
Projective estimators for point/tangent representations of planar curves

Thomas Lewiner and Marcos Craizer
Department of Mathematics, PUC–Rio de Janeiro, Brazil

http://www.mat.puc-rio.br/ {tomlew,craizer}

Abstract

Recognizing shapes in multiview imaging is still a chal-
lenging task, which usually relies on geometrical invari-
ants estimations. However, very few geometric estimators
that are projective invariant have been devised. This paper
proposes projective length and projective curvature estima-
tors for plane curves, when the curves are represented by
points together with their tangent directions. In this con-
text, the estimations can be performed with only the four
point-tangent samples for the projective length and five for
the projective curvature. The proposed length estimator is
based on affine estimators and is proved to be convergent.
The curvature estimator relies on the length to fit logarith-
mic spirals to the point-tangent samples. It is projective
invariant and experiments indicate its convergence. Prelim-
inary results using both estimators together are promising,
although the estimators’ lack of robustness would require
additional work for noisy cases.

Keywords: Projective Differential Geometry, Projective
Curvature, Projective Lenght, Discrete estimators.

1. Introduction

Computer Vision applications usually deal with images

that are two-dimensional projections of three-dimensional

scenes. Different projections of the same scene can be iden-

tified by isolating and matching the scene elements in each

projection. This matching usually relies on quantities that

are invariant by the projective group [5, 9, 2]. Projective

length and projective curvature are the two simplest such

quantities in differential geometry. Together, they are suf-

ficient to describe a planar curve up to a projective trans-

formation ([7]). However, their estimation tends to be very

sensitive to noise, since for a parametric curve, they depend

on the fifth and seventh order derivatives respectively. This

paper proposes numerically stable projective length and cur-

vature estimators for planar curves.

Instead of considering discrete curves as a sequence of

points, we choose here to sample a planar curve associat-

ing to each point its tangent direction. In Computer Vision,

the curves of a scene are usually obtained by edge detec-

tion, which naturally generate these point-tangent samples.

In this context, the projective length estimator uses only

four point-tangent samples and the projective curvature es-

timator uses five of them. The same model was considered

in [6] to define affine length and affine curvature estima-

tors. These affine quantities are used here to estimate the

derivative of the affine curvature which leads to our projec-

tive length estimator. The proposed projective length esti-

mator is proved to be convergent and numerical experiments

included in this work show its numerical stability. We then

estimate the projective curvature through the frames esti-

mates at three consecutive samples. For this task, we fit

logarithmic spirals to the point-tangent samples. These spi-

rals have projective curvature zero, similarly to polygonal

lines in the Euclidean case [16].

The knowledge of the projective lengths allows adjusting

such spirals with only three point-tangent samples. When

the exact projective lengths are known a priori, the estimator

proposed here is stable, and numerical experiments indicate

its convergence. When one uses the length estimator to esti-

mate the projective curvature, experimental results remains

promising, but numerical problem also appears, especially

when the projective lengths are small.

Related works. The study of analytic expression for pro-

jective curvature is laborious. However, Faugeras [7] de-

scribes very nicely the Euclidian, affine and projective ge-

ometry and evolutions of plane curves, with explicit formu-

las for projective length and curvature.

For affine quantities, the definition of affine invariants for

discrete curves has been studied in several works. Callabi

et al. [4, 3] propose affine length and curvature estimators

with convergence proofs for curves given by a sequence of

points, while Craizer et al. [6] define estimators for curves

given by points and tangent directions. These estimators

are particular combinations of joint invariants, which are

functions of the points’ coordinates that are invariant under

a given group action. Boutin [1] proposed joint invariants

for Euclidian and affine groups. Olver [13] describes how



to construct joint invariants for any group. In particular,

he described all joint invariants for the affine group in the

plane.

The authors are not aware of any previous work that ex-

plicitly estimates projective lengths and curvatures for dis-

crete curves. The probable reason for this absence is that

these concepts deal with high order derivatives, which in

general are numerically unstable. However, several works

try to define projective quantities, in particular in multi-

view images [11, 10, 14]. In particular, Lazebnik and

Ponce [15] implement some notions of oriented projective

geometry, introduced by Stolfi [12], to characterize silhou-

ette features.
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Figure 1. Homogeneous coordinates: point
( x
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y
w , 1) is the projection of point (x, y, w)

onto the plane {w = 1}. They are projective
equivalent points. Similarly, any line in the
plane {α ·(x′, y′, w′)+β ·(tx, ty, 0)} is projective
equivalent to the tangent line at (x′, y′, w′).

2. Preliminaries

In this section, we shall review the definitions of the

basic quantities associated with smooth planar curves that

are invariant under the special affine group and under the

projective group. We will denote a parametric curve C
in homogeneous coordinates as x(t) = (x(t), y(t), w(t)).
The same curve C in planar coordinates will be denoted by

x(t) = ( x(t)
w(t) ,

y(t)
w(t) ). We will use the planar notation for

affine quantities and the homogeneous one for projective

quantities.

The determinant of three vectors is denoted |x1,x2,x3|,
and the determinant of two planar vectors will be de-

noted |x1,x2|. With this notation, a strictly convex curve

C satisfies |x′(t),x′′(t)| �= 0 in planar coordinates, and

|x′′(t),x′(t),x(t)| �= 0 in homogeneous coordinates.

2.1. Affine invariant geometry

In this subsection, we describe the simplest quantities as-

sociated with a convex plane curve that are invariant under

the special affine group, i.e., the group of linear transfor-

mations with determinant 1. There are two basic quantities:

the affine length and the affine curvature. Any convex plane

curve can be recovered, up to an affine transformation, from

these quantities.

Assume that the convex curve C satisfies

|x′(t),x′′(t)| > 0. The affine length s is then defined

by

s(t) =
∫ t

0

3
√
|x′ (u) ,x′′ (u)|du.

If one takes s as a new parameter then |x′(s),x′′(s)| = 1.

This implies that |x′(s),x′′′(s)| = 0 and that one can write

x′′′(s) = −μ(s)x′(s). The scalar μ(s) is called the affine
curvature of C at the point x(s).

Solving the differential equation x′′′(s) = 0, one obtains

the plane curves of zero affine curvature. The set of solu-

tions of this equation are parabolas that can be described in

homogeneous coordinates as x(s) = Taff ·A(s), where

Taff =

⎡
⎣ A B C
D E F
0 0 1

⎤
⎦ and A(s) =

⎡
⎣ s

s2

2
1

⎤
⎦ . (1)

2.2. Projective invariant geometry

In this subsection, we describe the corresponding quanti-

ties for the projective group. In homogeneous coordinates,

a projective transformation is defined by an invertible lin-

ear transformation of R
3. Since, from the projective point

of view, two points in R
3 that are in the same line through

the origin are equivalent (see Figure 1), linear transforma-

tions of the form T and λT are projective equivalent, for any

λ �= 0. We will thus consider a projective transformation as

a 3 × 3 matrix of determinant 1.

Projective length. Assuming that |x′′,x′,x| > 0, we can

decompose x′′′ on the frame (x,x′,x′′), obtaining: x′′′ +
px′′ + qx′ + rx = 0, where

p = −|x′′′,x′,x|
|x′′,x′,x| , q =

|x′′′,x′′,x|
|x′′,x′,x| , r = −|x′′′,x′′,x′|

|x′′,x′,x| .

Consider the function H = r− 1
3pq+ 2

27p
3 − 1

2q
′ + 1

3pp
′ +

1
6p

′′. Assuming that H(t) �= 0, one defines the projective
length σ by

σ(t) =
∫ t

0

3
√
H(u)du.



If one takes σ as a new parameter for the curve, then

H(σ) = 1. The function H(t) has the following alterna-

tive definition: Suppose that the curve is parameterized by

affine arc length s, then, following [7],

H(s) =
1
2
μ′(s). (2)

So the condition H(t) �= 0 can be rewritten as μ′(s) �= 0.

Projective curvature. Since x(σ) and λ(σ)x(σ) are

equivalent curves, we can force p(σ) to be zero by choosing

λ(σ) = exp ( 1
3

∫ σ

0
p(τ)dτ) [7]. Thus,

x′′′(σ) + q(σ)x′(σ) + r(σ)x(σ) = 0. (3)

Since 1 = H(σ) = r(σ) − 1
2q

′(σ), one can write q(σ) =
2k(σ) and r(σ) = k′(σ) + 1. The number k(σ) is called

projective curvature.

Curves of zero projective curvature. In the normalized

form (3), a zero projective curvature curve x(σ) satisfies the

differential equation x′′′(σ) + x(σ) = 0. A particular so-

lution of this differential equation is the logarithmic spiral:

P(σ) = (Px(σ), Py(σ), Pw(σ)), with

⎧⎪⎨
⎪⎩

Px(σ) = exp(1
2σ) cos(

√
3

2 σ)
Py(σ) = exp( 1

2σ) sin(
√

3
2 σ)

Pw(σ) = exp(−σ)

Any other solution is given by T ·P(σ), where T is a projec-

tive transformation (see [8]). The set of logarithmic spirals

of zero projective curvature is thus an 8-dimensional space.

3. A projective length estimator based on affine
estimators

In this paper, we consider the discretisation of the curve

C as a sequence {(xi,x′i)}1≤i≤n of point-tangent samples.

The vector x′i only indicates the direction of the tangent to

the curve, and its magnitude has no particular meaning. In

this section, we describe the affine estimators of [6] for this

model since we will use them for estimating the projective

length. Moreover, they have a similar structure as the pro-

jective estimators. However, they will not be projective in-

variant, which may harm the projective curvature stability

(see Figure 2).

3.1. Affine estimators

Denote by si the affine length of the arc of C between

(xi,x′i) and (xi+1,x′i+1), by μi the affine curvature at xi

and by νi the derivative of the affine curvature at xi.

Affine length estimator. For any pair of samples (xi,x′i)
and (xi+1,x′i+1), there exists a unique parabolic arc pass-

ing through xi and xi+1, being tangent to x′i and x′i+1 at

these points. The affine length Li of this parabolic arc is

given by 2A1/3
i , where Ai is the area of the triangle whose

vertices are xi, xi+1 and the intersection of the lines defined

by (xi,x′i) and (xi+1,x′i+1). The length Li is an estimator

for si. An estimator for the affine length of C is
∑n−1

i=1 Li.

In appendix A, it is shown that Li = si +O(s5i ). Therefore,

the estimator for the affine length of C is convergent.

Affine frame. The above parabola can also be seen as

an affine transformation of a basic arc of parabola A(s),
0 ≤ s ≤ Li, defined by formula (1). Let Taff be the

affine transformation that transforms (A(0),A′(0)) and

(A(Li),A′(Li)) to (xi,x′i) and (xi+1,x′i+1). The affine
frame at sample i is then (q′i,q

′′
i ) = Taff · (A(0),A′(0)).

Affine curvature estimator. For three consecutive sam-

ples, consider the frames (q′i−1,q
′′
i−1) and (q′i,q

′′
i ) as

above. An estimator of the third derivative is given by

q′′′i =
2(q′′i − q′′i−1)
Li−1 + Li

.

Thus, an affine curvature estimator at sample i is given by

μi =
2|q′′i−1,q

′′
i |

Li−1 + Li
.

The estimator for
∫
μds is given by

∑n−1
i=2 |q′′i−1,q

′′
i |. In

appendix A, it is shown that the affine curvature estimator

satisfies μi = μi + O(si−1 + si). Therefore, the estimator

for the integral of the affine curvature is convergent.

First derivative of the affine curvature. For four consec-

utive samples, consider the affine curvatures μi and μi+1.

The estimator for the derivative of the affine curvature is

given by

νi =
10 (μi+1 − μi)

3Li−1 + 4Li + 3Li+1
,

In appendix A, it is shown that, under reasonable sampling

conditions, νi = νi +O(si−1 + si + si+1).
Any plane curve can also be recovered, up to affine

transformations, from its affine signature, which is the pair

(μ(s), μ′(s)). This kind of representation is interesting for

computer vision, since μ(s) and μ′(s) can be estimated lo-

cally, while the affine length is a global quantity. The pair

(μi, νi), 2 ≤ i ≤ n − 2, is an affine invariant signature

estimator of the curve C [1].
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Figure 2. The impact of projective length estimation error on the projective curvature estimator.
Given a spiral of constant projective curvature with the noise of numeric operations, the projective
estimator remains correct: the histogram is almost constant on the left image. However, with an ap-
proximate length estimated from affine quantities (right), the curvature estimator becomes unstable
(middle).
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Figure 3. Convergence test: relative error of the estimators (in logarithmic scale) vs. the num-
ber of samples on constant projective curvature curves. The curves chosen were (ea·t cos((b+√

3/2)t), ea·t sin((b+
√

3/2)t), e−t), uniformly sampled, and (ta, tb, 1), uniformly sampled and also with a
different sampling, uniformly in t. We have estimated the relative error |σ − σ|/σ of the length integral
(left), the relative error

∣∣k − k
∣∣/k of the curvature integral using the exact analytic length for the spiral

fitting (middle), and the same relative error of the curvature integral, but using the estimated length
for the spiral fitting (right).

3.2. Projective length estimator

For four consecutive samples, one can estimate the

projective length of the arc of C between (xi,x′i) and

(xi+1,x′i+1) by formula (2). Thus, the projective length

can be estimated by

σi =
3Li−1 + 4Li + 3Li+1

10
· 3

√
νi

2
.

An estimator for the projective length of C is thus given by

σ =
∑n−2

i=2 σi. Assuming that μ′(s) �= 0, one can show

that σi = σi + O(σ2
i ). Hence, the estimator σ for the pro-

jective length of C is convergent. Although convergent, this

projective length estimator is not projective invariant.

4. A projective curvature estimator

In this section, a projective curvature estimator is de-

fined, assuming that projective lengths between samples are

known.

4.1. Estimating frames by fitting spirals to
data

Given three points-tangents samples, (xi−1,x′i−1),
(xi,x′i) and (xi+1,x′i+1), and projective parameters σi−1,

σi and σi+1, we want to find a logarithmic spiral that

passes through the samples with the given projective param-

eters. We then deduce from the obtained spiral the frame

(Qi,Q′
i,Q

′′
i ) at sample i.
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Figure 4. Same test as in Figure 3, but after applying a projective transformation Ttest: the length
estimator (left) and, consequently, the curvature estimator based on it (right) is not projective invari-
ant. Nevertheless, the behavior of the curvature estimator based on exact lengths (middle) is close
to that of the original curve, since this estimator is projective invariant.

Linear equations of the fitting problem. Denote by

Ti =
[

A B C
D E F
G H I

]
the projective transformation that fits the

logarithmic spiral P(σ) to the three consecutive samples.

The condition that this spiral passes through the point xj =
(xj , yj , wj) at σ = σj is given by the equations

⎧⎨
⎩

APx(σj) +BPy(σj) + CPw(σj) = λj · xj

DPx(σj) +EPy(σj) + FPw(σj) = λj · yj

GPx(σj) +HPy(σj) + IPw(σj) = λj · wj

where λj is an unknown parameter. And the condition that

the spiral is tangent to x′j = (x′j , y
′
j , w

′
j) at xj is given by

⎧⎨
⎩

A Px
′(σj) +B Py

′(σj) + C Pw
′(σj)= αj xj + βj x

′
j

D Px
′(σj) +E Py

′(σj) + F Pw
′(σj)= αj yj + βj y

′
j

G Px
′(σj) +H Py

′(σj) + I Pw
′(σj) = αj wj + βj w

′
j

where αj and βj are unknown parameters (see Figure 1).

Relaxing one tangency condition. Assuming that the

projective length parameters are known, one has to deter-

mine 9 unknown parameters of the projective transforma-

tion plus 9 multipliers λj , αj , βj for i = i − 1, i, i + 1,

from 18 homogeneous equations. Unless one of these equa-

tions is redundant, this system has only the trivial solution.

However, if a tangency equation is relaxed, the new homo-

geneous linear system has 15 equations and 16 variables.

We thus drop one tangency condition, which, for the sake

of symmetry, is chosen to be at the central point. The cor-

responding linear system has now rank 15. By fixing the

condition det(Ti) = 1, one can find a unique solution Ti.

Projective frame. The estimated frame at sample i is

given by (Qi,Q′
i,Q

′′
i ) = Ti · (P,P′,P′′). It is clear that

this frame estimator is projective invariant.

4.2. Estimating projective curvature

In order to estimate the projective curvature, we need

also an estimate ofQ′′′
i at sample i. Let

Q′′′
i = 2

Q′′
i+1 −Q′′

i−1

σi + σi−1
.

By decomposing the vectorQ′′′
i in the frame, one considers

the coefficient ki ofQ′
i as the proposed projective curvature

estimator. Thus, we have

ki = −|Q′′′
i ,Q

′′
i ,Qi|

|Q′′
i ,Q

′
i,Qi| .

This projective curvature estimator is clearly projective

invariant. The corresponding estimator for the integral of k,∫
k dσ, is given by

k =
n−2∑
i=3

|Q′′
i+1,Q

′′
i ,Qi| − |Q′′

i−1,Q
′′
i ,Qi|

|Q′′
i ,Q

′
i,Qi| .

We expect that this estimator is convergent, but until now,

we were not able to prove it. Nevertheless, experimental

results strongly indicate its convergence (see Figure 3).

Projective signature. The above method can also be used

to estimate the derivative of the projective curvature. We

obtain an estimator (ki, k′i) for the projective signature of

the curve writing

k′i =
|Q′′′

i ,Q
′′
i ,Q

′
i|

|Q′′
i ,Q

′
i,Qi| − 1.



5. Implementation and results

Implementation choices. For small values of σ, the sam-

ples are almost aligned, and therefore the matrix of the lin-

ear system for fitting the spiral to the data has a small de-

terminant. In this context, the method for solving the lin-

ear system must be adapted, and we have chosen the LU

decomposition. We have also experimented calculating the

eigenvector associated with the lowest eigenvalue of the lin-

ear system without the tangency relaxation, but the solution

was very sensitive to noise.

Another choice that we have done was to use central dif-

ferences to estimate Q′′′
i (see Section 4.2), instead of left

or right differences. In fact, in all tests that we have per-

formed, the resulting frames with central differences were

better than the ones with left or right differences.

Error measures. In our model, as in several discrete

models [16], curvature is concentrated at vertices. There-

fore, the convergence can be better observed on integrals of

the curvature rather than on punctual curvature. The same

is true for the length. We therefore compared our estima-

tors with analytic ones by computing
∫
dσ and

∫
k dσ. To

test the projective invariance, we consider the same curves

before and after a projective transformation Ttest. Here, we

have chosen Ttest =
[

1 0 0−1 1 0
2 1 1

]
.

Results. As can be observed in Figures 3 and 4, the length

and curvature estimators (left and middle graphs) are con-

vergent, when they are considered independently. However,

for small values of σ, i.e. for a higher number of sam-

ples, the numerical instabilities of the length estimator (left

graphs) induce a high instability of the combined estima-

tor (right graphs and Figure 2). Figure 5 corroborates the

projective invariance of the curvature estimator alone.

6. Conclusion and future works

In this paper, estimators for the projective length and cur-

vature of a plane curve given by point-tangent samples are

proposed. The projective length estimator is based on affine

estimators that were proved here to be convergent. The pro-

jective length estimator converges in theory and in practice,

but it is not projective invariant. We will keep looking for a

stable length estimator that is projective invariant.

The projective curvature estimator is based on an estima-

tor of the frame at each sample, which is obtained by fitting

logarithmic spirals to the given data. If one assumes that

the projective lengths are known in advance, the proposed

curvature estimator becomes projective invariant. Its con-

vergence was verified in numerical experiments, but a theo-

retical proof remains to be done. Taking together both esti-
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Figure 5. The estimated projective curvature
using the exact analytic lengths on a polyno-
mial curve (t, t3, 1). Comparing before (left)
and after (right) projection Ttest, the error dis-
tribution is similar, corroborating the projec-
tive invariance of the estimator.

mators, the experimental results are promising, but also in-

dicate some numerical instability. We plan to continue this

work by researching other projective invariant methods for

fitting logarithmic spirals to the curve samples. These alter-

native methods may lead to more robust numerical schemes.
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A. Convergence of the affine estimators

Let x(s) = (x(s), y(s)), −u ≤ s ≤ t, be a convex

plane curve parameterized by affine arc-length, with affine

curvature μ(s). Denote μ = μ(0), ν = μ′(0). Assume

that x(0) = (0, 0), x′(0) = (1, 0) and x′′(0) = (0, 1).
We can write x(s) = s − μ

6 · s3 − ν
24 · s4 + O(s5) and

y(s) = s2

2 + μ
24 · s4 + − ν

60 · s5 +O(s6).
Consider that the samples are xi = x(0), xi−1 = x(−u)

and xi+1 = x(t). Denoting by z(t) = (z(t), 0) the inter-

section of the lines defined by x′(0) and x′(t), the affine

length of the parabola is L(t) = 3
√

4z(t)y(t). Let

T =
[
A(t) B(t)
0 D(t)

]

be the affine transformation that fixes (x(0),x′(0)) and

takes (xi+1,x′i+1) to ((t, t2

2 ), (1, t)).
Then direct calculations shows that :⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z(t) = 1
2 · t+ μ

24 · t3+ ν
60 · t4+ O(t5),

L(t) = t+ O(t5),
A(t) = 1+ μ

12 · t2+ ν
30 · t3+ O(t4),

B(t) = −μ
2 · t− 3ν

20 · t2+ O(t3),
D(t) = 1− μ

12 · t2− ν
30 · t3+ O(t4).

The affine curvature estimator is given by

μi(t, u) = −2
|q′′(t),q′′(−u)|
L(t) + L(u)

.

where q′′ = (B,D). Direct calculii show that μi(t, u) =
μi+ 3

10 (t−u)ν+O(t2+u2),which proves the convergence

of the affine curvature estimator.

Assuming that the ratios between the affine lengths

t, u, v are bounded, we obtain

μi+1−μi = νi[u+
3
10

(t−u)− 3
10

(u−v)]+O(t2+u2+v2),

and so νi = νi+O(t+u+v), thus proving the convergence

of the derivative of the affine curvature estimator.


