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Abstract

We derive a novel method for automatic determination of
the regularization parameters applicable for the class of si-
multaneous super-resolution (SR) algorithms. The proposed
method is based on the classical joint maximum a posteri-
ori (JMAP) estimation technique, which is a fast alterna-
tive to estimate the parameters. Unfortunately, the classical
JMAP technique can be unstable and generates multiple lo-
cal minima. In order to stabilize the JMAP estimation, while
achieving a cost function with a unique global solution, we
derive an improved solution by modeling the JMAP hyper-
parameters with a gamma prior distribution. Experimental
results illustrate the effectiveness of the proposed method
for automatic determination of the regularization parame-
ters for the simultaneous SR. We also contrast the proposed
method to a reference method named KNOWN. KNOWN is
a MAP based simultaneous SR algorithm where the param-
eters are fixed, either known a priori or extracted from the
high-resolution frames which are not usually available in
practice.

1. Introduction

In many applications it is required that the acquisition
system provides an image with the best possible resolu-
tion, while introducing minimum distortions due to imper-
fections of the image sensor and the optical system. How-
ever, the cost of image acquisition systems, like digital cam-
eras, camcorders and scanners, increases with the resolution
of the sensor and with the quality of the optical system. An
alternative to improve the resolution and the quality of cap-
tured images, without increasing the cost of the system, is
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to employ digital processing techniques to achieve super-
resolution (SR).

Research on super-resolution (SR) algorithms began in
the 90’s. One of the pioneering works, in [25], employed
Fourier domain methods. Since then, different approaches
have been developed, including projections onto convex
sets (POCS), non-uniform interpolation and iterative back-
projection, as reviewed by [18]. Regularized SR approaches
based on maximum a posteriori (MAP) and regularized
least squares appeared in [21, 12]. Traditionally, regular-
ized approaches minimize a cost function composed by the
residual associated with the estimated high-resolution (HR)
frame plus another term, called the prior term, used to reg-
ularize the problem. In these approaches, the regularization
parameter scales the influence of the prior term in the re-
sulting solution. In most SR methods, the parameter is as-
sumed to be known by some way. In the majority of practi-
cal cases, the parameter as well as the HR images must be
estimated from the data.

In simultaneous SR methods, proposed in [4, 28, 29, 30],
all frames of an image sequence are estimated in a single
process. Two different kinds of priors are employed, one to
achieve spatial smoothness and other to achieve higher sim-
ilarity of the HR frames in the motion trajectory. In these
problems at least two parameters are necessary, and to the
best of our knowledge, a proper method to find the regu-
larization parameters for these techniques has not been pro-
posed yet.

In this paper we address the problem with two parame-
ters in the simultaneous SR. Section 2 provides a detailed
description of system models used in this work. The simul-
taneous SR algorithm with fixed regularization parameters
is reviewed in Section 2.2. In Section 3, the new method
with automatic determination of the parameters is proposed
using the joint maximum a posteriori (JMAP) estimation
technique [8]. The classical JMAP approach, which as-
sumes uniform density for the hyperparameters is, in gen-
eral, unstable [8]. To circumvent this, we assume a gamma
probability density for the hyperparameters which results in



a stable algorithm with a unique global solution. Section 4
presents experiments, comparisons and discussions to illus-
trate the performance. Section 5 concludes this paper.

2. Review of the System Models and the Si-
multaneous SR Methods with Fixed Pa-
rameters

This section describes the models adopted in the super-
resolution algorithms and presents the simultaneous super-
resolution algorithm with fixed parameters.

2.1. System Models Used in Super-Resolution

The models adopted in the simultaneous super-resolution
algorithms are: acquisition model, motion model, and the
image model.

2.1.1. Acquisition Model This model describes the trans-
formations imposed to the images during the acquisition
process. In this model, the observed data are the low-
resolution images. The model is described in the following
equation:

gk = Dkfk + ηηηk (1)

where gk is a vector, of size N × 1, that represents the LR
frame captured at the instant k. The elements of the vec-
tor gk correspond to the pixels of the LR frame, lexico-
graphically ordered. The size N = N1N2 is the number
of pixels, where N1 × N2 is the size of the LR frame in
the horizontal and vertical directions, respectively. The vec-
tor fk, of size M × 1, represents the HR image, of size
M1 ×M2, with M = M1M2 pixels ordered lexicographi-
cally, where N ≤ M . The vector ηηηk represents acquisition
noise, which is usually assumed to be i.i.d. with normal dis-
tribution and presenting the same variance σ2

ηηη for all frames.
The matrix Dk, of size N ×M , represents the acquisition
transformation applied to the HR image fk. It models the
distortions due to the optics imperfections and to the sub-
sampling, which reduces the number of pixels from the HR
frame to the LR frame.

2.1.2. Motion Model This model describes the transfor-
mations caused by the relative motion among objects in the
frames of the sequence. It assumes that the frame in the tem-
poral instant k can be represented by the frame in the tem-
poral instant j, with the motion compensated, plus a new in-
formation ek,j , which cannot be obtained from the frame in
the instant j. The equation that describes the model is:

fk = Mk,jfj + ek,j (2)

where fk and fj are vectors that represent the frames in the
temporal instants k and j, respectively. The matrix Mk,j , of

sizeM×M , represents the motion transformation, or warp-
ing. This matrix is usually very sparse [19]. Most of the ele-
ments in an arbitrary line m are equal to zero, except for: 1)
one element with unitary value, in the column n, that rep-
resents the displacement of the pixel n in fj to the position
m in fk; 2) a few non-zero elements, which corresponds
to the linear combination of determined pixels (interpola-
tion) of fj to generate the pixel m in fk. This occurs due to
sub-pixel displacements in the high-resolution grid.

The matrix Mk,j can be created either from a dis-
cretized continuous motion operator [2, 1], where a para-
metric motion is assumed, or from a discrete motion vector
field [24, 20]. The vector ek,j , also called motion error, is
the new information in the frame k that cannot be obtained
from the frame in the instant j. This new information is usu-
ally originated by small errors in the estimation of the mo-
tion parameters, by limitations of the discretized motion op-
erator in properly representing the continuous motion, or by
outliers1. In the context of motion, an outlier is usually a re-
gion or an object that has been occluded by another object
or due to objects that suddenly appear in the scene or re-
gions that suffered unexpected motion [11].

It is important to notice that the outliers cause distortions
in the HR image estimation. In order to avoid these distor-
tions, a detection and removal procedure [20, 4] or an out-
lier robust SR algorithm [9, 29, 30] can be employed. An-
other approach to reduce these distortions is to control the
parameters related to the similarity of the images in the mo-
tion trajectory. This work evaluates the performance of the
parameter determination methods in finding the proper val-
ues to reduce the distortions caused by large motions errors
or outliers.

2.1.3. Image Model In general, super-resolution is an ill-
posed problem2 either because it has infinite possible solu-
tions or because it has great sensitivity to the noise [18, 3,
26]. In order to solve this problem and to obtain a unique
and stable solution, most super-resolution algorithms ex-
ploit additional information about the desired images.

The additional information most commonly used is to
assume that the images are smooth, which implies that the
intensity variations of fk are relatively small [6, 22]. This
additional information is, in general, expressed as a side
penalty of the form:

D(Rkfk)
βR

(3)

1 The name outlier in the literature of statistics is a bad element or mea-
sure, usually of large magnitude, that does not follow the underlying
statistical assumption [14].

2 An ill-posed problem is a mathematical problem that has, at least, one
of the following features: it has no solution; it has an infinite number
of solutions; or the solution is not stable due to small perturbations in
the data [26, 10].



where D(x) is a chosen penalty and βR is the hyperparam-
eter, related to the standard deviation. The matrix Rk, of
size P ×M , represents a discrete differential operator, ei-
ther employing a finite difference operator (in the horizon-
tal, vertical and diagonals directions) or a Laplacian opera-
tor. The resulting vector of Rkfk emphasizes the intensity
variations of fk. Usually, the same operator is considered
for all images in the sequence.

In this work it is considered the squared `2 norm as a
chosen penalty, where D(x) = ‖x‖22 =

∑
i |xi|2. This

norm helps to estimate smooth images and provides a re-
sulting optimization algorithm with relatively low computa-
tional complexity. Many works [22, 23, 5] indicate the pref-
erence for images with sharp edges. The Huber norm, as
well as the `1 norm, are able to better preserve the edges of
the estimated HR frames, in contrast to the `2 norm. How-
ever, the determination of the correct parameter utilizing
these norms is a more difficult problem and will not be ad-
dressed here. This paper focus on methods for determining
the hyperparameter βR associated with the squared `2 norm
only.

2.2. Simultaneous SR Methods with Fixed Regu-
larization Parameters

The simultaneous algorithms estimate the entire se-
quence of HR frames in a single process. This ap-
proach allows the inclusion of the motion matrix in the
prior term, improving the quality of the estimated im-
age sequence. The simultaneous approach was orig-
inally proposed in [4], and improved in [28, 29, 30]
where the computational cost was reduced by remov-
ing the terms with the combined acquisition and motion
matrix from the data term. The minimization problem, ac-
cording to [30], is

f̂1, . . . , f̂L = arg min
f1,...,fL

L∑
k=1

‖gk −Dkfk‖22

+ λR

L∑
k=1

‖Rkfk‖22 + λM

L−1∑
k=1

‖fk −Mk,k+1fk+1‖22 (4)

where the sum of ‖gk − Dkfk‖22 composes the data term,
which enforces the similarity between the estimated se-
quence and the captured data. The prior term has two com-
ponents: the component ‖Rkfk‖22 enforces the images to be
smooth, which is based on the image model; the component
‖fk−Mk,k+1fk+1‖22 enforces the images to be similar, min-
imizing the finite difference in the motion trajectory, which
is based on the motion model. The regularization parame-
ters, λR and λM , dictates the influence of each prior term in
the solution. This regularized method is also the same de-
duced from the MAP estimative, as will be shown in Sec-
tion 3.

Note that in (4) the entire HR sequence is estimated si-
multaneously, where only the acquisition matrix Dk is uti-
lized in the data term [30]. In traditional SR methods, the
frames are estimated one-by-one (non-simultaneously) and
the data term includes a system which combines the motion
model and the acquisition model. Moreover, whereas a first
order finite difference model is used for the priors in (4), a
second or arbitrary order models can also be used [30].

Equation (4) can be rewritten as

f̂̂f̂f = arg min
fff
‖ggg −DDDfff‖22 + λR‖RRRfff‖22 + λM‖MMMfff‖22 (5)

where ggg = [gT1 . . .g
T
L ]T is the LR sequence,

fff = [fT1 . . . f
T
L ]T is the HR sequence, DDD, RRR are block

diagonals defined by DDD = diag(D1, · · · ,DL) and
RRR = diag(R1, · · · ,RL), and

MMM=

 I −M1,2 · · · 0
...

. . . . . .
...

0 · · · I −ML−1,L

 (6)

for the first order motion difference, as used in (4), where I
is the identity matrix.

Note that the parameters λR and λM are assumed to be
known and fixed values in (4) and (5). Since different values
for the parameters lead to different resulting HR images, in
order to be successful, the estimation process in (4), or (5),
require proper values for these parameters, which are usu-
ally unknown in practical problems. This paper presents a
new method to address the joint estimation of these param-
eters with the HR images.

3. Proposed Automatic Determination of the
Regularization Parameters

This section describes the proposed approach to estimate
the parameters based on the joint maximum a posteriori
(JMAP) estimation. JMAP is a Bayesian estimator that fo-
cus on the estimation of the HR images and the parameters
together [8].

3.1. Classical JMAP

The general JMAP estimative is given as:

f̂ff , θ̂, β̂R, β̂M=arg max
fff,θ,βR,βM

ρ(fff, θ, βR, βM |ggg) (7)

where ρ(fff, θ, βR, βM , |ggg) is the posterior density, ggg are the
LR images, fff are the HR images, θ, is the data hyperparam-
eter, and βR and βM are the hyperparameters of the image
sequence prior density, and

ρ(fff, θ, βR, βM |ggg) ∝ ρ(ggg|fff, θ)ρ(θ)ρ(fff |βR, βM )ρ(βR, βM )
(8)



Functions ρ(θ), ρ(βR) and ρ(βM ) are the prior densities as-
signed to the hyperparameters, also known as hyperpriors
[8]. The data density, ρ(ggg|fff, θ), and the image prior den-
sity, ρ(fff |βR, βM ), are the same as used in MAP estimation.
Let us assume the following Gaussian densities

ρ(ggg|fff, θ) =
(2π)−LN/2

(θ)LN/2
e
−1

2
‖ggg −DDDfff‖22

θ (9)

where θ, in this case, is the variance of the acquisition noise
in the data, σ2

ηηη , assumed in (1) and

ρ(fff |βR, βM ) ∝ (2π)−LM/2

βR
rβM

m e
−1

2

[
‖RRRfff‖22
βR

+
‖MMMfff‖22
βM

]
(10)

where r = α · rank(RRR), m = α · rank(MMM), consid-
ering that rank(RRR) + rank(MMM) ≥ LM , we have α =
LM/[rank(RRR) + rank(MMM)]. In this work θ is assumed in-
dependent of βR and βM . Observe that, according to (10),
βR is related to the image smoothness, from the image
model in (3), and βM is related to the images similarity in
the motion trajectory, from the motion model in (2).

In MAP estimation the hyperparameters are assumed
to have fixed values [8, 17], leading to (5), whereas in
JMAP estimation, the hyperparameters are random values
that need to be estimated from the data as well as the HR im-
age. Thus, in the same way that an image prior is needed for
the estimation of the HR image, the hyperpriors are needed
for the estimation of the hyperparameters.

The classical JMAP assumes uniform densities for the
hyperpriors as in [8, 17], where the values are equiprob-
able, therefore ρ(θ) ∝ cte and ρ(βR, βM ) ∝ cte, for
0 < θ, βR, βM < ∞. The JMAP estimation with these hy-
perpriors becomes:

f̂ff , θ̂, β̂R, β̂M = arg min
fff,θ,βR,βM

‖ggg −DDDfff‖22
2θ

+
LN

2
ln θ

+
‖RRRfff‖22
2βR

+
r

2
lnβR +

‖MMMfff‖22
2βM

+
m

2
lnβM + cte (11)

From (11) it is possible to find the hyperparameters for a
fixed fff , differentiating (11) with respect to the hyperparam-
eters and setting the result to zero. This leads to the follow-
ing closed form solutions:

θ̂ =
‖ggg −DDDfff‖22

LN
,

β̂R =
‖RRRfff‖22
r

, β̂M =
‖MMMfff‖22
m

.

(12)

for the data hyperparameter and for the image sequence hy-
perparameters, respectively. By substituting (12) into equa-

tion (11), leads to:

f̂ff = arg min
fff

ln(‖ggg −DDDfff‖22)+
r

LN
ln(‖RRRfff‖22) +

m

LN
ln(‖MMMfff‖22) (13)

The minimizer in (13) is shown to be the solution of(
DDDTDDD + λRRRR

TRRR+ λMMMM
TMMM

)
fff = DDDTggg (14)

where λR and λM are:

λR =
r

LN

‖ggg −DDDfff‖22
‖RRRfff‖22

,

λM =
m

LN

‖ggg −DDDfff‖22
‖MMMfff‖22

(15)

The cost function in (13) is non-convex3 and the estima-
tion unstable [17]. It requires proper constraining to avoid
divergence. In the Bayesian statistical sense, constraints can
be expressed by defining proper hyperparameter priors [8].
When employing uniform densities, as done in the classi-
cal JMAP, the hyperparameters are not properly constrained
and generate unstable estimates. More restrictive hyperpri-
ors, on the other hand, lead to a stable estimative and a glob-
ally convex problem with a unique minimum.

3.2. Proposed Method

The instability of the classical JMAP estimative, accord-
ing to (13), is reported in [16, 15]. An approach to stabilize
JMAP by employing a proper hyperprior for general inverse
problems is reported in [7]. This work proposes an alterna-
tive hyperprior which is able to lead the JMAP to a unique
and stable estimative of the parameters.

In the JMAP method, the density of the data or the prior
density of the images is connected with the density of its
respective hyperparameter. For example, consider only the
use of the smoothness prior, ρ(fff |βR), which enforces the
HR images to be smooth. The associated hyperparameter,
βR, defines “how smooth” is the resulting image. However,
when an uniform density is assigned to the hyperparameter,
as ρ(βR) ∝ cte, then it is implicitly assumed that an over-
smooth image, like a constant intensity value image, when
βR → 0, is as likely to occur as a noisy image, like the one
produced by a completely unregularized estimation, when
βR → ∞. The other extreme choice for the hyperparame-
ter prior is to assume ρ(βR) as a Dirac delta function, i.e.,
an impulse in a fixed value for βR, which leads (7) to (5).
This choice is the most possible constraining for the hyper-
parameters.

3 Since the logarithm operator is a non-convex operator, so is a sum of
logarithms.



Therefore, a proper hyperprior density should be found
between the uniform and the delta density. It should pre-
vent the hyperparameter to reach very extreme values, but
it must allow them to fluctuate among a range of candidate
values. Moreover, the desired prior density for the hyperpa-
rameters needs to enforce positive values and provide low
probability for very low or very high values.

Among several candidates, the gamma density, with spe-
cific designed parameters to make it similar to the chi-
squared density, has been shown practical and theoretical
advantages over the alternatives. The gamma densities for
the hyperparameters are given by

ρ(θ) =
θ(a−1)b−a

Γ(a)
e
−θ
b (16)

ρ(βR, βM ) =
β

(c−1)
R β

(h−1)
M d−ci−h

Γ(c)Γ(h)
e
−
[
βR
d

+
βM
i

]
(17)

where a, c and h are the scale factors, b, d and i are the shape
factors, and Γ(x) is the gamma function. Also, E{θ} = ab,
var{θ} = ab2, E{βR} = cd and var{βR} = cd2, and
E{βM} = hi and var{βM} = hi2.

Substituting the gamma densities in equation (7) leads
to:

f̂ff, θ̂, β̂R, β̂M =arg min
fff,θ,βR,βM

‖ggg−DDDfff‖22
2θ

+
(
LN

2
−a+1

)
lnθ

+
θ

b
+
‖RRRfff‖22
2βR

+
(r

2
− c+1

)
lnβR +

βR
d

+
‖MMMfff‖22

2βM
+
(m

2
− h+1

)
lnβM +

βM
i

+ cte (18)

Note that when a = LN/2 + 1, c = r/2 + 1 and
h = m/2+1, the gamma density has nearly the same shape
as the chi-squared density. These values for a, c and h will
be used in our development, they provide a necessary con-
dition to achieve a globally convex problem. The b, d and i
will be replaced by expressions involving the expected val-
ues of the hyperparameters, namely b = E{θ}/a = mθ/a,
d = E{βR}/c = mβR

/c, and i = E{βM}/h = mβM
/h.

Assigning the mentioned values for a, b, c, d, h, and i, and
applying some algebra, equation (18) reduces to:

f̂ff , θ̂, β̂R, β̂M =arg min
fff,θ,βR,βM

‖ggg−DDDfff‖22
2θ

+
θ(LN + 2)

2mθ

+
‖RRRfff‖22
2βR

+
βR(r + 2)

2mβR

+
‖MMMfff‖22

2βM
+
βM (m+ 2)

2mβM

(19)

Differentiating equation (19) with respect to the hyperpa-

rameters, for fixed fff , leads to the following estimative

θ̂=
√
mθ‖ggg−DDDfff‖2√
LN + 2

,

β̂R=
√
mβR
‖RRRfff‖2√

r + 2
, β̂M =

√
mβM

‖MMMfff‖2√
m+ 2

.

(20)

Substituting the results in (20) into (19), gives

f̂ff = arg min
fff
‖ggg −DDDfff‖2 + µR‖RRRfff‖2 + µM‖MMMfff‖2 (21)

where

µR =

√
mθ(r + 2)

mβR
(LN + 2)

,

µM =

√
mθ(m+ 2)

mβM
(LN + 2)

(22)

Considering the gradient of the cost function in (21), the
solution of this optimization problem is found when(

DDDTDDD + λRRRR
TRRR+ λMMMM

TMMM
)
fff = DDDTggg (23)

where the parameters are defined by

λR = µR
‖ggg −DDDfff‖2
‖RRRfff‖2

,

λM = µM
‖ggg −DDDfff‖2
‖MMMfff‖2

(24)

The values of µR and µM can be chosen from average
values, as in (22), or from an analysis of the estimation er-
ror which gives

µR =

√
tr(DDDTDDD)

2
√
tr(RRRTRRR)

,

µM =

√
tr(DDDTDDD)

2
√
tr(MMMTMMM)

(25)

The choice of these values, based on the estimation error, is
addressed in [27].

The proposed method involves a convex4 cost function
with a unique minimum. In pracice, the HR image is com-
puted by minimizing the cost function in (21) using the non-
linear conjugated gradient (NL-CG) [26].

4. Experiments

The following experiment evaluates the performance of
the simultaneous SR algorithms with known fixed param-
eters and with automatic determination of the parameters.

4 The `2 norm is a convex operator.



Given a HR image sequence, with known or previously es-
timated motion, the simulated acquisition process was per-
formed, employing the average of a squared area of R × R
pixels using two subsampling factorsR = 2, 3, and an addi-
tive white Gaussian noise with variance adjusted to achieve
a fixed SNR 5. Two situations were considered: high ac-
quisition noise, with SNRA=20dB and medium noise, with
SNRA=30dB. These noise levels are the typical levels found
in commercial image sensors6.

The quality of the HR sequence recovered with the tested
methods is measured in terms of SNR. Computational ef-
fort of each method was evaluated by considering the time
it takes for convergence, where convergence is assumed to
be reached when the improvement in quality is less 10−2

dB.
This procedure was repeated using 20 random noisy re-

alizations for each noise level. The entire experiment was
repeated for each image sequence of a total of 6 differ-
ent image sequences. In some of the sequences, the motion
was artificially generated without considering occlusions in
the scene, whereas in other sequences, which are from real
video sequences, the motion was estimated using the opti-
cal flow method [13]. In this case, linear interpolated ver-
sions of the LR images were employed. The estimated mo-
tion vectors are not completely reliable in this case, there-
fore, occlusions and motion errors occur in several places in
the sequence.

In this evaluation, the procedure of detection and re-
moval of the occlusion regions was not considered in or-
der to evaluate the performance of the methods in control-
ling the similarity of the images.

The following methods were compared:
JMAP - The classical JMAP approach [8] as equation

(13), using conjugate gradient method to find the HR im-
ages with (12) to update the parameters.

PROP - Proposed method with minimization using GC-
NL.

These methods are iterative. The same initial conditions
are considered: the initial HR image is a null image, and the
initial parameters is randomly chosen from 10−6 to 106. In
addition to these methods, the results obtained by the fol-
lowing pre-determined parameter were also compared:

KNOWN - Employs the MAP estimative where the pa-
rameters are known a priori. Since the noise and the original
HR images are known in the experiments, the hyperparam-
eters are computed without difficulties. This method is used
as reference only. It cannot be used in practice since nei-
ther the parameters nor the HR images are known a priori.

5 The acquisition SNR is defined as SNRA = 10 log10(σ2
DDDfff/σ

2
ηηη),

where σ2
DDDfff is a LR noise free sequence variance and σ2

ηηη is the noise
variance.

6 Typical acquisition SNR may vary from 10dB to 40dB, depending on
the exposure.

(a) JMAP rep. 1 (SNR=19.0dB)

(b) PROP rep. 1 (SNR=19.4dB)

(c) JMAP rep. 2 (SNR=1.2dB)

(d) PROP rep. 2 (SNR=19.8dB)

Figure 1. Visual results comparing Classical
JMAP and the proposed method in two differ-
ent repetitions.



Method R=2 SNRA=20dB R=3 SNRA=30dB
SNR STD CT SNR STD CT

JMAP 22.6 1.1 5.8 20.0 2.2 8.1
KNOWN 22.1 0.4 1.0 20.8 1.2 1.0

PROP 23.1 0.4 1.3 21.2 2.0 3.1

Table 1. SNR average in dB, standard devi-
ation (STD), and relative computational time
(CT) for simultaneous SR algorithms

The average quality of the estimated images with the pa-
rameters found by the respective method, its standard devi-
ation, and the relative computational time (with respect to
KNOWN) are shown in Table 1. One can observe in Table 1
that the quality obtained by the proposed method was supe-
rior to the obtained by KNOWN and JMAP. Moreover, the
results illustrate the low computational cost provided by the
proposed method, which is faster than the classical JMAP.
Unfortunately, up to now there is no other method to de-
termine the parameters for the simultaneous SR methods in
order to compare with the proposed method, except for the
classical JMAP approach.

It is important to observe that the results provided by
KNOWN are not necessarily the best results. One of the
reasons for that in the modeling mismatches related to the
gaussianity assumption for the motion error and spatial dif-
ferences. An extensive search for the best parameters should
be done in order to find them. However, this is a very time
consuming task for more that one parameter in SR algo-
rithms.

Figure 1 illustrates the instability of the JMAP. On can
observe that in repetition 1 the JMAP converged to a good
solution. However, in repetition 2 the JMAP estimation di-
verged to an image with constant intensity. This happened
because the regularization parameter related to the image
smoothness diverged toward infinity.

4.1. Example with Practical SR Algorithm

Figure 2 shows a result without artificial degradation and
recovering, using R = 3. For this visual experiment, the
original sequence is assumed to be the captured sequence
and used as test problem for the simultaneous SR method
with occlusion and motion error detection and removal [11]
procedures. The enhancement of the resolution of the SR
method over the original image can be clearly noticed. The
regularization parameter was determined by the proposed
method.

(a) Image at original
resolution

(b) Nearest neighbor (3X) interpolation of the original image

(c) Super resolution with the proposed approach

Figure 2. Visual results comparing the orig-
inal frame of the sequence Flower Garden
with the same frame, where a resolution im-
provement factor of R=3 was applied.



5. Conclusions

In this paper, a novel regularized simultaneous super-
resolution technique with automatic determination of the
parameter is proposed. The problem of parameters and
image sequence estimation has been addressed with the
Bayesian theory, using joint maximum a posteriori (JMAP)
estimation. A gamma density is proposed for the hyperpa-
rameters in order to provide a globally convex cost func-
tion, resulting in a unique solution. The proposed method
provides a computational cost similar to the method with
fixed parameters. We provide a set of experiments to illus-
trate the superior efficiency and stability of the proposed
technique when compared with other competing methods.
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