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Instituto de Ciências Matemáticas e de Computação - USP

CP 668, São Carlos, SP, Brazil 13560-970
daveps@gmail.com,jbatista@icmc.usp.br

Abstract

Segmentation is a crucial step in Computer Vision in
which texture plays an important role. The existence of
a large amount of methods from which texture can be
computed is, sometimes, a hurdle to overcome when it
comes to modeling solutions for texture-based segmenta-
tion. Following the excellence of the natural vision sys-
tem and its generality, this work has adopted a feature se-
lection method based on salience of synaptic connections
of a Multilayer Perceptron neural network. Unlike tradi-
tional approaches [9, 21], this paper introduces an equal-
ization scheme to salience measures which contributed to
significantly improve the selection of the most suitable fea-
tures and, hence, yield better segmentation. The proposed
method is compared with exhaustive search according to the
Jeffrey-Matusita distance criterion. Segmentation for im-
ages of natural scenes has also been provided as a probable
application of the method.

1. Introduction

Segmentation is a task performed mainly through texture
analysis [25, 1, 20, 22] for which several methods have been
developed. A large amount of methods is based on texture.

Lacking of formal definition, texture nature leads to a
great variety of features due to its inherent subjective prop-
erties [25]. While some features are mere calculations that
mainly depict the statistical relationship of a pixel and a cer-
tain neighborhood [11, 8], others are inspired by the human
visual system [6]. The latter mimics the way human per-
ceive different aspects of texture: sometimes related to a
tactile (e.g., harshness and smoothness), geometric (e.g., di-
rection and regularity) or another paradigm.

These aspects provide the basis of mathematical mod-
els, empirically or biologically motivated. Such models fol-
low a pattern recognition approach in which several texture

features are combined in order to generate classification or
segmentation. Depending on the application, some mod-
els succeed and some fail [12]. The success in discrimi-
nating texture is directly related to the number of features
employed. If in one hand, a considerable number of fea-
tures increases the generality of the model, it introduces the
problem of high dimensionality and acquisition costs of all
texture measures.

This paper proposes a bioinspired approach to feature
selection in which 71 texture features are extracted from
a window and combined into an Multilayer Perceptron
(MLP). It is bioinspired in the sense that the intelligence
within the internal connections of an MLP is used to rank
the features.

A common way to analyze the neural network connec-
tions is to compute Garson salience measure [9]. It is de-
fined over the input-output paths, by extracting feature rele-
vance from neuron weights. However, a typical problem of
this approach is that the measure is dependent on the mean
value of each feature. This work introduces a normaliza-
tion scheme, herein called Input Equalization, which han-
dles data prior to passing them to the neural network so as
to improve the efficiency of the measure for the discrimina-
tion process.

The assessment of the more relevant features, according
to salience, is achieved by comparing them with features
selected by an optimal method. Two distinct assessment
strategies have been adopted in this work: classification suc-
cess rate and quality of the feature subset. A more complex
classifier - an MLP - and a simpler classifier - a minimum
distance classifier. (MDC) [10] - have been used in the first
and second strategies, respectively.

Training was carried out with the learning algorithm
RPROP [23] for its power of generalization in the learn-
ing process and the lack of parameter adjustment that leads
to a relevant simplification of the training stage. Another
advantage of the RPROP algorithm is its aptitude for large
training data sets, like the one employed in the experiments
shown in this paper. Since batch mode training is deter-



ministic, the order of the patterns is irrelevant. They do not
compete during training [13].

This work has adopted four well-known texture extrac-
tion methods: Cooccurence matrices [11], Run Lengths [8],
1D [3] and 2D Fourier Transform [2], from which, a total
of 71 texture features have been computed by a 13x13 tem-
plate. For the sake of clarity, features will be represented,
hereafter, by a number in the range 1, . . . , 71, distributed
as follows: Run-Length(feature numbers: 1-10), first order
statistics(11-14), Coocurrence matrices (15-58), 1D (59-66)
and 2D (67-71) Fourier Transform features.

This paper is organized as follows. Section 2 gives a
brief overview on feature selection, with special attention to
the heuristic approach chosen for this work. The methodol-
ogy adopted is explained in section 3. Section 4 and 5 brings
experiments and results of the feature selection method, and
its application to segmentation, respectively. Conclusions
are finally given in section 6.

2 Feature selection

Feature selection is generally used to reduce the measure
acquisition costs and also improve the precision of the clas-
sification system [15]. Both aspects are evaluated in this
work.

2.1 Exhaustive search selection

Exhaustive search is an optimum feature selection
method. To be computationally viable, it requires a low
cost criterion and/or a low dimensionality problem. Given
n features, the total number of subsets is 2n − 1. When
the number of desired features is known, the total amount
of combinations is

(
n
m

)
(O(nm)). A broadly used criterion

is the interclass separability, like Jeffrey-Matusita (JM) dis-
tance [14], that uses the Bhattacharyya distance [7]:
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where h and k are the classes and Mi and Ci are, respec-
tively, the mean vector of the patterns and the covariance
matrix of class i.

When more than two classes are presented, the summa-
tion of the distance of all pairs is performed. Prior probabil-
ities (Pi) are then used when the pattern sets have different
sizes:

JM = 2
∑
i,j

PiPjJMi,j

The feature subset that yields the highest JM value is
the one that provides the best class separability.

2.2 Salience selection

The fact that neural networks do not make any prior as-
sumption on the nature of the data distribution has been ex-
plored by many researchers to avoid the restrictive condi-
tions of statistical methods [5].

Garson [9] proposed a salience measure that indicates
the importance of each MLP input node. His heuristic ap-
proach, which is an estimate based on the cost of all connec-
tion paths from the input to the output layer, was shown to
be computationally viable when compared with traditional
selection methods [21].

First of all, a normalization factor Nh is calculated for
each h hidden neuron. It is the sum of the absolute values
of the neuron weights wi,h (index i corresponds to the input
node number):

Nh =
∑

i

|wi,h|

Each possible path (where variable o stands for output
neurons) returns a value w∗i,h,o based on Nh and output
weights:

w∗i,h,o =
|wi,h||wh,o|

Nh

Finally, salience Si,o of input i, with respect to output
neuron o, is given by:

Si,o =
∑

o

w∗i,h,o

With the salience measure it is possible to eliminate a
feature with no knowledge on its related contribution to
classification rate. Hence, instead of training the neural net-
work several times to evaluate each feature contribution, a
single training suffices to compute a ranking in which fea-
tures with higher salience values are said to be more rele-
vant. For better accuracy, some intermediate trainings can
be performed until the end of selection process.

Salience is usually applied to reduce selection complex-
ity. For instance, for each feature removed, a training could
be performed; for n features, the complexity would be O(n)
(more specifically O(n−m), because when a m-sized sub-
set is reached, algorithm ends). This algorithm of linear
complexity is preferable to an exhaustive search. However,
there is no guarantee of optimality.

3 The proposed method

The work on salience [21] deals with a 2-class problem
only, that is, a single MLP output. This work, on the other



hand, proposes a new value STe - the total salience for each
input e:

STe =
∑

s

Se,s∑
f Sf,s

The work of Ruck et al [24], in which the influence of the
effective feature interval over salience (in that case, salience
is the derivative of output with respect to each individual in-
put) is mentioned, raised some concern on the weakness of
Garson salience when applied over irregular features such
as those described in section 1 (features of uneven levels of
mean values and/or within different numerical ranges).

It is known that when the mean value of a certain fea-
ture is high, the weights directly connected to it are likely to
possess lower values. This is due to the counterbalance per-
formed by the MLP. This trade-off is a natural characteristic
of MLP, giving equal chances to all entries, while reward-
ing the discriminating power of each feature as opposed to
their sheer numerical values. Therefore, the salience mea-
sure is directly affected, because it depends on the values
of such weights. Hence, without an appropriate treatment,
the mean value of the entries becomes a component of tradi-
tional salience measure that may jeopardize its importance
as a discriminant feature.

To work around this problem, we have opted for deal-
ing with the input data. Masters [19] suggests the centering
and scaling techniques to ease the training stage, although
he aknowledges that these techniques are not always nec-
essary. Nevertheless, in selection by salience, as will be
demonstrated later, they are essential to compensate level
differences between features. To provide all features with
the same mean value (0, 5), the new v(1) values of each
class have been shifted and scaled according to the given
formula:

v(1) =
v(0) − µ

2m
+ 0, 5

m =
{ |min − µ|, if |min − µ| > |max − µ|,

|max − µ|, if |max − µ| > |min − µ|. (1)

where µ, max and min are mean, maximum and minimum
feature values, respectively. This special normalization has
been named input equalization (IE).

In Figure 1, two out of the three curves correspond to
the salience values computed for each feature: the tradi-
tional and the proposed one. The remaining curve depicts
the mean value of each feature. Some inverse correlation
can be observed between the traditional and the mean value
curves. It is due to the signal trade-off introduced by the
MLP. The curve for the new salience, however, shows a cor-
relation with value near zero.

Another issue closely related with the performance of
the selection by salience measure is that of partial retrain-
ing. Leray and Gallinari [18] have suggested the removal of

Figure 1. New salience compared with the
original one: correlation with mean value,
originally −0, 22, changed to 0, 06 with equal-
ization. Some feature numbers are omitted.

just a single feature at a time, followed by an immediate re-
training. By doing so, correlations between features can be
identified. To speed up the selection process, the partial re-
training technique has been adopted. This practice feeds the
learning process with information from a previous training
stage so that the convergence of learning process is attained
earlier. This technique has been suggested by Laar et al.
[17, 16]. They assume that the weight values of the previ-
ous network still contain useful information for the current
network. The computational cost of such approach, accord-
ing to preliminary experiments, were 1, 4 times lower than
those obtained by an MLP in which all weights were re-
set at each iteration. The success rates with or without this
technique have been very similar.

Bringing all these suggestions together, a new system has
been implemented, as shown in Figure 2.
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Figure 2. Selection by Saliency (SS).

The feature selection and classifier training are imple-
mented separately. As a result, the selection by salience,
which is the main contribution of this work, can be assessed
isolately. Such assessment consists of comparing the pro-
posed technique with the optimal selection, according to the
interclass separability measure Jeffrey-Matusita Distance.
Therefore, an extra MLP is necessary as a classifier. Two



variations of selection by salience have been tested.

4 Experiments and results

The experiments presented in this section aims to eval-
uate the feature selection by salience, which is an heuris-
tic process, against optimal selection according to Jeffrey-
Matusita distance. Both approaches will be detailed in the
next paragraphs and will be hereafter referred to as SS and
SJM, respectively.

A variation of the SS approach has also been assessed.
It consists of interrupting the selection process after the first
iteration, so that the best salience measures would then indi-
cate the best features. It is clear, according to this approach
that the complexity of the selection process drops drasti-
cally, changing from linear O(n) to constant order O(1).
This alternative approach is referred to as SSCO. (selection
by salience of constant order).

Next, selection by salience (SS) is performed to select
the best subset of features and, for comparison purposes,
the best subsets from SJM and SSCO approaches are also
selected. To investigate the relevance of the Input Equal-
ization (IE), as explained in section 3, the best subset of SS
without IE is also computed. All approaches are evaluated
in terms of classification success and computational costs.

A Minimum Distance Classifier (MDC) was then used
to determine which subset (from SS or SJM) produced the
largest performance gain against the original feature set. Fi-
nally, SS is qualitatively assessed as a segmentation tool for
natural scenes images by visual inspection of the resulting
segmented images.

In all experiments, the criterion adopted to determine the
class to which every new pattern belonged to has been the
number of the output neuron with signal above 0, 5. In cases
where none (or more than one) output neuron was above this
value, then the class was labeled “unknown”. The process-
ing times, in seconds, correspond to the CPU occupation
period, that is, parallel processes had their times summed
up to give a more realistic idea of how much CPU has been
used by them.

4.1 The input data

A sample of 1607824 patterns has been used to create
training and testing sets. It has been computed from four
distinct natural texture images, taken from Brodatz album
[4] combined as illustrated in Figure 3. Hence, the test-
ing set is 52 times larger than the training set, demanding
a stronger generalization power from the classifier. 20416
patterns and 4 classes have been chosen so that a viable pro-
cessing time could be fulfilled.

Since the heuristic approach was also governed by this
choice, the new amount of patterns was limited to be, at

least, 5 times larger than the total of free parameters of the
neural network. This limit L has been computed as follows:

L = 5((Ne + 1)No + (No + 1)Ns)

with Ne being the number of entries, No the number of hid-
den neurons and Ns the number of output neurons. Replac-
ing by the values adopted in this work, yields:

L = 5((71 + 1)5 + (5 + 1)4) = 1920

The total number of training patterns, although small, re-
mained fully satisfactory: 20416 >> 19200.

Figure 3. Testing sample: training areas are
indicated by rectangles.

For each approach (SJM, SS and SSCO), the selected
features and the training success rate are reported. A com-
parison between the differents testing success rates is also
given.

4.2 SJM

The SJM approach indicated the best subset as the one
formed by features number 10, 12, 19 and 22, originated
from Run Length, Cooccurrence Matrices and first order
statistics. The normalized JM distance was 0, 983772, com-
puted in 8857s. Combinations which involved zero deter-
minant matrices have been discarded. It is possible to track
the evolution of the JM distance against the growth of the
feature subset (figure 4). The selection of a subset feature
size larger than 4 would make computation practically in-
feasible.



Figure 4. Jeffrey-Matusita distance: method
is computationally viable up to 4 features
(sample size = 30624).

4.3 SS

Five MLP neural networks have been initially trained
with all 71 texture features. As training errors settled 1, the
shortest salience feature was removed. When the size of the
remaining subset was reduced to 4 features, the process was
halted.

The best outcome showed a success training rate of
98, 0%. The resulting features were 12, 16, 36 and 52 (pixel
value standard deviation and Coocurrence matrices).

4.4 SS without IE

The SS without IE (Input Equalization) was performed
5 times. The best subset yielded a training error rate of
70, 8%. Cooccurrence matrices features (37, 48, 52 and 57)
were the only texture measures present in this subset.

4.5 SSCO

As said before, SSCO is a variation of the SS approach
in which salience is attained right after the first iteration of
the algorithm. The complexity is then of order O(1). An
experiment has been conducted and consisted of evaluating
on the 4-sized subset of the most salient features after the
first iteration.

In the beginning, all features were still present. That ex-
plains the 100% success training rate in the selection pro-
cess. Hence, the criterion for choosing the best subset of
features, by running the process 5 times, has been to per-
form the training step each time and choose the subset that

1interruption of training process after 100 cycles without a 1% drop (at
least) in the sum of quadratic error.

delivered the lowest possible error (4, 0%). This sort of
training is equivalent to that attained with the SS approach,
in its last iteration.

The following subset has been obtained in this experi-
ment: 7, 19, 20 and 52 (Run Length and Cooccurrence Ma-
trices).

4.6 Comparing the approaches

The data set used in feature selection stage has been the
same data set employed to train 2 each of the subsets se-
lected: SJM, SS, SS without IE and SSCO.

The average training processing time for all approaches
was 922s (with 1.776 standard deviation) and the segmen-
tation time was, in average, 4, 6s (0, 07s standard devia-
tion). Texture feature extraction took 17s for the training
set, while 840s were necessary for the testing set. Figure 5
illustrates the resulting SS-based segmentation.

Figure 5. SS-based segmentation: best re-
sult.

Table 1 describes the success testing rates and the pro-
cessing times of the four approaches. Total time is the sum
of all five selections used to chose the best subset.

Clearly, SSCO arises as the best choice among the
salience-based methods for both image and classifier used
in the experiment, since the success rate is very close to that
attained by SS (the best result), not to mention the selection
processing time which is much inferior than the others. As
for SJM approach, the addition of an extra feature to the
desired subset would make it computationally infeasible for
the exhaustive search. The addition of 10 or even 20 extra

2interruption of training process has been altered so as to happen after
1000 cycles, when a 1% drop (at least) in the sum of quadratic error is not
noticeable.



Method SJM SS SS withou IE SSCO
% success rate 86,2 (0,57) 86,6 (0,64) 71,0 (1,69) 86,4 (0,61)
selection time 8857 16548 (3672) 18882 (3641) 2052 (348)
total time 8857 82740 94410 10260
memory used 1,6GB 624MB 624MB 624MB

Table 1. Comparing all approaches: success rate for the testing set, selection time and RAM memory
used. The standard deviation is given in parenthesis and time is given is seconds.

features to the desired subset size would make SJM imprac-
ticable, even for branch and bound search [7]. On the other
hand, the computational cost for SSCO would remain the
same when features are added, whereas complexity would
even drop for SS approach: each new feature in the desired
subset size means one less iteration in the selection process.

Selection times could be shortened if one a) reduces the
number of times the process is conducted, or b) interrupts
the training stage (i.e. the retraining that occurs at each iter-
ation of the selection step) earlier. It should be pointed out
that the stop criterion adopted in this work was rather con-
servative. The SSE (Sum of Squared Error) yielded values
around 10−31 when, in fact, a value of 1, 0 would suffice
to correctly classify 99, 995% of the patterns. It is possible
that a better stop criterion be obtained other than the SSE.
Another means to cut processing times is to take advantage
of the MLP selector weights, using them as initial weight
values for the MLP classifier. This would substantially re-
duce the classifier training time, except, of course, for the
SJM approach.

Notice that the Input Equalization (IE), used in both SS
and SSCO approaches, strongly contributed to burst the suc-
cess rate of the system.

It should also be pointed out that the experiments pro-
duced very similar results. This is due to the generalization
power of the MLP network and also its ability to find com-
plex relations in data. To assess the quality of the selected
features rather than the intelligence of the classifier, an ad-
ditional experiment has been conducted.

4.7 Feature assessment by Minimum Dis-
tance Classifier

A rule of thumb in pattern recognition context is that the
better the features, the simpler the classifier can be. From
this premise, four experiments have been conducted but,
unlike the MLP outcome of the previous sections, a Min-
imum Distance Classifier has been used instead. Four fea-
ture schemes have been defined: SJM, SS, SSCO and all 71
features (table 2).

The best subset, according to the Minimum Distance
Classifier is that obtained with SS. The success rate is ap-

proximately the same as the average success rate of an MLP
classifier. Another important outcome is the Minimum Dis-
tance Classifier success rate for all features, which is very
similar to a random classification (25%). This results in-
dicates how inadequate either bad features or the high di-
mensionality can be. It also reinforces the need of a feature
selection stage in a pattern recognition system.

5 Application to segmentation

This section shows some results of the feature selection
method by salience for two natural scene images [26] in the
context of image segmentation. The training data set was
extracted from each sample image, by manual selection of
small squared regions. Each region represented a different
class. The structure employed in the previous experiments
was also adopted here, except for: a) a longer training pe-
riod in the feature selection stage (process halted after 1000
cycles when the sum of the quadratic error is not reduced in
at least 1%); b) process halted after 10 cycles in the training
stage of the two last images; c) hidden layers with size 2 for
both natural scenes.

The feature extraction process took 50 seconds and re-
mained constant in all cases. The pixels within the squared
classes of interest, for example, water, sand and sky consti-
tuted the regions from which features have been extracted.
The pixels outside these squared boxes were used as the
testing set, since they have not been used in neither the train-
ing stage nor the feature selection process.

The feature selection task consisted in running the pro-
cess three different times and choosing the shortest subset,
with training error below 2%. Hence, the size of the subset
varied throughout experiments.

Figures 6 and 7 show, respectively, the original grey level
image and its segmented counterpart for the first natural
scene. Two features have been selected (11 and 13): grey
level mean and median.

In the same manner, figures 8 and 9 are for the second
natural scene. Two features have been selected (12 and 18):
grey level standard deviation and mean value of Cooccur-
rence matrices variance for width 2.



Method SJM SS SSCO Combined schemes
% training success rate 82,0 90,6 86,6 91,2
% testing success rate 70,0 86,7 75,3 25,1

Table 2. Approaches compared with a simpler classifier: success rate for training and testing.

The selection, training and segmentation times are given
in table 3

Notice that, mainly, selected features were those from
the first order statistics. Visual inspection of such images
in fact indicates that the region grey level is, probably, the
most discriminant feature. Can be observed, as well, that
the more complex the texture the more complex the feature
(e.g the rocks from figure 8 were segmented with a Haralick
feature).

It is also possible to infer that the selection by salience
(SS) also identifies the amount of essential features, de-
pending on the complexity of the problem.

Figure 6. Natural scene 1: training data indi-
cated by a rectangle ( 17952 pixels sample).

Figure 7. Segmented natural scene 1: each
gray level represents a class. Black color
stands for unknown class.

Figure 8. Natural Scene 2: training data indi-
cated by a rectangle (15552 pixels sample).

Figure 9. Segmented natural scene 2: each
gray level represents a class. Black color
stands for unknown class.

6 Conclusions

This work explored the problem of feature selection by
means of a MLP neural network with salience measure. Dif-
ferent variations of such approach have been shown and
compared with an optimal statistical method.

One of the drawbacks of traditional statistical ap-
proaches is their complexity. Confronted with an MLP-
based exhaustive search, the proposed method not only pro-
vides the ability to reduce the amount of training from 2n to
n as it also performs partial retraining. Results have shown
that for subsets with more than 4 features (out of 71 com-
puted texture features) the proposed method is more effi-
cient than the exhaustive search based on the JM distance.

It has also been noticed that MLP-based classification
systems do not benefit completely from a feature selection
module. This is due to the fact that the MLP itself internally



Natural scene 1 2
selection time 120000 9180
training time 84 26
segmentation time 0,16 0,16

Table 3. Natural scene results: times are given in seconds. Selection time is the sum of all three
computing times.

carries out this process when all features are present. Hence,
when it comes to selecting features for an MLP, the main
advantages are a) lower costs for feature extraction and b)
drop in the overall complexity of the system. On the other
hand, for systems based on Minimum Distance Classifiers
and others of lesser complexity, the proposed feature selec-
tion approach also introduces the possibility of increasing
the success rate of the classifier.

Salience measures as originally proposed [9] and used
[21] so far, were highly correlated with the mean value of
the features. The input equalization (IE) process, intro-
duced in section 3 of this work, breaks this correlation. As
a result, a boost in feature selection/segmentation perfor-
mance has been achieved regardless the salience-based se-
lection method adopted, as shown, for example, in table 1.
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