

 

6. Algorithm Validation  

 

6.1 PVM validation using simulated 1D images 
 

As previously indicated, the PVM introduces 

parameter a to model the partial volume effect. Also, 

the ai,a were discretized into Np possible values. This 

explains why a priori each pixel has more flexibility 

(more degrees of freedom) than for the DM.  For this 

reason, the Occam Factor is expected to penalize the 

PVM relative to the DM. Furthermore, the interaction 

factors (β) reduce the flexibility of both models.  

The problem can be formulated by the following 

questions: which is the most probable β for the PVM? 

and also, is the PVM more probable than the DM? 

These two questions correspond to steps 2 and 3 of the 

Bayesian inference (Section III). 

First, the problem will be analyzed for a 1-D, 

simulated image: 
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This image is chosen because is one of the simplest  



 

cases with a non-trivial transition between different 

intensities. The width of the transition between 

different regions is regulated by the parameter sat. The 

noise is also introduced in the simplest possible way: 

independent pixel to pixel and with a Gaussian 

distribution. 

Fig. 1.A shows –Log(Evidence) from (24) and Fig. 

1.B shows the Mean Absolute Error (MAE) for the DM 

and the PVM. For the DM, β is chosen according to 

(18). For the PVM,  −Log(Evidence) and the MAE are 

shown as a function of  β. 

For small β, the DM shows a better performance than 

the PVM, due to the penalization of the latter by the 

OF. This behavior can be observed from either the 

Evidence analysis or the MAE.  This example shows 

that the Maximum Evidence Criterion (MEC) is 

satisfactory for the inference of the most probable 

value of β. 

Variable sat (27) controls the width of the partial 

volume region, hence the PVM is expected to perform 

better than the DM when sat is decreased. This 

behavior was found for both the MAE and the 

Evidence.  

 

6.2 Digital Phantom 
 

The validation process seeks to verify if the algorithm 

complies with the design requirements for real world 

images. The main difficulty in testing algorithm  

performance lies in the fact that the actual distribution 

of "in vivo" tissues is unknown. Realistic digital 

phantoms such as the one developed at the McConnell 

Brain Image Processing Centre [12], provide a 

convenient alternative to that problem. It includes a 

Magnetic Resonance database of the tissue fractions, 

which constitute the basis to simulate real data 

acquisition: noise and magnetic field heterogeneities. 

For this study a T1-weighted volume was generated 

(181×217×181), the selected amount of noise was 5% 

and the slice thickness was 1 mm, without simulation of 

magnetic field heterogeneities. 

Since this work is intended for brain tissue 

segmentation, all extra-cerebral structures were    

previously removed with a mask, so that the tissues of  

interest are:  GM, WM, CSF  and  BKG. The fraction 

of tissue j in pixel i is ti,j. Fig. 2A shows the simulated 

image. Tissue fractions are shown in Fig. 2.B,C,D. 

 

6.3 Classification error 
 

The classification error can be measured as:    
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Figure 1: Comparison between the DM and PVM with a 

simulated 1D image (see Eq. 27) with A=1 , σ=0.7, sat=0.3, N=64, 

K=2.  (A) -Log[Evidence] vs. β  (B) MAE vs. β . Dotted lines 

correspond to the inference of the DM using (18). The curves with 

"o" correspond to -Log[Evidence] and MAE  of  PVM as a 

function of β . The difference between the dotted line and the "o" 

curve is proportional to 1/sat. 

  
Figure 2:  A) Transaxial slice of a MR(T1) brain digital phantom 

[12]. B), C), D): Fraction of CSF, WM and GM tissues, respectively. 



 

 

 
 

Table I: Optimal values of the MAE and Evidence for the DM and 

PVM. In this case we find that the error is minimized and the 

Evidence maximized for Np=4. 

 

 

 

 

where p(j) is the fraction of tissue j and  pi,j is the 

predicted value of tissue j in pixel i for the available 

models. 

 

6.4 DM validation 
 

Figures 3.A.B.C show t and classification p for the 

DM is shown in Figs. 3.D.E.F for tissues corresponding 

to GM, WM and CSF, respectively. Fig. 4 displays the 

behavior of MAE, the Evidence of the DM and the 

prediction of the most probable β according to (18).  

Note that the Evidence correctly predicts the behavior 

of the MAE. 

 

 

 
 

6.5 PVM validation 
 

Figs. 3.G.H.I. show the classification p for the PVM 

for the same slice. Fig. 5 shows –Log[Evidence] (24) 

and the MAE (28). Although the minimal values for the 

two curves do not match exactly, it is shown that a) the 

Maximum Evidence method provides a good 

estimation of β, and b) again, the Evidence proves that 

for high values of β, the DM is better than the PVM. 
 

 

6.6 Model Comparison 
 

The optimal values of Log[Evidence] and MAE are 

listed in Table I. They correspond to each model 

  
Figure 3:  A) B) C): Fraction of CSF, WM and GM tissues in the 

digital phantom. D) E) F): Fraction of CSF, WM and GM classes 

obtained with the DM. G) H) I): Fractions obtained with the PVM. 

 
Figure 4:  Behavior of MAE ("o"), the Evidence ("◊") of the DM as a 

function of β . The prediction of the most probable β according to 

(18) is shown with a vertical arrow. Note that the –Log[Evidence] 

predicts the behavior of the MAE. 

 
Figure 5:  Comparison between MAE ("o") and –Log[Evidence] 

("◊") of  the PVM as a function of β . The value of β that maximizes 

(24) is indicated with an arrow.  The value of  Np  the maximizes (24) 

is 4. 

Model 
MAE 

(Mean Absolute Error) 
Log[Evidence] 

DM 0.095 -3.75 

PVM (Np=4) 0.065 -3.65 



(classifications performed on the digital phantom). It 

shows that PVM has a lower error and a larger 

evidence than the DM. 

 
 

7. Discussion and Conclusion 
 

The analysis of brain MR images was treated in the 

present work as an unsupervised regression problem,  

adopting the Maximum Evidence criterion as the 

Bayesian method for optimization of parameters,  

hyperarameters and model comparison. As the 

numerical calculation for the Evidence is a quite 

burdensome task, an approximate approach was 

developed that significantly reduces calculation time.  

Furthermore, it was shown that the Evidence is able 

to predict the behavior of the Mean Absolute Error. 

The estimations achieved for the pixel interaction 

factors worked out satisfactorily for the two models 

under consideration: Discrete (DM) and Partial 

Volume (PVM). 

APPENDIX A 

According to (1),(2) all the information relevant to 

the inference problem can be obtained from the joint 

distribution: 
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where E(w) is: 
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with the approximation: 
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Thus, the joint distribution is approximated for the 

whole image as the product of the distributions for each 

pixel: 
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