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Abstract

Mathematical morphology is based on the principle of
ordering. There is no natural way to order colors (being
triplets of scalars). A lot of different ordering relations have
been proposed in the literature, most on an ad-hoc basis. In
this paper, we propose an ordering relation for colors that
is based on the natural (i.e. physically plausible) ordering
of spectra. Therefore, we ensure that the ordering is inde-
pendent of the chosen color parameterization. We discuss
that part of colorimetric theory that enables us to recon-
struct the spectrum given the three color parameters. Fur-
thermore, we present the very basics of the algebraic frame-
work of mathematical morphology. This allows us to embed
the presented ordering of colors within the morphological
framework such that we can fully exploit the possibilities to
define morphological image operators working on color im-
ages.

1. Introduction

Mathematical morphology is grounded on the principle
of ordering: ordering of pixel values, ordering of images
(being maps from some manifold onto the set of pixel val-
ues), and ordering of image operators (being the mappings
from images onto images). The algebraic framework for
morphology is the complete lattice, where we have a set
V of values and a partial ordering relation ≤. Given such a
simple algebraic structure on the set of pixel values, we are

then able to construct most of the morphological tools like
erosions, dilations, openings, closings and so on.

Most of the existing research on color morphology field
has focused on defining order relationships on a specified
color space. Indeed, they map the input color image to the
target color space and use an ordering scheme for finding
supremum and infimum to compute dilated and eroded im-
ages. In [2], color morphological operators have applied on
the HSV color space. A lexicographical ordering scheme
has been used to find supremum and infimum. This ap-
proach has been extended in [3] by defining soft ordering
scheme using fuzzy rules.

In [20], the RGB color space is first linearly transformed
to the target color space. Then, the transformed colors are
ranked using a lexicographic ordering method. The per-
formance of resulted morphological operators in edge de-
tection application has been shown. In [14], the perfor-
mance of some previously introduced morphological op-
erators (which had used reduced ordering) has been com-
pared and those operators have been mapped to a generic
programming framework. Some morphological techniques
that had appeared in the literature were reviewed in [21] and
a new technique based on vector projections was introduced
in that paper. In [22], a reduced ordering approach based on
a new geometrical transformation has been introduced and
its experimental results for contrast enhancement and edge
detection have been reported. In [20], the luminance compo-
nent in the HLS color space has been used for definition of
basic morphological operators. In [15], using color morpho-
logical operators defined on the HSI color space for bright-
ness elimination application has been discussed. The use of



mathematical morphology in the CIE Lab color space has
also been discussed in [8]. That approach is based on the
use of weighting functions to impose a complete order on a
vector space.

Recently, in some studies, color statistical information
has been used in color ordering schemes. In [19], morpho-
logical operations have been defined based on Mahalanobis
distance of colors in the RGB color space. In [12], a ma-
jority ordering method has been introduced for color order-
ing purposes. That approach is based on counting the num-
ber of image pixels and ordering the colors accordingly.

From a morphological point of view, defining an order-
ing relation for colors is all that is required to extend the
morphological tools to work with color images. Perhaps
the simplest ordering is the partial component-wise order-
ing of colors. Unfortunately a component-wise partial or-
dering of colors is dependent on the color model used. A
color model is just a way to parameterize a three dimen-
sional color space. As such, the existing parameterization,
be it RGB, HLS, XYZ, or CIE Lab, is irrelevant (although it
might be extremely handy for particular purposes). There-
fore, we aim at an ordering that is independent on the cho-
sen parameterization.

In this paper, we propose an ordering in spectral space,
i.e., we define an ordering of spectra (energy distributions
over the wavelengths) and through this, induce an order-
ing on the three dimensional colors. Because the relation of
the color model with the spectra that caused the color sen-
sation is explicitly used in our ordering scheme, the order-
ing is independent of the chosen color representation. The
colorimetric theory needed to reconstruct a physical realiz-
able spectrum from the color can be found in section 2. This
section on colorimetry is mostly based on the works of [11]
and [18]. In section 3 we discuss the algebraic mathematical
morphology framework of complete lattices. The standard
work on the algebraic theory of morphology is the book of
Heijmans [9]. This allows us to open up the entire toolset of
mathematical morphology by just defining the basic ingre-
dient: the ordering relation of color pixel values in section
4. Section 5 give some experimental results based on mor-
phological filtering on color images. Conclusions and fur-
ther research are given in section 6.

2. Building a Physical Realizable Spectrum

Color does not exist objectively as a physical observable
in the real world for us to be measured and quantified. Color,
as we know it, is a function of the human visual system. The
physical phenomena to observe are the energy distribution
of electromagnetic waves as a function of wavelength and
position. In classical colorimetry, the dependence on wave-
length is decoupled from the dependence on position.

Point-wise colorimetry assumes an isolated beam of light
falling on the retina with a stationary spectrum ε(λ) (i.e. en-
ergy distribution as a function of wavelength). Within the
retina, three different color sensitive receptors project the
infinite degrees of spectral freedom onto a three dimen-
sional color sensation. The output of the photoreceptors is
the weighted integral of the spectral energy distribution.
Each of the three different receptors is characterized with
sensitivity as a function of the wavelength.

The response ri of each of these receptors to the light
spectrum is the weighted integration of the energy distribu-
tion ε and the spectral sensitivity curve si of that particular
receptor1 ri = sT

i ε. Combining the three sensitivity curves
(vectors) in one color matching matrix M we get c = MT ε,
where c = (r1r2r3)T and M = (s1s2s3).

Human color vision projects an infinite dimen-
sional spectral space S onto a three dimensional color
space C. Note that the human color space was numeri-
cally known long before accurate measurements of the
cone sensitivity curves were possible. Using a standard ob-
server, the human visual system is used as a null device to
compare the colors resulting from standard primary col-
ors with the colors of monochromatic beams. This results
in a color matching matrix that is an affine transfor-
mation of the human color matching matrix. The XYZ
color matching matrix is the standard colorimetric defini-
tion for the human color space. Color space is of rank three
as the sensitivity curves are linearly independent and there-
fore the null space of the projection is of infinite dimension
(minus three) as well. Within the infinite dimensional spec-
tral space, the human visual system selects one very spe-
cific three dimensional subspace.

In general, it is quite impossible to reconstruct the spec-
trum ε that gave rise to the color sensation c = MT ε. It can
be approximated as the spectrum εF that is within C such
that the approximated spectrum results in the same color
sensation as the original one MT εF = MT ε. The opera-
tor Π that takes the original spectrum ε and transforms it
into the fundamental spectrum εF is the projector that de-
scribes the color space C independent of the chosen basis.
In colorimetry, this projector is known as Cohen’s Matrix
[11]. The projector is easily expressed in terms of the color
matching matrix M .

Consider the spectrum ε with corresponding color coor-
dinates c = MT ε. The projected spectrum is a linear com-
bination of the columns of the color matching matrix, i.e.,
there is a vector c′ such that εF = ΠMε = Mc′. The color
MT Mc′ corresponding to this spectrum should of course be
the same as the original one MT ε. Solving for c′ (note that

1 we use the common vectorial notation for functions over the
wavelength. This makes it easier to apply standard linear alge-
bra in colorimetry. E.g., the inner product sT

i ε should be read as∫
si(λ)ε(λ)dλ.



MT M is invertible) leads to: c′ = (MT M)−1MT ε. Since
Mc′ = ΠMε we have M(MT M)−1MT ε = ΠMε. In ad-
dition, since this should be valid for all ε, we obtain:

ΠM = M(MT M)−1MT . (1)

Cohen’s matrix plays a fundamental role in colorimetry.
It allows us to compare color models. Given the sensitivity
curves of any tri-stimulus recording device (say the matrix
A), then this device is colorimetric if and only if ΠA = ΠM .
The distance between two color models can be expressed in
terms of the distance between the associated projector ma-
trices.

The spectrum ε can be splitted into two parts: its funda-
mental part εF and its black part εB such that ε = εF + εB

and where εF = ΠMε and εB = (I − ΠM )ε. The projec-
tor (I−ΠM ) is the projector on the black space because by
construction we have that the black spectrum εB does not
contribute to the color sensation: MT εB = 0. The black
space projector I −ΠM represents the infinite dimensional
(minus three) subspace that is orthogonal to the color sub-
space.

A second operator that is easily expressed in terms of the
color matching matrix is the reconstructor ΥM , i.e., the op-
erator that takes a color with respect to some color matching
matrix M and results in the canonical spectrum ε̂. It is triv-
ial that this reconstructor is written by:

ΥM = M(MT M)−1. (2)

Please note that the Grammian Matrix [13] appears in
this expression. Only in case the chosen basis is orthonor-
mal, we have that the Grammian MT M = I and thus
ΥM = M .

Unfortunately, there is no guarantee whatsoever that the
reconstructed fundamental spectrum is a physically realiz-
able spectrum: it may have negative values. In many cases,
where we are interested in reconstructing the spectrum, the
goal is to find a physically realizable spectrum (e.g. to com-
pare spectra for morphological operators or to mimic the
color constancy of the human visual system). An algorithm
to construct a physically realizable spectrum, given a fun-
damental spectrum, is elegantly casted into the problem of
finding the intersection of two convex bodies [13].

The set of all physically realizable spectra SR is given
by SR = {ε | ε ≥ 0}, i.e., the set of all non-negative spec-
tra. This is obviously a convex set. Now consider the fun-
damental spectrum εF that is not physically realizable, i.e.,
εF 6∈ SR. Of course we may add any black spectrum b from
the black space B to εF without changing the color. The
translated space εF + B thus contains only spectra that will
lead to the same color sensation as the fundamental spec-
trum. This space is also convex. Thus, any spectrum in the

intersection of SR and εF + B is a physically realizable
spectrum with the same color sensation as the fundamen-
tal spectrum. Finding a spectrum in the intersection is not
that hard. Let ε0 be the first estimate. Then, sequentially
project it onto the two convex bodies: εi+1 = PB(PR(εi)),
where PR is the projection on the set of realizable spec-
tra and PB is the projection on the set εF + B. Iterating
this sequence of projections leads to a physically realizable
spectrum with the same color sensation as the original fun-
damental spectrum. A good starting point is, of course, the
fundamental spectrum itself.

In practical applications of colorimetry, almost always
the XYZ color matching matrix is used to relate RGB color
coordinates to the human color space. Given the RGB color
coordinates cRGB , the coordinates with respect to the XYZ-
axes cXY Z are given by the linear transform [17] cXY Z =
CRGB→XY ZcRGB , where

CRGB→XY Z =

 0.412 0.357 0.180
0.213 0.715 0.072
0.019 0.119 0.950

 . (3)

The reconstructor of the fundamental spectrum given an
RGB color, thus, is:

Υ = MXY Z(MT
XY ZMXY Z)−1CRGB→XY Z . (4)

The reconstructor operator Υ is illustrated in figure 1.
This figure shows spectra graphic where negative-going
RGB values have been clipped to zero. The red/green/blue
traces show the (non-clipped, linear-light) RGB de-
vice components. Note the negative lobes, particularly of
the red channel between the 460 and 550nm part of the sim-
ulation. The blue-green part of the spectra does not
appear particularly convincing. It is clear from this fig-
ure that the basis of fundamental spectra is not physically
realizable. In real pictures of natural scenes, highly satu-
rated colors are fortunately rarely found. To make it so, we
will use the iterative algorithm discussed above and de-
fine the projector PR as the clipping operation:

PR(ε)i =
{

εi : εi > 0
0 : εi ≤ 0 (5)

and the projector on the set εF + B as:

PB(ε) = (I −ΠMXY Z
)ε + εF (6)

The basis of the fundamental spectra can be forced
to be physically realizable. For a given set of RGB
display-primaries, color science yields a 3x3 matrix
transform which maps the CIE XYZ color specifica-
tion into (linear-light) RGB values for the display de-
vice. For saturated (near monochromatic) original col-
ors, the mathematically-derived RGB values typically go



Figure 1. Construction of the fundamental spectrum: The Red, Green, and Blue curves represent the
fundamental spectra of the colors R[1 0 0],G[0 1 0], and B[0 0 1] respectively. The fundamental spec-
trum of a color c = [c1c2c3] is the weighted sum of the depicted spectra.

negative, because the color is out-of-gamut for the de-
vice.

In figure 2 the resulting based is sketched. The three vec-
tors form the columns of a new reconstructor operator Ῡ
that maps an RGB color vector to a spectrum that is physi-
cally realizable and a metamer of the fundamental spectrum
associated with that color. This reconstruction operator will
be used a later section to define an ordering on colors in-
duced by an ordering on the reconstructed spectrum.

3. Bare Bones Mathematical Morphology

Let V be a set of values and let E be the visual field.
In most imaging situations, E is the two dimensional Eu-
clidean plane. An image then is nothing more than a map
from E to V . The collection of all images will be denoted
as Fun(E, V ).

In the abstract theory on mathematical morphol-
ogy we consider the ordering of pixel values (elements
from the value set V ), the ordering of images (ele-
ments from Fun(E, V ))) and the ordering of image
operators as well. The ordering is formalized with the no-
tion of a complete lattice [5] [6].

The basic building block in a complete lattice is the par-
tial ordering relation≤, defined on a value set V . A relation
≤ is called a partial ordering in case (i) v ≤ v (reflexiv-
ity), (ii) v ≤ w and w ≤ v implies v = w (anti-symmetry)
and (iii) u ≤ v and v ≤ w implies u ≤ w (transitivity).

In case a partial ordering relation ≤ on the value set V
is defined, such that all (even the infinite) subsets of V have

a supremum (least upper bound) and an infimum (greatest
lower bound), (V,≤) is a complete lattice. We introduce the
notions of the supremum operator ∨ and the infimum oper-
ator ∧ working on subsets of V .

Within a complete lattice, we define erosion and dilation
operators (ε and δ, respectively). An erosion is any opera-
tor that distributes over the infimum (ε(∧ivi) = ∧iε(vi))
and preserves the lattice supremum. Dilation is any opera-
tor that distributes over the supremum and preserves the lat-
tice infimum. For any erosion ε we can find a unique dila-
tion δ such that ∀v, w ∈ V :

δ(w) ≤ v ⇔ w ≤ ε(v) (7)

A pair of an erosion and dilation satisfying the above re-
lation is called an adjunction. Given an adjunction (ε, δ) on
a complete lattice the following results can be easily proven
[9]:

1. εδ ≥ id and δε ≤ id (where id is the identity opera-
tor);

2. εδε = ε and δεδ = δ;

3. α = εδ is an opening (i.e. α ≤ id, α2 = α and α is
increasing;

4. γ = δε is a closing (i.e. γ ≥ id, γ2 = γ and γ is in-
creasing.

These results are central in the morphological theory. Be-
cause their proof only depends on the existence of a com-
plete lattice and an adjunction, the above properties of ero-
sions and dilations result for free once we have selected



Figure 2. Addition of an uniform amount of white across to the entire spectra, sufficient to lift all
but the red component out of the negative. This graphic looks much more believable like we have
projected real spectra onto a piece of paper.

a complete lattice an adjoint erosion and dilations for the
problem at hand. In the next section we will look at the com-
plete lattice of spectra.

The construction of morphological operators working on
images can be seen as a two step process. First look at a
complete lattice for the set of pixel values. At this stage we
are not considering images at all. The ordering ≤ compares
pixels values, i.e., elements of V . The erosions and dila-
tions defined in the pixel lattice also work on pixel values.
A common example of a pixel lattice is the set of real scalars
with the usual ordering of the real numbers. Note that there
is not just one erosion and dilation pairs in this pixel lat-
tice. In fact, an infinite number of adjunctions can be de-
fined: any pair (φ, φ−1), where φ is a bijection on V , is an
adjoint pair of erosion and dilation [10].

Once we have constructed a pixel lattice, we can lift this
algebraic structure to the set of images, being mappings
from the image domain E to the pixel lattice V . Given the
partial ordering ≤ defined in the pixel lattice, a partial or-
dering on the set of images is induced. Let f and g be two
images (i.e., f, g ∈ Fun(E, V )), then we define the order-
ing:

f ≤ g ⇔ ∀x ∈ E : f(x) ≤ g(x). (8)

We thus overload the meaning of the ordering symbol ≤
to work both on pixel values as well as images, bearing in
mind the ordering of images is induced by an ordering of
pixel values.

Within the reconstructed image latttice, we can now
build erosions and dilations in the image lattice based on

erosions and dilations in the pixel lattice. It has been proven
in [10] that every erosion ι in the image lattice can be built
as the infimum over erosions ε in the pixel lattice:

(ιf)(x) = εx,y(f(y)), (9)

where εx,y is an erosion for every pair of positions x and
y. The adjoint dilation on images is equivalently defined as
the supremum over the adjoint pixel lattice dilations. Equa-
tion 9 will be the starting point in the following section to
build erosions and dilations for color images.

4. Color Morphology

4.1. Color Ordering Schemes

The problem of ordering multivariate data is not lim-
ited to the color ordering in mathematical morphology field.
In several research fields like multi-objective optimization,
multi-sensorial fusion and so forth, the need has been arisen
to rank multivariate data. Although there is no natural
means for total ordering of multivariate data, much work
has been done to define concepts such as median, range, and
extremes for multivariate analysis [4]. Barnett [1] has inves-
tigated the possible use of incomplete ordering relations for
multi-dimensional data and has proposed four possibilities:
marginal ordering, reduced ordering, partial ordering, and
conditional ordering.

In the marginal ordering scheme, ranking takes place
within one (or more) of the marginal sets of samples (i.e.,



scalar ranking is performed for each component). Thus, to
order a collection of color vectors using marginal ordering
the components in each spectral band are ordered indepen-
dently. Morphological operations which are defined using
marginal ordering are referred to as component-wise opera-
tions. Because the component images are filtered separately
by using the marginal ordering, there is a possibility of al-
tering the spectral composition of resulted image.

In the reduced ordering scheme, each multivariate obser-
vation is reduced to a single value by a transformation func-
tion of component values. Then, the multivariate samples
are ranked according to this scalar value. In the partial or-
dering scheme, multivariate samples are grouped into some
distinct subsets such that the members of each subset have
the same ordering value. In the conditional ordering, multi-
variate vectors are conditionally ordered based on the value
of different components. One type of conditional ordering
schemes, the lexicographic ordering, has been used in many
studies for color ordering purposes. In this scheme, first, the
most significant component is chosen and multivariate or-
dering is done according to its value. Then, for those vec-
tors having the same ordering level, values of the second
most significant components are compared [2] [3].

All of the above mentioned approaches have been de-
rived from scalars defined by distances in the color space.
Different approaches can be considered, such as: map-
ping of initial data vectors (colors) into more familiar ob-
jects such as one-dimensional functions, or two dimensional
polygons.

4.2. Finding an Ordering Relation in the Spectral
Space

A color image is a mapping from a spatial domain E to
the set of color values. A color value is a three element vec-
tor of scalars. It depends on the chosen color model what
these scalars represent. A color model is a way to parame-
terize the three dimensional color space. As such the usual
parameterization, being RGB, HLS, XYZ, or CIELab, is ir-
relevant.

The difficulty in defining morphological operators that
work on color images is that an ordering relation for color
values is needed. An obvious choice is to extend the scalar
ordering to work on three vectors. Let c and c′ be two col-
ors. Then, we can define a partial ordering on the set of all
color values:

c ≤ c′ ⇔ i = 1, 2, 3 : ci ≤ c′i. (10)

Many authors [20] [21] [7] have already indicated that
such a component-wise partial ordering in a vector space
is questionable when applied to colors. The main disad-
vantage is that such an ordering is dependent on the cho-

sen color parameterization. Three dimensional color space
ows its meaning as a particular and well defined subspace
of the infinite dimensional spectral space (N -dimensional
in the vectorial model). Therefore, any plausible order-
ing of colors should be related to the orientation of color
space in spectral space to make it independent of the irrel-
evant choice of the basis vectors in spectral space of color
(sub)space.

In this section we will first look at an ordering scheme
that works on spectra, which are physical entities, largely
independent on a choice of representation. It must be noted
that order preserving scalings of both the wavelength as
well as the energy axes are the only physically plausible
change of representation. Later we will use the reconstruc-
tion of a physical plausible spectrum from the measured
color vector, to induce an ordering in color space. By con-
struction, such an ordering is independent on the chosen
color model.

A natural partial ordering in spectral space S is the
element-wise ordering. Let ε and ε′ be two spectra, then
the ordering relation ≤ is defined as:

ε ≤ ε′ ⇔ ∀i : εi ≤ ε′i. (11)

This partial ordering of spectra is known in colorimetry
and is called a dominance hierarchy [11]. The supremum
and infimum of spectra is also defined as the element-wise
supremum of the spectra and the infimum of the spectra re-
spectively.

In practice, the color is represented in the RGB color
model for practical and industrial reasons. Therefore, all we
know is the color c and not the spectrum ε. We have already
shown in section 2 that it is possible to reconstruct a physi-
cal realizable spectrum ε̂ that is in accordance with the ob-
served color c:

ε̂ = ῩMRGB
c, (12)

with ῩMRGB
the physical realizable reconstruction opera-

tor. Based on the natural ordering of spectra, we then define
an ordering on colors:

c ≤ c′ ⇔ ῩMRGB
c ≤ ῩMRGB

c′. (13)

It can be proven that the above definition of the relation
≤working on the colors is indeed a partial ordering. The re-
flexivity and transitivity properties for a partial ordering are
easily verified. The anti-symmetry property is only fulfilled
in case the projector matrix ῩMRGB

has linear independent
columns, which is indeed the case.

The supremum and infimum operators for colors are eas-
ily identified given the above ordering. The supremal color



∨ci

i of a collection of colors {ci} is the color that cor-
responds with the supremum of the reconstructed spectra
∨iῩMRGB

ci. The associated color can be found by project-
ing the spectrum again. This leads to the following defini-
tion of the supremum operator on colors:

∨
i

ci = MT
RGB(

∨
i

ῩMRGB
ci). (14)

The infimum operator is defined in a similar fashion.
There are many possible ways to define adjoint pairs of

erosions and dilations for color according to the equation 9.
The simples erosion εx,y is the flat erosion:

εx,y(c) =
{

c : x− y ∈ S
∞ : x− y 6∈ S,

(15)

where S is the structuring element defining the local
neighborhood(support) of a pixel. With this notion of the
erosion of color images, the minimal color in a neighbor-
hood of a pixel is selected (the familiar erosion being the
local minimum filter).

A more challenging choice of constructing morpholog-
ical operations working on color images is to use the idea
of first reconstructing the spectrum, then define an erosion
in spectral space and, after that, project the spectrum back
again to color space. These more challenging erosions have
not been implemented yet. A logical candidate would be
the one dimensional erosion of the spectrum using an ero-
sion working on one dimensional scalar functions.

5. Experimental Results

Experiments have been carried out with morphological
filters on a set of color images in order to investigate the re-
sults in noise removal. Figure 3 gives subjective examples
of a color opening using a flat 3x3 disk, compared to some
methods described in the literature. Figure 3(a) represents
the original image and figure 3(b) represent the same im-
age, corrupted by a scatter RGB noise, which is used for our
comparison purposes. Figure 3(c) is the result obtained by
applying the lexicographical approach, described in [3] and
[20]. Figure 3(d) and represent the result obtained by ap-
plying the solutions described in [21] and [15] respectively.
In figure 3(e), the result is obtained by the majority sort-
ing scheme [12]. Finally, figure 3(f) shows the results based
on the physically realizable ordering of spectra.

6. Conclusions and Further Research

Mathematical morphology image operators working on
color images can only be defined based on a partial order-
ing of colors. As colors are encoded as triplets, an order-
ing is not so straightforwardly formulated as it is for scalar

images. Most of the color orderings proposed in the litera-
ture are selected on a rather ad-hoc basis instead of based
on first principles.

In this paper we required that the ordering of colors be
independent of the model used to represent colors. It seems
that such a requirement is the only one compatible with a
lack of a priori knowledge: all colors are equal. To that end,
we have introduced a partial ordering of colors based on the
natural ordering of spectra. Using well-known techniques
from colorimetry we have defined an operator that recon-
structs a non-negative spectrum, given a color encoded as
a RGB triplet. The partial ordering of spectra is the point-
wise ordering of functions. In the reconstructed spectral do-
main, we cam perform erosions and dilations at the pixel
level and finally we return to the three component color rep-
resentation by projecting the spectra resulting from the mor-
phological operations on the RGB color basis.

Such an approach is evidently independent on the chosen
color model. It does however require that it is known how
to reconstruct the fundamental spectrum from a color. Color
calibration is therefore a need in the proposed approach.

Modern algebraic morphology theory provides the
framework of what is possible in constructing morphologi-
cal operators. It does not, however, help us in selecting from
several possibilities, the ones that are in accordance with ei-
ther required symmetries of our visual system or with
a priori knowledge of the imaging system. In this pa-
per we have joined the necessary tools both from the field
of colorimetry and from the field of mathematical mor-
phology to look at all possibilities to define morphological
operators that work on color images in a way that is in-
dependent of an arbitrary choice of representation. The
result of applying the proposed approach was com-
pared with that of the other morphological openings in the
literature and it was shown that our approach give better re-
sults.
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Figure 3. Illustrative results of applying a
color opening based on the methods in
the literature and our proposed approach.
According to these figures, our proposed
method gives better results.


