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Abstract

We propose a formulation capable of deforming meshes
in a shape-sensible way. We explain how to adapt the orig-
inal space-deforming algorithm [2] into a skeleton-driven
deformation scheme, where more sensitivity to the mesh ge-
ometry is achieved. The more natural results make it possi-
ble to use the technique for character animation.

1. Introduction

Interactive deformation of 3D surface meshes is a pro-
cess where the shape of a model is altered through con-
straints defined by the user. Usually, users manipulate the
constraints using a 2D mouse and dragging the cursor on
window canvas. No restrictions are given for mouse drag-
ging, i.e., the constraints can be separated or stretched
freely. However, the model shape should be preserved as
much as possible giving the user the idea he is manipulat-
ing a real object.

The so-called “as rigid as possible” deformation tech-
niques are of special interest for this task than other purely
geometric deformation schemes [1, 3, 4, 5]. They avoid
unnatural shearing and nonuniform scaling on the models
since only optimal rigid-body transformations are used for
driving the deformation process.

Recently, Schaefer et al. [4] used this paradigm for per-
forming interactive image deformation. In summary, the
problem for solving is how to find the rotation component
for the optimal rigid-body transformation efficiently. They
presented a closed-form solution using the relationship be-
tween similarity and rigid transformations and, thus, ob-
tained attractive results. Their algorithm use as input a 2D
image and a set of control points. After the user drags some
of these control points, the image is “rigidly” altered. For
each element of the image (not necessarily a pixel) is com-
puted a transformation restricted to be “as rigid as possible”.
They used a moving least squares optimization approach for
computing a varying solution for each image element.

A proposal for deforming 3D meshes following the
Schaefer’s criterium has been presented in [2]. Although

Figure 1. The standard as-rigid-as possi-
ble deformation gives non-natural results for
meshes. (Left) The Homer model and five
control points. (Right) Deformation result af-
ter moving two control points.

they have presented an efficient formulation for com-
puting the rotation component in 3D, non-natural results
can be obtained when the deformation is applied on sur-
face models, as the deformation process is blind to
the shape of the model. Figure 1 illustrates this prob-
lem.

This work presents a proposal for applying “as rigid as
possible deformations” sensitive to the model shape. We
propose to solve the mesh deformation problem adapting
the method presented in [2] into a skeleton-driven deforma-
tion scheme. Then, given a mesh model and its associated
skeleton, we perform the deformation on the skeleton joints
and project the transformations into the mesh. The shape
sensitivity is realized by a distance metric defined over the
skeleton bones. Figure 2 shows more natural results when
compared with results on Figure 1.

2. Moving least squares deformation

Let {pi} be a set of control points andx = [x y z]
be a point in 3D. After new positions{qi} are de-
fined for the control points, the problem consists in find-
ing the rigid-body transformationT that minimizes∑

i wi|Tx(pi) − qi|
2, where wi is a weight function de-

fined aswi(x) = |pi − x|−2 and | · | denotes Euclidian



distance metric.
It can be shown that the optimal MLS-based solution is

defined as
T (x) = R(x − p*) + q*, (1)

wherep* =

∑
i wi pi∑

i wi

, q* =

∑
i wi qi∑

i wi

andR is a rota-

tion function defined by an angleα around an axisa. In [2]
it was shown that the vector that defines the rotation axis is
given by the solution of the3 × 3 system

(M + MT − λI) uT = VT,

where M=
∑

i wiq̂
T

i p̂i, V =
∑

i wip̂i×q̂i, q̂i = qi−q*,
p̂i = pi − p* andλ is the largest root of a depressed quar-
tic equation. Additionally, expressions for computing angu-
lar parameters are given by

cos(α) =
1 − ‖u‖2

1 + ‖u‖2
and sin(α) =

−2‖u‖

1 + ‖u‖2
.

3. Shape sensitive deformation

The shape-aware deformation uses a skeleton to drive the
deformation of the model. Once the skeleton is known, we
define skin setsSj composed of mesh vertices that will be
influenced by the transformation of each bonebj . Observe
that, unlike classical skeletons used in character animation,
in our skeleton there is no guarantee that each bone will be
transformed rigidly, rather, we may think of each bone as a
point set that will be transformedas rigidly as possible in a
MLS sense. The process starts by applying transformations
into the skeleton joints in much the same lines discussed
in Section 2, except that Euclidian distances are replaced by
path distances along the skeleton. The joint transformations,
in turn, will define the transformations along the connected
bones using linear interpolation. If we consider that a bone
bj contributes to the transformation of a vertexv by a fac-
tor proportional to the distance between them, say,ρ(bj , v),
then that contribution isρ(bj , v)T (cj(v)), wherecj(v) is
the point of bonebj closest tov andT (x) stands for the op-
timal transformation of a pointx of a bone.

All it remains is to find a weighting schemeρ capable of
ascertaining the smoothness of the deformed mesh. Leth :
[0,∞) → [0, 1] be any smooth function such thath(0) = 1,
h decreases in[0, r) and is null in[r,∞) for a given value
r > 0 which acts as the maximum amplitude of a diffusion
process. We useρ(bj , v) = h(g(v, Sj)), where theg is the
geodesic distance betweenv andSj andh(d) = (1 − d

r
)2.

Finally, the transformation applied to any given mesh
vertexv is given by

T (v) =

∑
bj

ρ(bj , v)T (cj(v))
∑

bj
ρ(bj , v)

.

Figure 2. Original model, its skeleton and five
control points defined on some joints of the
skeleton (left) and their as rigid as possible
skeleton-driven deformation (right).

Skin setsSj may be defined by the user or using some al-
gorithm. Vertex weights are computed by visiting all mesh
points with a geodesic distance smaller thanr from the bor-
der of Sj . The value ofr is computed experimentally be-
cause it depends on the scale of the model.

4. Conclusions

Results on Figure 2 show a more phisically plausible
deformation of the model when compared with the origi-
nal formulation (Figure 1). The proposed skeleton-driven
method is fairly simple and the deformation does not re-
quire inverse kinematics to be computed. Additionally, pre-
liminar experiments show that this alternative substantially
increase the frame rates of interactive deformation sessions
of models with up to a few hundred thousand vertices.
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