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Abstract

This paper presents a 3D face photography system based
on a small set of training facial range images. The training
set is composed by 2D texture and 3D range images (i.e. ge-
ometry) of a single subject with different facial expressions.
The basic idea behind the method is to create texture and
geometry spaces based on the training set and transforma-
tions to go from one space to the other. The main goal of the
proposed approach is to obtain a geometry representation
of a given face provided as a texture image, which under-
goes a series of transformations through the texture and ge-
ometry spaces. Facial feature points are obtained by an ac-
tive shape model (ASM) extracted from the 2D gray-level
images. PCA then is used to represent the face dataset, thus
defining an orthonormal basis of texture and range data.
An input face is given by a gray-level face image to which
the ASM is matched. The extracted ASM is fed to the PCA
basis representation and a 3D version of the 2D input im-
age is built. The experimental results on static images and
video sequences using seven samples as training dataset
show rapid reconstructed 3D faces which maintain spatial
coherence similar to the human perception, thus corrobo-
rating the efficiency of our approach.

1. Introduction

The process of construction of 3D facial models is an im-
portant topic in computer vision which has recently received
attention within the research community. This is an exam-
ple of the so called computational photography where com-
puter vision and graphics methods are used to solve a given
problem. Modelling facial data depends on the nature of the
considered problem. Usually, models with accurate geom-
etry are preferred for face recognition, and more simpler
models are preferred in applications where the speed of the

process is a critical factor [5], e.g. face transmission or aug-
mented reality.

Face images play a central role in different applications
of computer vision and graphics. Different methods for
3D face detection, tracking and representation have been
developed to address applications such as face recogni-
tion [1, 7, 12, 15], facial expression analysis [13, 16], face
synthesis [10, 17] and video puppeteering [2, 6]. As far
as face synthesis is concerned, most 3D face reconstruc-
tion methods proposed so far are based on artificial 3D
face models such as public available avatars [2]. Jiang et
al. [7] explored an alignment and facial feature extraction
algorithm for automatic 3D face reconstruction. Their al-
gorithm subsequently applies principal component analy-
sis on the shape to compute 3D shape coefficients. How-
ever, a frontal face image of a subject with normal illumina-
tion and neutral expression is required. Despite more than
3 decades of research [8, 9], there are still some important
3D face photography open problems. This paper presents a
new approach for 3D face computational photography us-
ing real-data based models. The main contributions of this
paper rely on the new approach itself which, because of be-
ing based on real geometry data, produces more realistic
3D reconstructed faces. The system works with few train-
ing samples and relies on standard vision and graphics al-
gorithms and representations, thus leaving space for differ-
ent improvements in the future.

Starting from the work of Vlasic et al. [14] and Macedo
et al. [11], an automatic system for 3D face reconstruction
from 2D color images using a small training set of range
images (registered texture and geometry data) has been cre-
ated. It is worth noting that these previous works [11, 14]
do not explore 3D data. The training set is composed by
a small set of range images corresponding to some differ-
ent facial expressions of a single subject. Our approach em-
ploys Principal Component Analysis to represent the face
model (texture and geometry separately). In the system, the
PCA face model is composed by two separate orthonormal



Figure 1. Schematic data flow diagram of the 3D facial reconstruction system (dotted lines). Each
block (solid lines) represents a process while each arrow represents the information flow between
processes.

basis which represent texture and geometry, respectively.
Given an input frontal face image to be 3D reconstructed,

an Active Shape Model (ASM) is used to extract the 2D fa-
cial feature points on 2D gray-level images. The set of fea-
ture points is used to normalize the input texture. The 3D fa-
cial geometry is produced by projecting the normalized tex-
ture onto the geometry space (obtained in the training proce-
dure). The projection is produced by using a PCA vectorial
basis and a linear optimization function to relate 2D texture
and 3D geometry information. Finally, the 3D reconstruc-
tion is obtained by directly mapping the normalized texture
onto the geometry. Figure 1 summarizes the proposed sys-
tem architecture.

This paper is organized as follows. An overview of the
proposed mathematical scheme is presented in Section 2.
The introduced method is described in Section 3. Experi-
mental results are shown in Section 4. The paper is con-
cluded with some comments on our ongoing work in Sec-
tion 5.

2. Mathematical model overview

The list below summarizes the symbols used in the cur-
rent paper, being presented to help the reader:

• lti , lgi : i-th texture and geometry landmarks, respec-
tively;

• Lt
i, L

g
i : i-th texture and geometry landmark matrices,

respectively;

• xt, xg: input texture face and corresponding output re-
constructed geometry, respectively;

• Et, Eg: texture and geometry PCA basis;

• αt, αg: texture and geometry coefficients expressed in
terms of Et, Eg , respectively;

• sx: weighting coefficients of xt in terms of the training
samples.

The proposed approach is based on learning a 3D face
model using texture and geometry of a training face for
some different facial expressions. An input 2D face image
(i.e. only texture) is then reconstructed by projecting it on
the trained 2D texture space, decomposing it as weights of
the training samples. The obtained weighting coefficients
are then used to build a 3D model from the 3D training ge-
ometry samples.

The training set is composed by pairs of texture and ge-
ometry data from a given subject with some different facial
expressions. A set of landmarks {lt1, lt2, ..., ltK} are placed
on the texture image and used to represent the input tex-
ture information. Therefore, each facial texture is repre-
sented by a matrix Lt composed by the landmarks infor-
mation. Because texture and geometry data are registered,
the texture landmarks have corresponding geometry coun-
terparts, which are used to define the geometry landmarks
{lg1 , l

g
2 ..., l

g
k}. Hence, each facial geometry is represented by

a matrix Lg composed by the geometry landmarks informa-



Figure 2. Training set formation: texture and geometry landmarks.

tion. This initial landmarks representation scheme is illus-
trated in Figure 2.

The training phase consists in defining good tex-
ture and geometry space representations based on a
given of set facial expression samples of a given sub-
ject. Therefore, texture and geometry landmark matrices
are obtained for N different facial expressions, being de-
noted as {Lt

1, L
t
2..., L

t
N} and {Lg

1, L
g
2..., L

g
N}, respectively.

These matrices help to define the initial texture and ge-
ometry spaces, as illustrated in Figures 3(a) and (b).
In order to have a more efficient and statistically opti-
mized representation, both texture and geometry spaces
are PCA-transformed (Figures 3(c) and (d)). Each train-
ing sample represents a vector expressed in these spaces.

The main goal of the 3D photography system is to ob-
tain a geometry representation of a given face provided as
a texture image. A landmark representation xt is automati-
cally extracted from such input image and undergoes a se-
ries of transformations through the texture and geometry
spaces, as illustrated in Figure 3. The final result is the re-
constructed geometry of the input face, i.e. a point in the
geometry space.

3. The 3D face reconstruction system

The proposed system is composed by three parts, the first
two being executed off-line: data acquisition, system train-
ing and 3D face reconstruction.

3.1. Data acquisition and face model

3D face data is acquired using a non-contact 3D scan-
ner KONICA MINOLTA VIVID 910. The scanner is com-
posed by a laser distance sensor and a digital video cam-
era. The scan volume specifications are: 111× 84× 40mm
(min) to 1200 × 903 × 400mm (max) (width × depth ×
height, respectively). Texture images have been acquired
with a 320× 240 pixels resolution. The 3D geometry asso-
ciated to each texture image contains appromimately 15000
points.

The data is hence composed by registered texture and
geometry data. Images from a single subject have been ac-
quired with 7 different facial expressions (one single image
per facial expression). The training data has been obtained
in a controlled environment (illumination and subject pose
and position).

Once the training images have been acquired, facial land-
marks are manually placed over the texture images and
aligned to the corresponding range images. We adopted a
face model with K = 77 landmark points, and one triangu-
lation contains 120 elements (triangles). Figure 4 shows an
example of a face obtained.

3.2. Training

The training procedure is composed by three phases.
Firstly, the input data is normalized by Procrustes analy-



Figure 3. Texture and geometry spaces. xt is an input texture face which undergoes a series of trans-
formations through texture and geometry space until its geometry xg is built.

sis [4], thus resulting in a dataset with landmarks aligned
in a common coordinate system. The facial landmarks may
be aligned for the different input images because of homol-
ogy among the individual representations. This fact allows
to map each input image by warping onto the average face
data. The geometry data is also mapped onto the average
face produced by the Procrustes analysis.

Two PCA procedures are carried out separately for the
geometry Lg

i and for the texture Lt
i data. Such analysis lead

to:

• An average texture model (t0), an orthonormal basis
(Et = {et

i}) for the facial texture space and the coeffi-
cients ({αt

i}) for each texture image in the training set
expressed w.r.t. {et

i};

• An average geometry model (g0), an orthonormal ba-
sis (Eg = {eg

i }) for the facial geometry space and the
coefficients ({αg

i }) for each 3D geometry data in the
training set expressed w.r.t. {eg

i }.

In order to work with the same number of principal com-
ponents in the aforementioned spaces, we use the minimum
amount of components representing a pre-defined amount
of total variance kept by both basis. The results shown in
this paper were drawn from those in which PCs kept at least
95% of the total variance.

The training pipeline is summarized in the sys-
tem overview for 2D-to-3D face reconstruction of Fig-
ure 1.



(a) (b) (c) (d)

Figure 4. Face data obtained in training phase. (a) texture; (b) facial landmarks; (c) triangulation; (d)
geometry.

3.3. Face reconstruction

The input to the system is a frontal face image to which
the ASM is applied in order to automatically detect the fa-
cial landmarks. The ASM landmarks are extracted from the
gray scale input image. ASM has been proposed in [3] and
allows the alignment and representation of image data using
a statistical model of the target object obtained from train-
ing data. A face model is represented by a set of landmarks
manually placed over training face images (not necessar-
ily those obtained for the 3D face model). The sets of land-
marks for the training images are aligned in order to min-
imize the distance between corresponding points (i.e. ho-
mologous points). A point distribution model (PDM) is ob-
tained from the variance of the distances among the differ-
ent points. The PDM is used to constraint the shape varia-
tion in the ASM matching process.

The facial landmarks are aligned to the mean face shape
obtained in the training process. Thus, the texture is warped
to the mean shape (similar to the process done in training).
This process allows to normalize the texture of the input im-
age.

Let xt be the warped texture of the input image, and
t0 the normalized average texture obtained in training pro-
cess. The texture coefficients, αt

x, are calculated by project-
ing (xt − t0) onto the respective orthonormal basis ({et

i}):

αt
x = Et.(x− t0) (1)

where Et is a transformation matrix defined by the or-
thonormal basis for the texture space learned in the train-
ing process.

Once the texture coefficients αt
x are obtained, the texture

coefficients αt of all images considered in the training pro-
cess are used to calculate the coefficients sx, defined as:

αt.sx = αt
x (2)

where αt is the matrix defined by the coefficients for each
texture image in the training set. Intuitively, sx represents
weighting coefficients obtained by projecting αx onto α
(Figure 3(e)). It is important to recall that each sample rep-
resented in α is associated to a different facial expression.
Therefore, sx represents a decomposition of xt in terms of
the different facial expressions learnt by the system (e.g. as
we would say that xt is a% happy, b% angry, c% neutral,
etc.).

The geometry coefficients αg
x of x are then calculated us-

ing the geometry coefficients of all training geometry sam-
ples αg:

αg
x = αg.sx (3)

The normalized geometry xg of the test face image x is
then reconstructed by:

xg = (Eg.αg
x) + g0 (4)

where Eg is a transformation matrix defined by the or-
thonormal basis for the geometry space learned in the train-
ing process. Laplacian smoothing has been applied to re-
duce noise on the reconstructed facial geometry (surface).
This smoothing technique was selected because of being ro-
bust and efficient to smooth a general mesh.

Finally, the input texture warped to the average shape
face is directly mapped onto the 3D smooth geometry. It is
important to note that missing blank areas are filled by in-
terpolation of adjacent 3D points. The test process is sum-
marized in the system overview of Figure 1.

4. Results

The proposed system has been tested using real data. All
experiments were performed with only seven training im-
ages (texture and geometry). Figure 5 shows the different
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Figure 5. Training dataset. (a) frontal faces with different expressions of one subject; (b) face geom-
etry; (c) 3D face with mapped texture.

training images used in this work. We used a 3D scanner
KONICA MINOLTA VIVID 910 for the data acquisition as
mentioned in Section 3.1. It is important to note that, for
all experiments, a geometry of 14104 points have been ob-
tained at most 4 seconds using a simple implementation on
MATLAB.

Two different types of experiments have been performed
to evaluate the 3D facial reconstruction quality of the sys-
tem. One experiment was considered to examine the 3D re-
construction taking as input an image of the same person
seen in the training process, but with different facial expres-
sion. In other words, the geometry of the same person used
to train the system but with a different facial expression has
been used. A second experiment was performed for 3D re-
construction using a face of a different person from that of
the training phase. In this second case, a video sequence
of the subject has been obtained using a standard webcam
and the facial features have been tracked using the ASM
approach described above. This input data has been fed to
the system in order to reconstruct a 3D geometry video se-
quence.

The texture shown in Figure 6(a) has been used as in-
put to the system. This facial expression was not present in
the training phase. Figure 6(b) shows the corresponding re-
constructed 3D facial geometry. Figure 6(c) shows the facial
geometry of the input image with the texture mapped onto
it. As can be seen, the system was able to successfully re-
construct the 3D face structure of the subject. Figure 6(d)
shows the face geometry acquired of subject in Figure 6(a)

using a 3D scanner.
A different experiment has been devised to test the sys-

tem using a subject that is not present in the training phase.
A video sequence of a different subject has been obtained
using a standard webcam in a non-controlled environment.
It is worth noting that the so obtained texture informa-
tion has different technical specifications from those used
to train the system. ASM has been applied to track the
video sequence and used as input to the face reconstruc-
tion system. Figure 7 shows the 3D face reconstruction for
five frames of the video sequence. The calculated 3D recon-
structions are show in Figures 7(b)-(c).

5. Conclusions

This paper describes a system for 3D reconstruction of
faces from 2D photographs based on a small set of train-
ing samples. The mathematical model behind the system
is based on building suitable texture and geometry spaces
from the training set and transformations between such
spaces. Face reconstruction from an input texture image
is then carried out by transforming the input data through
these spaces until a geometry model is created. The exper-
imental results have shown that the proposed method may
be applied to 3D reconstruction of faces from a video se-
quence.

Our experimentation with the system has shown that a
key point for the performance of the system with faces not
present in the training phase relies on the identification of
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Figure 6. 3D reconstruction of a facial expression not present in the training phase: (a) frontal face;
(b) reconstructed 3D face geometry; (c) 3D geometry with the mapped texture; (d) face geometry
acquired with the scanner.

the facial landmarks. The system is sensitive to the identi-
fication of the facial landmarks considered as the first step
of the reconstruction, i.e. {lt1, lt2, ..., ltK}. Unfortunately, the
ASM has not always performed as would be desirable, thus
leading eventually to bad reconstruction results. Thus, a bet-
ter method for automatic landmark identification would cer-
tainly help in improving the performance obtained. This is
one of the main topics of our ongoing work.
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Figure 7. Results of 3D reconstruction of a video sequence using a standard webcam from a sub-
ject not present in the training database. (a) frontal faces with different expressions; (b) 3D recon-
structed face geometry; (c) 3D geometry with the mapped texture.


