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Abstract

We propose a system to solve a multi-class produce cat-
egorization problem. For that, we use statistical color,
texture, and structural appearance descriptors (bag-of-
-features). As the best combination setup is not known
for our problem, we combine several individual fea-
tures from the state-of-the-art in many different ways to
assess how they interact to improve the overall accu-
racy of the system. We validate the system using an image
data set collected on our local fruits and vegetables distri-
bution center.

1. Introduction

Recognizing different kinds of vegetables and fruits is
a recurrent task in supermarkets, where the cashier must
be able to point out not only the species of a particu-
lar fruit (i.e., banana, apple, pear) but also it’s variety
(i.e., Golden Delicious, Jonagold, Fuji), which will deter-
mine its price. The use of barcodes has mostly ended this
problem for packaged products but given that consumers
want to pick their produce, they can not be packaged, and
thus must be weighted. A common solution to this problem
is issuing codes for each kind of fruit/vegetable; which has
problems given that the memorization is hard, leading to er-
rors in pricing.
As an aid to the cashier, many supermarkets issue a small

book with pictures and codes; the problem with this solu-
tion is that flipping over the booklet is time-consuming. In
this paper, we review several image descriptors in order to
propose a system to solve the problem by adapting a cam-
era to the supermarket scale that identifies fruits and vegeta-
bles based on color, texture, and appearance cues.

Formally, we state our problem in the following manner:
given an image of fruits or vegetables, in arbitrary position
and number, the system must return a list of possible can-
didates of the form (species, variety). Sometimes, the ob-
ject can be inside a plastic bag that can add specular reflec-
tions and shifts to the hue.

Given that the big variety and the impossibility of pre-
dicting which kinds of fruit/vegetables are sold, training
must be done on site by someone with little or no technical
knowledge. Therefore, the system must be able to achieve
a high level of precision with only a few training exam-
ples (e.g, up to 30 images). Another desirable characteris-
tic would be continuous learning. On one hand, more train-
ing data would be generated as the system commits mis-
takes and the cashier corrects them. On the other hand, in
this semi-supervised scenario, eventually the operator will
commit mistakes and the learning algorithm must be robust
to noisy training data.

Here, we combine local and global features into a lin-
ear discriminant classifier. We have used global color his-
tograms, local texture, and correlation descriptors with dis-
tinctive fruit parts, learned from an image data set collected
from the internet. Using those images comprising a multi-
tude of classes, we endow our system the capacity of iden-
tifying parts that are specific to the species being analyzed
(the apple’s calyx, for example).

The contribution and novelty in this paper are twofold.
The first is that we evaluate several image descriptors in the
literature and point out the best ones to solve our multi-class
fruits/vegetables categorization problem. Important ques-
tions about such descriptors are: which ones require less
training? Is it necessary to use complex approaches such
as bag-of-features or constellation models? How do the de-
scriptors perform when increasing the number of training
examples? What combinations and parameters of the de-



scriptors provide better effectiveness? How do the descrip-
tors behave under the curse-of-dimensionality? In the exper-
iments we show answers for such questions. We also show
that, in some situations, it may be worthier using simpler
solutions that yield faster results than more complex and
time-consuming approaches. The second contribution and
novelty is that we create an image data set collected from
our local fruits and vegetables distribution center and make
it public. In general, there are a few well-documented im-
age data sets freely available for testing algorithm perfor-
mance in image categorization and content-based image re-
trieval tasks. In this context, we provide an image data set
with 11 categories of fruits and more than 2,000 images col-
lected on site with all its creation details. We have collected
such image data set in several runs during five months. This
added variability to the data sets with respect to environ-
mental changes (e.g., weather, illumination).
In Section 2, we give a brief overview of previous work

in object recognition and image categorization. In Section 3,
we present the different kinds of image descriptors we have
used in this paper and describe their best combination for
our problem. In Section 4, we report results for the image
data set we have created. Finally, in Section 5, we draw con-
clusions and future directions.

2. Literature review

Recently, there has been a lot of activity in the area of Im-
age Categorization. Previous approaches have considered
patterns in color, edge and texture properties [13, 17, 19];
low- and middle-level features to distinguish broad classes
of images [5, 14, 15]; In addition, Heidemann [9] has pre-
sented an approach to establish image categories automat-
ically using histograms, colors and shape descriptors with
an unsupervised learning method.
VeggieVision [4] was the first attempt of a supermarket

produce recognition system. However, as this system was
presented long time ago, it does not take advantage of re-
cent achievements of the literature. For instance, VeggieVi-
sion has 95% accuracy in some scenarios but to achieve
such result it uses the top four responses.
In general, we can view our problem as a special instance

of object’s categorization. Turk and Pentland [18] employed
principal component analysis and measured the reconstruc-
tion error of projecting the image to a subspace and return-
ing to the original image space. We believe this is ill suited
for our purpose because it depends heavily on illumination,
pose and shape.
Viola and Jones [20] have presented an approach with

localization speed and precision in recognition employing
a cascade of classifiers composed of simple features and
trained with the Ada-Boost algorithm. The main drawback
of this approach for our problem is that it would require

same format objects previously aligned. Other issue relates
to the very costly training which often requires thousands
of images.
Recently, Agarwal et al. [1] and Jurie and Triggs [10]

have adopted approaches that break down the categoriza-
tion problem to the recognition of specific parts that are
characteristic of each object class. These techniques, gener-
ally called bag-of-features [8, 12, 16], have shown promis-
ing results even though they do not try to model spatial con-
straints among features.
Weber [21] takes into account spatial constraints using

a generative constellation model. The algorithm can cope
with occlusion in a very elegant manner, albeit very costly
(exponential in the number of parts). A further development
made by Fei-Fei et al. [6] introduced prior knowledge into
the estimation of the distribution, thus reducing the num-
ber of training examples to around 10 images while pre-
serving a good recognition rate. Notwithstanding, even with
this improvement, the problem of exponential growth with
the number of parts persists, which makes it unpractical for
our problem, which requires speed for on-line operation.
Another interesting technique was proposed by Ma-

lik [2]. In this work, feature points are found in a gra-
dient image. The points are connected by a joining path
and a match is signalized if the found contour is simi-
lar enough to the one in the database. A serious draw-
back of this method for our problem is that it requires a
nonlinear optimization step to find the best contour; be-
sides that it relies too heavily on the silhouette cues,
which are not a very informative feature for fruits like or-
anges, lemons and melons.

3. Materials and methods

In general, image categorization relies on combinations
of statistical, structural and spectral approaches. In statis-
tical approaches, we describe the objects using global and
local descriptors such as mean, variance, and entropy. In
structural approaches, we represent the object’s appearance
using well-known primitives such as patches of important
parts of the object. Finally, in spectral approaches, we de-
scribe the objects using some spectral space representation
such as Fourier spectrum [7]. In this paper, we analyze sta-
tistical color and texture descriptors as well as structural ap-
pearance descriptors to categorize fruits and vegetables in a
multi-class scenario.
As the best combination of features was not known for

our problem, we have combined the individual features in
several ways to assess how they interact to improve the
overall accuracy. Feature description combination is of par-
ticular interest in the literature and has demonstrated impor-
tant results over the last years [11]. However, the approach



presented in [11] employs EXIF information which are not
relevant for our produce classification system.
In the following, we present the statistical and structural

descriptors we have analyzed and used in this paper, as well
as the data set we have created for the validation process.

3.1. Image acquisition

We have created two image data sets for this work: In-
ternet and Supermarket Produce data sets. The Internet
data set, comprises images retrieved from the internet using
Google Images1. We used several fruit names from differ-
ent languages, such as English, Spanish, Portuguese, Ger-
man, and French. The Internet data set initially comprised
about 70,000 images, which were visually inspected, to fi-
nally render about 6,000 images. We used this data set to
build a visual vocabulary of parts of fruits, to be used when
extracting appearance descriptors.
The Supermarket Produce data set is one of our contri-

butions in this paper. In Section 3.2, we present its detailed
description.

3.2. Supermarket Produce data set

The Supermarket Produce data set is one of our con-
tributions in this paper2. In general, there are a few well-
documented image data sets available for image categoriza-
tion and content-based image retrieval tasks for testing al-
gorithm performance. ALOI3 and Caltech4 are two exam-
ples of such data sets. In this paper, we provide an image
data set with 11 categories of fruits comprising more than
2,000 images collected on site.
The Supermarket Produce data set is the result of five

months of on site collecting in our local fruits and vegeta-
bles distribution center.
We have used a Canon PowerShot P1 camera, at a res-

olution of 1, 024 × 768 pixels. For the experiments in this
paper, we down-sampled the images to 640 × 480. For all
images, we have used a white background. We acquired
images from 11 different categories: Plum (264), Agata
Potato (113), Cashew (210), Kiwi (171), Fuji Apple (212),
Granny-Smith Apple (155), Watermelon (192), Honeydew
Melon (145), Nectarine (247), Williams Pear (159), and Di-
amond Peach (211); totalizing 2,078 images. Figure 1 de-
picts some of the classes of our image data set.
The data set comprises images with different illumina-

tion parameters even within the same category. All the im-
ages were stored in the RGB color-space with 8 bits per

1 http://images.google.com
2 Freely available from

http://www.liv.ic.unicamp.br/∼undersun/pub/
3 http://staff.science.uva.nl/∼aloi
4 http://www.vision.caltech.edu/Image Datasets/

(a) Plum (b) Cashew (c) Kiwi (d) Fuji Apple

(e) Melon (f) Nectarine (g) Pear (h) Peach

(i) Watermelon (j) Agata Potato (k) GS Apple

Figure 1. Supermarket Produce data set.

pixel. We continue to increase the number of images and
categories in this data set5.
We have gathered images in different times of the day

and in different days for the same image category. These
features increase the data set variability and represent a
more realistic scenario. Image 2 shows an example of Kiwi
category with different illumination parameters. The illumi-
nation changes are due to daylight exposure only and are not
artificially tampered.

Figure 2. Kiwi Category. Illumination differ-
ences within categories.

The Supermarket Produce data set also comprises differ-
ences in pose and in the number of elements within an im-
age. Figure 3 shows examples of the Cashew category. Note
that there are variations in the pose of the Cashew’s plas-
tic repository. In addition, Figure 4 show the variability in
the number of elements within an image. Sometimes, some
fruits are apart from one another.
Sometimes the elements are within a plastic bag which

adds specular reflections to the analyzed image. Further-
more, the presence of shadows (e.g., second and third im-
ages of Figure 2) and cropping/occlusions (e.g., Figure 5)
makes the data set more realistic.

5 Our current configuration is 2,633 images from 15 different categories.
The newest added categories are: Asterix Potato, Onion, Orange, and
Taiti Lime.



Figure 3. Pose differences. Cashew category.

Figure 4. Variability on the number of ele-
ments. Plum category.

3.3. Image descriptors

In this section, we analyze statistical color, texture, and
structural appearance descriptors (bag-of-features) in order
to propose a system to solve a multi-class fruits/vegetables
categorization problem. As the best setup of features is not
known for our problem, we combine the individual features
in several ways to assess how they interact to improve the
overall accuracy of the system.

3.3.1. Unser’s descriptors Unser [19] has showed that
the sum and difference of two random variables with same
variances are de-correlated and define the principal axes of
their associated joint probability function. Hence, the au-
thor introduces sum s and difference d histograms as an al-
ternative to the usual co-occurrence matrices for image tex-
ture description.
The non-normalized sum and difference associated with

a relative displacement (δ1, δ2 for an image I , are define as

sk,l = Ik,l + Ik+δ1,l+δ2 , (1)
dk,l = Ik,l − Ik+δ1,l+δ2 . (2)

The sum and difference histograms over the domain D
are defined in a manner similar to the spatial level co-
occurence or dependence matrix definition:

hs(i; δ1, δ2) = hs(i) = Card{(k, l) ∈ D, sk,l = i}, (3)

Figure 5. Examples of cropping and partial
occlusion.

hd(j; δ1, δ2) = hd(j) = Card{(k, l) ∈ D, dk,l = j}. (4)

In addition to the histograms, we use some associated
global measures: mean (μ), contrast (Cn), homogeneity
(Hg), energy (En), variance (σ2), correlation (Cr), and en-
tropy (Hn)) over the histograms for each color channel.

3.3.2. Color Coherence Vectors (CCVs) Zabih et al. [13]
have presented an approach to compare images based on
color coherence vectors. They define color’s coherence as
the degree to which pixels of that color are members of large
similarly-colored regions. They refer to these significant re-
gions as coherent regions. Coherent pixels are part of some
sizable contiguous region, while incoherent pixels are not.
In order to compute the CCVs, the method blurs and dis-

cretizes the image’s color-space to eliminate small varia-
tions between neighboring pixels. Afterwards, it finds the
connected components in the image aiming to classify the
pixels within a given color bucket as either coherent or in-
coherent.

3.3.3. Border/Interior (BIC) Stehling et al. [17] have
presented the border/interior pixel classification (BIC), a
compact approach to describe images. BIC relies on the
RGB color-space uniformly quantized in 4 × 4 × 4 = 64
colors. After the quantization, the image pixels are classi-
fied as border or interior. A pixel is classified as interior if
its 4-neighbors (top, bottom, left, and right) have the same
quantized color. Otherwise, it is classified as border.
After the image pixels are classified, two color his-

tograms are computed: one for border pixels and another
for interior pixels. The two histograms are stored as a sin-
gle histogram with 128 bins. BIC compares the histograms
using the dLog distance function [17]

dLog(q, d) =
i<M∑
i=0

‖f(q[i]) − f(d[i])‖ (5)

f(x) =

⎧⎨
⎩

0, if x = 0
1, if 0 < x < 1
�log2 x� + 1, otherwise

(6)

where q and d are two histograms with M bins each. The
q[i] value represents the ith bin of histogram q, and d[i] rep-
resents the ith bin of histogram d.

3.3.4. Appearance descriptors To describe appearance,
we use a vocabulary of parts, similar to Agarwal [1] and
Jurie [10]. We sample the patches sparsely and use Lowe’s
feature points detector to find the interest points.
To find the representative parts among the many patches

we use two algorithms: K-means, and a slightly modified
version of the algorithm proposed by [1]. The second algo-
rithm is a bottom-up clustering procedure. We introduced
the modification (Equation 7) on the similarity metric be-
tween two clusters. Agarwal et al. [1] have proposed to join



the clusters if their average similarity is above a threshold.
In contrast, we connect two clusters if the similarity of any
two patches, one from each cluster, is above the threshold.
Similarity between two patches is simply their normalized
correlation.
We create the feature vectors as a binary vector: 1’s sig-

nalize that a particular feature is present in the image.When
convenient, we show the name of the algorithm used and the
size of the used feature vector. For instance, K-Means-99
refers to the use of K-Means algorithm on a feature-space
of 99 dimensions. Often, the more complex an image, the
more feature regions a feature point detector provides for it.
We introduced the modification in Equation 7 because

we observed that frequently some clusters (Ci) were grow-
ing much faster than the others and they were incorporat-
ing patches that were not alike. We believe that this is be-
cause a bigger cluster was able to swallow smaller ones
with dissimilar patches due to the average similarity mea-
sure, which allowed compensation of differences between
two clusters. In fact, we noticed that more evenly-sized clus-
ters were formed after this modification. The similarity be-
tween two groups of patchesC1 andC2 is given by smallest
distance among two patches (pi, pj), one from each group.
We have used patches of 11 × 11 pixels

sim(C1, C2) = min{sim(pi, pj)|pi ∈ C1, pj ∈ C2}. (7)
We use two approaches for the vocabulary of parts. In

the first one, we use some images from Supermarket Pro-
duce data set in the training stage. In the second one, in a
quest to incorporate prior knowledge into the system, we
put together images collected from the internet, resulting
from queries to Google Images. We refer to these combina-
tions pointing out the algorithm used and the source of the
patches (e.g., Agarwal-Base, denotes we apply Agarwal al-
gorithm using training patches from Supermarket Produce
data set).

4. Experiments and results

In our experiments, we have used a Bagging Ensem-
ble of Linear Discriminant Analysis (BLDA) with 17 itera-
tions [3]. In Bagging (Bootstrap aggregation) ensemble, we
repeatedly apply an inductive learner to bootstrap samples
on the training set. We use the training set to generate boot-
strap samples using random sampling with replacement.
Once several hypotheses (i.e., base learners) have been gen-
erated on such bootstraps, we determine the aggregate clas-
sifier by majority voting among the base learners. The fi-
nal classifier evaluates test samples by querying each of the
base classifiers on the sample and then outputting their ma-
jority opinion.
Some can argue that Support Vector Machines (SVMs)

can be more suited for categorization. However, in general,

SVMs are more computational costly than LDA. Further-
more, for our specific problem here, when using bagging
ensembles with LDA, the two approaches are comparable
in effectiveness but BLDA is more efficient.
We select the training images using sampling without re-

placement from the pool of each image class. If we are train-
ing with 10 images per class, we use the remaining ones for
testing. We repeat this procedure 10 times, and report (μ)
and standard deviation (σ)

4.1. Average classification rates

In this paper, we show the results in terms of average
classification rates because in a real application, it would
be straightforward to figure out that 96% accuracy for 100
packages in the supermarket would mean they will get the
correct produce classification in roughly 96 packages.
In Figure 6, we show the six best combinations of de-

scriptors. The x-axis represents the number of images per
class in the training set and the y-axis represents the ac-
curacy in the testing set. Unser + BIC combination has
produced the best results. This is interesting because BIC
is a descriptor that analyzes color and shape in the sense
that it codifies the object’s border and interior. In addition,
Unser is a texture descriptor that analyzes the relationship
of the pixels and their neighbors. For 32 examples of each
class in the training set, we have an average accuracy of
about 93.3% ± 2.7% while with 96 images of each class
in the training set, we have an average accuracy of about
96.6%± 0.1%. This shows us that the more images we use
in the training, the better the overall accuracy. However, the
payload is higher. If we triplicate the number of elements
in the training set (32 → 96) and, consequently, increase
the training complexity, we improve the accuracy in 3 per-
centual points only (less than 2σ).
The inclusion of CCV descriptor does not yield an im-

provement on the classification rate of Unser + BIC combi-
nation, resulting an accuracy of about 91.7%± 1.7%. How-
ever, Unser + BIC + CCV combination provides smaller
variations in the average accuracy per class (Section 4.2).
The worst result of the top-six selected results is the com-

bination of Unser + CCV + Agarwal Google, which com-
bines the texture and color descriptors Unser and CCV with
the Agarwal’s appearance descriptors that use images from
Google to create the initial vocabulary of patches. The in-
clusion of Agarwal in the combination of Unser and CCV
does not provide a significant increase in the classification
accuracy. And this shows us that for this particular prob-
lem the use of a more complex approach does not yield an
improvement on the overall classification effectiveness. In
Figure 7, we show the six worst combinations of the de-
scriptors. The Unser descriptor provides the best result of
the six-worst combinations. For this case, using 48 images
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Figure 6. Six best combined classifiers.

per class in the training set, we have an average accuracy
of about 81.8%± 0.9%. The worst result is using Agarwal-
Base, which uses the Agarwal’s appearance descriptor and
10% of images selected from the Supermarket Produce data
set to create the initial vocabulary of patches6.
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Figure 7. Six worst combined classifiers.

4.2. Average accuracy per class

In Figure 8, we plot the average accuracy per class
of 10 executions of the BIC + CCV + Unser descrip-
tors’ combination. Although the best average accuracy
showed in Figure 6 is the BIC + Unser combination, the

6 The images used in Agarwal’s vocabulary are removed from the base
and they are not used in the further training and testing tasks.

BIC + CCV + Unser combination provides smaller varia-
tions (smaller standard deviations) in the accuracy per class.
The more images in the training set, the better the average
accuracy and the lower the standard deviations. If we use
too much images in the training set, the overall process be-
comes more complex compromising the efficiency.
Agata Potato provides the best average classification ac-

curacy per class (99.21% ± 1.6%) while Williams Pear
is the class with the worst average classification accuracy
(89.6%± 2.2%) for 48 images per class in the training set.

4.3. Agarwal and K-means appearance descrip-
tors’ influence

The inclusion of a more complex approach such as Agar-
wal appearance descriptor for this particular problem does
not yield an improvement on the classification accuracy. For
instance, in Figure 9, we show that Agarwal appearance de-
scriptors does not improve Unser + CCV combination’s ef-
fectiveness.
The same is true when we apply K-means to cluster the

patches selected from Google images and use them as rep-
resentative appearance patches of fruits/vegetables images.
The results are statistically the same given the standard de-
viation of the 10 validations we have performed. We be-
lieve that the Agarwal appearance descriptor does not pro-
vide a significant increase in the classification given that the
used patches do not represent well all the images classes we
are trying to classify. Further investigation must be done in
this direction to validate the inclusion of Agarwal appear-
ance descriptor or any other similar model.
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Figure 9. Agarwal vs. K-means contribution
to Unser + CCV.
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4.4. Most difficult images to classify

We have tested several combinations of different image
descriptors for different sizes of training sets. Figure 10 de-
picts the top 20 misclassified images in our experiments
considering all tested descriptor’s combinations.

Figure 10. Top 20 misclassified images in our
experiments.

Some of the images were overexposed, some are in a
dirty background and some are blurred. There are some ex-
amples that, even for a human, are difficult to point out what
class they belong to (e.g., the 10th image from top to bot-
tom, left to right). The pre-processing would bring a posi-
tive impact to the recognition rates. We did not perform it
because we focused in the description power without pre-

processing, leaving space for further work from the com-
munity.

4.5. Average time

The average time for the image descriptors feature ex-
traction and classification on an AMD 64 bits machine with
2GB of RAM using BLDA with 17 iterations is less than 1
second, even when they are combined. However, the more
examples in the training set the more time consuming are
the combinations in the training stage. To train a multi-class
classifier using Bagging + LDA with 17 iterations, 96 train-
ing examples per class, and a BIC + CCV combined fea-
ture vector, it is necessary about one hour. If online training
is required (c.f., Sec. 1), this can be a problem.

Some of the analyzed descriptors in this paper have high-
dimensionality. For instance, the combination of the image
descriptors BIC + CCV + Unser results in a feature vec-
tor of 128 + 64 + 189 = 381 characteristics. This high-
dimensionality is not so important when we use LDA be-
cause such approach naturally reduces the dimensions to
a linear combination of them. Notwithstanding, due to the
curse of dimensionality [3], it is an issue that must be han-
dled. In this context, it is better to use combinations of low-
dimension descriptors. Finally, the use of complex appear-
ance descriptors such as Agarwal’s approach can impact the
training set without yielding significant improvements on
the overall effectiveness of the classification system.



5. Conclusion and Future Work

In this paper, we have presented a complete and well-
documented fruit/vegetables image data set suitable for
content-based image retrieval, object recognition, and im-
age categorization tasks. We hope this data set will en-
dure beyond this paper as a common comparison set for re-
searchers working in this space.
Furthermore, we have analyzed an extensive set of im-

age descriptors and their combinations in the context of
fruit/vegetables multi-class categorization. Such analysis is
a milestone for other researchers interested in such prob-
lem. They can delve into this matter without the require-
ment of testing such huge combination of descriptors again.
We have found that Unser + BIC image descriptors com-

bination provides the best average accuracies in the multi-
class classification task. However, BIC + CCV + Unser
combination provides a better combination when consider-
ing intra-class variability. Such combination yields smaller
variations in the average accuracy per class.
Whether or not more complex approaches such as Agar-

wal’s appearance descriptors and K-means associated with
color and texture descriptors increase the classification rate
is still an open problem. It would be unfair to conclude they
do not help in the classification given that, their success is
highly based on their patches representation. Nevertheless,
it is fact that such approaches are computational demand-
ing and perhaps not advisable in some scenarios.
The choice of the best image descriptors combination is

difficult given that it must consider: (1) the average accu-
racy, (2) the average classification accuracy per class, (3)
background’s clutter, and (4) the final number of features in
the combined description vector.
Adding more classes to the presented pool needs to be

tested, mainly if the added classes have substantial overlap-
ping with one another. However, our experiments showed
that the tested approaches scale with the number of classes.
Further work include the improvement of the

fruits/vegetables representative patches, and the analy-
sis of other appearance and texture image descriptors. Fur-
thermore, we are interested in the incorporation of spatial
constraints among the local descriptors. We want to cre-
ate the conditions for a semi-supervised approach that leads
us to continuous learning, taking advantage of misclassi-
fied examples.
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