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Abstract 
 

Functional magnetic resonance imaging (fMRI) has 
been applied with several purposes in clinical 
environment as well as in basic neuroscience studies. 

The main purpose of fMRI is to map brain activity, 
which is achieved by applying statistical methods to 
time series of each voxel intensity, related to changes 
in blood oxygen level, in response to a short stimulus. 

In this work, we propose a new method for the 
analysis of event-related fMRI based in the use of the 
Dynamic Time Warping technique to compare pixel 
intensity time series. The results show the ability to 
discriminate activated brain regions, when subjects 
were engaged in a motor task. 
 
 
1. Introduction 
 

Functional neuroimaging is rapidly evolving in 
recent years. Among many techniques capable of 
characterizing brain activity, functional Magnetic 
Resonance Imaging (fMRI) deserves special attention. 
It allows the non-invasive mapping of the human brain 
with good spatiotemporal resolution [1], which opens 
the perspective of applications from basic neuroscience 
to clinical studies. For instance, it has been useful in 
pre-surgical procedures, by determining eloquent 
cortical areas which should be kept intact during 
surgical procedure. This mapping contributes 
essentially in the evaluation, planning and secure 
issues related to the surgical action. Moreover, it opens 
a window into the human brain, unveiling certain 
aspects of its functional patterns. 

fMRI was first proposed in 1991 by Belliveau and 
colleagues [2], who demonstrated the possibility of 
mapping the primary visual cortex, by detecting 
contrast changes on magnetic resonance images (MRI). 
By then, it was used of an intravascular paramagnetic 

contrast agent. One year later, Kenneth Kwong [3] and 
Seiji Ogawa [4] proposed another contrast method, 
based on an endogenous mechanism, known as BOLD 
(Blood Oxygen Level Dependent) contrast. This 
method is based on the fact that deoxi-hemoglobin 
(dHb) and oxi-hemoglobin (OHb) have distinct 
magnetic behavior: first is paramagnetic while the 
second is diamagnetic. During brain activity, there is a 
local increase of blood flow, which is not followed by 
the same amount of oxygen consumption. Therefore, 
there is a decrease in the local concentration of dHb, 
changing, in its turn, image contrast. Unfortunately, 
such changes are not high (on the order of 3%), 
precluding direct visual inspection and demanding the 
use of computational algorithms to identify areas that 
had their contrast modulated [5]. 

In order to study brain activation with fMRI, a 
series of stimuli are presented to produce specific 
neuronal responses, which are intercalated with 
baseline periods. In the so-called event-related (ER-
fMRI) paradigm, a series of short stimulus are 
followed by a relatively long period of baseline. Brain 
regions that responded to the stimulus will have a 
hemodynamic response function (HRF) similar to the 
one shown in Figure 1. This paradigm presents several 
advantages, among the most important of which are (1) 
better temporal resolution; (2) the possibility of mixing 
different cognitive processes; (3) the possibility of 
dissociating cortical areas involved in different tasks; 
and (4) smaller contamination of cognitive artifacts.  

The analysis of fMRI time series is designed to 
identify voxels in which brightness was modulated by 
the task. One possibility is to compute a Student-t test, 
which statistically quantifies differences between 
averages of two signals, from images of active and 
baseline states. Although possible, it is highly 
susceptible to noise, once short changes in the 
resonance signal can produce spurious points in the 
resultant images. Thus, finding an efficient statistical 



technique to treat fMRI time series has gained much 
attention [6] [7]. In applications of fMRI, such as 
helping pre-surgical mapping and analysis of brain 
regions affected by some disease, it is essential to 
ensure that the applied method will not produce false 
positive finds. 
 

 
Figure 1. Hemodynamic response function 
 
Specifically concerning ER-fMRI there are some 

usual statistical analysis methods, being the simplest 
one a convolution of a gamma variate function with a 
modeled standard HRF [8]. Such approach produces 
statistical maps capable of identifying regions, which 
HRFs are similar to the reference function [9]. 
However, to use this technique, one needs to model a 
standard HRF, which is not trivial [10]. 

In the same frame of research, we herein propose a 
new deterministic method for analyzing fMRI time 
series, acquired during event-related experiments. This 

method consists of the comparison between two time 
series: the one of each pixel and a reference function.  
The result is a measure of the similarity between the 
two series [11]. Therefore, by plotting the similarity 
value obtained for each pixel from a brain slice image, 
it is possible to identify the brain regions that were 
active according to the applied stimuli. The individual 
evaluation of each pixel time series, comparing it 
directly against the stimuli behavior function with a 
suitable cut-value, assures that no false positive point 
or region will be generated due to the analysis method. 
 
2. Dynamic Time Warping 
 

Dynamic Programming [12] is a numeric technique 
for comparing vectors, consisting in the evaluation of 
all possible combinations of distance results between 
pairs of correspondent adjacent attributes, aiming at 
minimizing a parameter that represents some kind of 
"cost" function. 

The Dynamic Time Warping [13] [14] is an 
efficient technique to compare time series, based on the 
application of Dynamic Programming. Its main goal is 
to keep close series that have similar behavior, but are 
delayed or distort along the time axis. Thus, this 
technique has a good sensibility to warp. It comes from 
the fact that comparisons between corresponding 
points are not rigid, allowing that points of a series can 
be compared with adjacent ones in other series, as 
illustrated in Figure 2. 

Suppose we have two series, Q=(q1, q2, …, qn) and 
C=(c1, c2, ..., cm), with respective sizes n and m. In 
order to compare them using Dynamic Time Warping, 
a nxm matrix is built, whose (i, j) element contains the 
distance d(qi, cj). Typically, the Euclidian distance is 
used. Each element of the matrix corresponds to the 
distance between the points that it represents. 

 
 
 

Figure 2. Comparison between series: a) conventional; b) with Dynamic Time Warping 
 
 
 
 

 
 

(a) (b) 



An adjustment route W=(w1, w2, ..., wk) consists of 
a set of contiguous matrix elements that define a 
mapping between Q and C. The adjustment route is 
defined by the following rules [13]: 

 It starts at cell (1,1) and finishes at cell (n, m); 
 The sequence of the route must have adjacent 

elements of the matrix (including diagonally); 
 The sequence must not go back in the route. 

There are several possible adjustment routes. 
However, the best route is the one that minimizes the 
deformation cost, in other words, the route whose 
accumulated distance is minimal. This minimal 
accumulated distance is defined as the Warp Distance, 
shown in equation (1). 

 

( ) 









= ∑ =

K

k
k KwCQWD
1

/min,
, 

Where wk is the kth element of the adjustment route and 
K is the number of elements of the adjustment route. 

 
Warp Distance has succeeded in applications such 

as data mining, gesture recognition, robotics, speech 
processing and image processing [15]. 

 
3. Proposed Method 

 
In this work we propose a method to evaluate the 

similarity between time series derived from variation 
on pixel intensity of brain fMRI images, due to 
stimulus applied under an event-related paradigm. The 
method consists of four main steps, presented in the 
following sections. 
 
3.1. Pre-processing of Time Series 

 
The original fMRI time series consists of a badly 

behaved signal, as shown in Figure 3. Before the 
similarity comparison with the reference function, the 
series will be pre-processed as follows: 

 Noise reduction: smooth the curve, making a 
cleaner signal, to be compared with the 
reference gamma function (see Section 3.2); 

 Offset translation: medial axis of the curve is 
translated to superpose the horizontal axis, in 
order to be compatible with the reference 
gamma function; 

 Amplitude scaling: signal amplitude is modified 
to adapt it to reach a proportion between the 
axes similar to that presented by the reference 
function. 

 
 

3.2. Reference Function Determination 
 
The reference function of an impulse stimulus is 

generally modeled by a gamma variate function [10]. 
Its inference will be based on ten time series from 
representative brain regions, known a priori being 
active for the specific stimulus. This set of time series 
is then pre-processed, according to the description in 
Section 3.1. Subsequently, each series is sliced in the 
number of sequences of applied stimulus (epoch) and 
each epoch is divided in the number of time points. 
The most frequent value of each time point, 
considering all periods of the chosen pixels, is then 
identified to be one time reference point, composing a 
function that will be used as parameter to determine the 
gamma reference function period. The repetition of this 
period by the number of sequences will then compose 
the reference function. 

 
3.3. Application of Dynamic Time Warping 

 
The third step consists in applying Dynamic Time 

Warping, comparing the time series of each pixel with 
the reference function. For each time series, a distance 
matrix is built, and in each matrix the minimal cost 
path is identified, leading to the computation of the 
minimal accumulated distance, as described in Section 
2. This final distance is the value that will be used to 
plot each pixel position with a different color, 
representing the similarity of its time series with the 
reference function. 

 
3.4. Pixel Activation Mapping 

 
The final step consists in constructing a color map 

for each acquisition image slice. The colors in the map 
represent the distance between the respective pixel to 
the reference function. According to the color of the 
pixels, it will be possible to identify the active brain 
regions. 

 
4. Experiments and Results 

 
Images were generated using EPI-BOLD-like 

sequences. In this experiment, a volunteer was asked to 
move his fingers of both hands. All images were 
obtained in a scanner of 1.5 T (Siemens, Magneton 
Vision). 

Stimuli were performed for 3 sec, followed by a rest 
state of 20 sec. Meanwhile, 3 axial slices (128 x 128 
pixels), positioned over the primary motor cortex were 
continuously acquired (3 images acquired during the 
activity state and 11 during the rest state) summing up 
a set of 14 images, for a complete stimulus-rest series, 

(1)



called epoch. The complete experiment was made by a 
total of 24 epochs, for each axial slice. 

Each time series were derived from each one of the 
128x128 pixels, for each slice, consisting of 336 time 
points (24 epochs, each one with 14 time points). 
Figure 3 shows two samples of series obtained. 

The method described in Section 3 was applied on 
this result set of time series. After the pre-processing, 
the series shown in Figure 3 were modified as shown in 
Figure 4. 

Figure 3. Two times series obtained: from an active pixel (red) and from an inactive pixel (blue) 
 

 
Figure 4. Time series modified after pre-processing: active pixel (red) and inactive pixel (blue) 

 
 
 
 
The determination of the reference function was 

made from 10 pixels chosen from each of the 3 slices. 
Each time series was sliced in 24 epochs and from each 
epoch, 14 time points were identified. Then, the most 
frequent intensities for each time point were identified 
and the gamma function was parameterized according 
to these points. The resulting reference function is 
shown in Figure 5. 

 
 
 
 
 

Figure 5. Resulting epoch of reference 
function 

 



Then, every pixel time series was compared with 
the reference function by the Dynamic Time Warping 
application, generating a matrix for each slice, 
containing a distance value for each pixel. Finally, this 
matrix was plotted, generating the color pixel maps, 
and superposed to the original slice image. Figure 6 
shows the resulting maps for those 3 slices. Dark red 
color points represent the areas of highest activity, 
corresponding to the motor cortex. While the activity 

level decreases, the color gradually changes from dark 
red to dark blue. In the superposed images, only pixels 
with warp distance lower than a cut value of 0.14 were 
plotted, detaching the activity areas. 

The image time series analysis was implemented in 
Matlab (Mathworks, Sherborn, MA) software and the 
Dynamic Time Warping application was implemented 
in C++Builder (Borland, CA) environment. 
 

Figure 6. Color maps and superposed images for 3 slices 
 
 
 



5. Discussion and Conclusion 
 

The reference function, in Figure 5, reproduces the 
time course of the magnetic resonance signal, during a 
single trial experiment after a brief period of motor 
activation, in a representative pixel. As described in 
[10], the hemodynamic response peak is followed by 
an undershoot returning then to the baseline. In Figure 
4, this behavior can be clearly noticed in each epoch of 
the active pixel. 

The resulting maps, shown in Figure 6, present 
coherence with an a priori known motor activation, in 
the primary motor cortex, as well as supplementary 
motor areas. These results are also consistent with 
results of other experiments concerning motor stimuli 
[10]. 

The results from this study give support to the 
hypothesis that event-related fMRI experiments may 
be consistently analyzed by the method proposed 
herein. 

Considering that several applications of fMRI 
demand very high level of certainty about the results, 
the proposed method assures that no false positive find 
will be created, once the time series functions are 
directly compared to the reference function, and only 
the series that present a feasible adjustment to the 
reference function can be considered as representing 
active brain areas. 
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