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Abstract

In this paper we present a methodology to build a compu-
tational anatomical atlas based on the analysis of dense de-
formation fields recovered by the Morphons non-rigid reg-
istration algorithm. The anatomical atlas construction pro-
cedure is based on the minimization of the effort required to
register the whole database to a reference. The suitability
of our method is demonstrated for atlas construction of the
head and neck anatomy. In this application, CT is the most
frequently used modality for the segmentation of organs at
risk and clinical target volume. One challenge brought by
the use of CT images is the presence of important artefacts
caused by dental implants. Such artefacts make the use of
most atlas building techniques described in the literature
impracticable in this context. The results have shown that
our model is faithful for representing the shape variabil-
ity presented in human nature with the advantage that our
anatomical atlas does not have any degree of smoothness.

1. Introduction

The introduction of intensity modulated radiation ther-
apy (IMRT) into clinical practice has allowed a better con-
trol of dose distribution over tumoral areas and the reduc-
tion of normal tissues jeopardizing. An efficient application
of this technology in clinical practice raises the issues of
adequacy and accuracy of the selection and delineation of
the Clinical Target Volumes (CTVs) as well as surrounding
Organs at Risk (OAR) to be preserved. Such delineation is

typically performed by trained experts and is an extremely
time consuming task. Manual segmentation also raises the
risk of introducing intra- and inter-rater variabilities.

Atlas based segmentation is a well known paradigm to
assist the radiologist in the segmentation task. In this
paradigm, shape and intensity characteristics are encoded
in the atlas which is warped on the patient under investiga-
tion by a spatial transformation. Using this warping, vol-
umes of interest (VOI) defined in the anatomical atlas can
be projected onto the patients’ coordinate system.

Significant efforts have been directed toward the devel-
opment of templates for atlas based segmentation, mainly
for the human brain using magnetic resonance (MR) as the
main modality [13], [16], [8]. Some methods use a single
subject anatomy, as in [2], [3], [11], which can not cope
with the complexity of the image data and the variability of
the structures under study. In these cases the atlas will be
biased towards the anatomy of the chosen image.

A widely used atlas of the human brain is the MNI at-
las, that is the standard atlas template in SPM [15]. This
atlas was constructed using spatial normalization by lin-
ear registration with 9 degrees of freedom. Linear regis-
tration does not compensate for local shape differences in
the brain, which induces blurring, not only in the averaged
Magnetic Resonance (MR) template but also in the tissue
distribution maps obtained by averaging segmentations over
all subjects. This makes linear atlases not suited as a mean
shape template for brain morphometry approaches that are
based on non-rigid atlas-to-subject image registration.

What we propose here is the use of the deformation field
as the main feature to build an anatomical atlas. Atlas con-



struction based on deformation field analysis has been an
important topic of research [5], [16]. More closely related
to our work is the one in Guimond et al [5], where it is pro-
posed to build an average shape and average intensity atlas
from a set of subjects. In this work, one image is chosen as
the reference from a set of 5 magnetic resonances. An elas-
tic registration between the reference and all the subjects
in a data set is then performed. Residual and affine registra-
tions are extracted from this registration. The average shape
model is found by averaging the residual deformations. The
average of residual transformations is then applied to the av-
eraged intensity image, repeating this process until the atlas
is unbiased due to the choice of the first reference image.
They have shown convergence of the choice of the reference
image on the final atlas template after 2 iterations. However,
only five images were used for template construction; such
limited database may not be enough to assess local shape
differences or to generalize the fast convergence into an un-
biased template.

In this paper, contrary to [5], we do not perform inten-
sity average. This is mainly motivated by the fact that the
main modality in the context of head and neck radiotherapy
is CT, in which dental implants may cause metal artifacts in
the volumes, making impracticable to average intensities as
performed in most proposed methods [15]. Moreover, in-
stead of choosing one image from the database to start the
registration process and then applying the average deforma-
tion field iteratively to remove the bias caused by the choice
of the first image, we propose to find an optimal template
based on the deformation field average.

The paper is organized as follows. In the next section
we briefly describe the anatomical atlas building model and
the non-rigid registration method used called Morphons. In
section 3, numerical results are presented and a qualitative
evaluation of our method is illustrated. Finally, discussions
and conclusions are presented in Section 4, also pointing
out future work.

2. Atlas Building

The aim of anatomical atlas construction is to have an
image/volume that represents a population anatomy of the
head and neck from a database of 3D CT images, assuming
that the database is representative of the population of in-
terest. The goal of the atlas in head and neck radiotherapy
is to automatically segment the zones at risk and also the
regions with high probability of tumoral propagation in the
fatty tissues [4].

Although several methods have been proposed to cre-
ate a brain atlas, their extensions to head and neck exist
only in theory and have not been demonstrated in practice.
In fact, in our application we encountered some difficul-
ties that do not exist in brain MR images, which limits the

straight application of most proposed methods in head and
neck CT. Firstly it is prohibitive to have CT images/volumes
of normal subjects due to the nature of the exam. The other
problem is the presence of several artefacts in the database,
which makes impossible to use the same methodologies as
proposed for brain atlas building.

2.1. Registration

Registration is the process of finding a transformation
T that best matches two images according to a criterion of
similarity. One image is the reference, which remains fixed
during the registration process, while the other is deformed
in the geometric space of the reference. The reference im-
age is also called fixed or target image and the transformed
image is called the moving image.

For the atlas building, it is important to use a very accu-
rate registration methods. The non-rigid algorithm used in
this application is the Morphons algorithm. This method
was chosen based on our previous work [12], in which
we have shown with with quantitative results the capabil-
ity of this non-rigid multi-modality registration method to
segment regions of interest in head and neck CT images.
Even though all images are only CT volumes, the reason
to use a multi-modality method in this application is the
noisy database containing artefacts that may cause intensity
variations. These artefacts are being illustrated in Figure 1,
which shows slices of an axial and a sagittal view, respec-
tively, from a subject of the database.

Figure 1. Slices of an axial and a sagittal view
of one image of the Database showing metal
artefacts from dental implants.

2.2. Morphons

The Morphons method is a non-rigid registration method
using an iterative deformation scheme where the displace-
ments estimation are found from local phase difference
[17], [7]. To find local phase information, a set of quadra-



ture filters, each one sensitive to structures in a certain direc-
tion, is applied to the fixed image and the atlas respectively.
Registration with Morphons involves iterative accumulation
of a dense deformation field under the influence of certainty
measures. These certainty measures are associated with the
displacement estimates found in each iteration.

The output from filtering a signal s with one quadrature
filter q is:

q = (q ∗ s)(x) = A(x)ejφ(x)

where j =
√−1.

The phase difference between two signals after filtering
with a quadrature filter can be found according to:

q1q∗
2 = A1A2e

j∆φ(x) (1)

The phase difference is the argument of this product,
∆φ(x) = φ1(x) − φ2(x). The local displacement esti-
mate dı in a certain filter direction ı is proportional to the
local phase difference of the filter responses in that direc-
tion, dı ∝ ∆φ(x).

A displacement estimate is found for each pixel and for
each filter in the filter set. Thus, a displacement field dı is
obtained for each filter direction n̂ı. These fields are com-
bined into one displacement field by solving a least square
problem:

min
d

∑
ı

[cı(n̂
T
ı d − dı)]2 (2)

where d is the sought displacement field, n̂ is the direc-
tion of filter ı, and cı is the certainty measure (equal to the
magnitude of equation 1).

Iterative accumulation of a dense deformation field is
done under the influence of certainty measures:

d
′
a =

ca da + ck (da + dk)
ca + ck

(3)

where d
′
a indicates the updated accumulated deforma-

tion field, da is the accumulated field from the previous it-
eration and dk is the displacement estimates d derived in
the current iteration k. ca and ck are certainty estimates
associated with the accumulated deformation field and the
displacement estimates, respectively. ck is the sum of cer-
tainty values cı in equation 2 for all filter directions. ca is
found by an accumulation procedure by using the certainty
values as certainties of themselves:

c
′
a =

c2
a + c2

k

ca + ck
(4)

2.3. Atlas Model

The atlas building consists in finding a subject that rep-
resents anatomically a population. The ideal situation is to
have an unambiguous numerical criterion which indicates

that a certain image is the most representative in size/shape
of human anatomy, this image being then chosen as the At-
las.

Non-rigid registration accounts for the differences in the
coordinate systems of the two subjects due to size/shape
variation, enabling the deformation of each of the subjects
to be quantitatively and qualitatively compared. Based on
it, deformation fields will be the main feature to discrimi-
nate the best subject to be the atlas. A subject for which
the average of the deformation field is near zero, after hav-
ing all other subjects being registered into him, is the op-
timal shape template or Atlas. This is the principle of our
method, assuming that all the images in the database are
geometrically aligned. Let us now introduce formally our
methodology.

A deformation field is a function that represents a cor-
respondence between two different subjects. Let D(x, y, z)
be the deformation field for the whole image/volume, and
each point (x, y, z) in D(x, y, z) have a displacement vec-
tor associated in each of the three directions: x, y and z.
Note that it differs from d in Eq. 2, which represents the
displacement for a given pixel/voxel.

To simplify the notation, a point in the space will be de-
noted as x = (x, y, z); i and j are the indices of the subjects
in a database of N images. The displacements from subject
j to subject i in each direction x, y and z are respectively
defined as:

Dxij
(x) ∈ �m ×�n ×�p

Dyij
(x) ∈ �m ×�n ×�p

Dzij
(x) ∈ �m ×�n ×�p

where m × n × p are the image dimensions. This triplet
defines the deformation field that register subject j into sub-
ject i and represents how much a subject has to be deformed
to have the same size/shape of the other.

After all subjects j have been registered in a certain sub-
ject i, the average of all the deformation fields will be found.
The average displacements in each direction x, y and z are,
respectively:

Dxi
(x) =

1
N − 1

N∑
j=1,j �=i

Dxij(x) (5)

Dyi
(x) =

1
N − 1

N∑
j=1,j �=i

Dyij(x) (6)

Dzi
(x) =

1
N − 1

N∑
j=1,j �=i

Dzij(x) (7)

Where Di(x) = (Dxi
(x),Dyi

(x),Dzi
(x)) is the average

deformation field for the subject i.



A subject i whose average of the deformation field is
closest zero is the optimal shape template. Based on this, we
would like to measure it in a concisely manner, since Di(x)
is a very dense information. So we do that using the norm
of the magnitude, as defined in the following equations.

|Di(x)| =
√

Dxi
(x)2 + Dyi

(x)2 + Dzi
(x)2 (8)

The norm of the magnitude of the average deformation
field for each subject i is:

Di =
1

m × n × p

√√√√
m∑

x=1

n∑
y=1

p∑
z=1

|Di(x)|2 (9)

Subject i which requires the minimum average displace-
ment in the equation bellow is the optimal shape template
or Atlas:

min
i
Di (10)

The block diagram in Figure 2 illustrates the atlas build-
ing process. In this scheme, let the boxes in grey be a sub-
ject in a database of 6 images. The boxes are disposed by
their size/shape in relation to the centre image, this latter
being the most central anatomy in this database. The sub-
jects around the centre image have a varying anatomy, be-
ing smaller or bigger. Since we don’t know a priori which
image has the most representative size/shape, everyone at a
time will be the fixed image and all the 5 subjects left will
be non-rigidly registered into him.

Figure 2. Scheme that illustrates the atlas
building process. See text for details.

Based on left diagram of Figure 2, subject P1 starts be-
ing the altas candidate. The deformation field resulting from
registering image P2 into P1 will be denoted by D12, to reg-
ister image P3 into P1 will be denoted by D13, and so on.
After all images have been registered to P1, equations 5, 6

and 7 are calculated for the set of deformation fields D1j

from all registrations pairs 1j. Then the equation 9 is com-
puted for subject P1. To find an image that represents the
central anatomy between all the others in the database, each
subject at a time has to be an atlas candidate. Next, all steps
described above have to be repeated considering P2 as the
fixed image or the atlas candidate, as shown in the right
scheme of Figure 2. The subject i that gives the minimum
value in equation 10 is the Optimal Shape Template or the
Atlas.

In order to illustrate our atlas construction procedure, we
took a real image of a hand and artificially created two oth-
ers to have an enlarged and a reduced version of it. Figure
3 shows the real hand in the top, the enlarged version in the
left bottom and a reduced one in the right bottom. In the
hand experience, the enlarged hand was registered at the
original one and the norm of the deformation field was cal-
culated, providing a value of 2, 254. Then the reduced hand
was registered at the original hand and the norm of the de-
formation field was calculated, providing a value of 1, 929.
After registering both modified hands at the original one,
we calculate the average deformation field described and fi-
nally the norm of it, founding a value of 241. The norm of
the average deformation field was around 10 times smaller
than the norm of the deformation field of the enlarged hand
being registered at the original hand, and also smaller than
the norm of the deformation field of the reduced hand being
registered at the original hand. This corroborates the ex-
pected behaviour of our method, showing that our metric is
capable of finding the image with a central anatomy in the
population.

Figure 3. Database of hands. Top: original
Hand; Left Bottom: artificially enlarged hand;
Right Bottom: Artificially reduced hand.



3. Results

3.1. Database

A database of 31 patients of 3D CT images previously
segmented by a radiologist has been used to build the atlas.
The size of the CT volumes is of 256x256x128 pixels with
a voxel size of 0.9765 x 0.9765 x 2.1093 mm3. All images
in this database are male patients with the age between 50
and 70 years old.

3.2. Implementation

Before performing Morphons registration, all images in
the database have to be at same geometric space, a condi-
tion required by the atlas model. So we firstly apply a rigid
registration; the geometrically alignment is obtained by
minimizing the mutual information between the fixed and
the moving image [10] using a Simultaneous Perturbation
Stochastic Approximation(SPSA)[1]. The rigid transforma-
tion is a superposition of a 3-D rotation and a 3-D trans-
lation and the registration parameter is a six-component
vector consisting of three rotation angles and three transla-
tion distances [9]. The rigid registration is done only once,
putting all database at the same geometric space of any cho-
sen subject. The choice of this subject can be arbitrary,
because linear transformation such as the Rigid Registra-
tion preserves the anatomy of the moving image and conse-
quently it does not affect the result.

The rigid registration algorithm was performed using
ITK environment [6] and Morphons was performed using
Matlab. It has been performed in total 31 rigid registrations
and 31*30 non-rigid registrations.

For each image i being the fixed in the registration pro-
cess, we have calculated D from equation 9. Table I summa-
rizes the numerical results, the D values for all 31 patients,
showing that subject 3 was found to give the minimal value
of D = 579. Figures 4 and 7 are an axial and sagittal views
of subject 3.

To illustrate that subject 3 has indeed a central anatomy
regarding the size/shape in relation to others in the database,
we took two subjects with high values of D: patient 31 with
D31 = 2, 335 and patient 9 with D9 = 1, 823. These high
values mean that such subjects should have significant dif-
ference of anatomy to patient 3 in relation to size. In fact
they have, as we can observe in the Figures 5 and 8, which
are an axial and sagittal view of patient 31, and in Figures 6
and 9 which are an axial and sagittal view of patient 9.

4. Conclusions and Final Remarks

In this paper we have proposed a methodology to build
an anatomical atlas that represents the size/shape variability

Table 1. Numerical results for each subject
being the atlas template according to the
scheme presented in Figure 2

Patient Deformation Field Metric

1 Pat1 0.934 × 103

2 Pat2 1.744 × 103

3 Pat3 0.579 × 103

4 Pat4 0.919 × 103

5 Pat5 1.259 × 103

6 Pat6 1.129 × 103

7 Pat7 1.059 × 103

8 Pat8 3.118 × 103

9 Pat9 1.823 × 103

10 Pat10 0.776 × 103

11 Pat11 1.392 × 103

12 Pat12 1.219 × 103

13 Pat13 0.753 × 103

14 Pat14 1.257 × 103

15 Pat15 0.585 × 103

16 Pat16 1.961 × 103

17 Pat17 1.280 × 103

18 Pat18 1.210 × 103

19 Pat19 0.872 × 103

20 Pat20 1.347 × 103

21 Pat21 0.965 × 103

22 Pat22 0.790 × 103

23 Pat23 2.005 × 103

24 Pat24 1.161 × 103

25 Pat25 0.966 × 103

26 Pat26 0.869 × 103

27 Pat27 0.943 × 103

28 Pat28 0.816 × 103

29 Pat29 0.784 × 103

30 Pat30 0.794 × 103

31 Pat31 2.335 × 103

present in human anatomy based on dense deformation field
using Morphons. In our previous work we have shown that
Morphons is an effective strategy for estimating non-rigid
registration of the head and neck anatomy.

To illustrate that our atlas is representative in relation to
size/shape of the population, we have shown some slices
from the patient’s volumes. It is clear that patients with
high D value have more difference in anatomy in relation to
the others, as we have shown in this paper. The results were
also quantitatively validated by an oncologist.

Another important point to be discussed is the size of
the database that must be representative. Ideally, the size of
the population should be as large as possible. Although we



Figure 4. Axial view of patient 3.

Figure 5. Axial view of patient 31.

have used 31 subjects, it is important to emphasize that the
database we have used is from a very restricted population,
including neither child nor females, only male adults with
medium age.

Our atlas methodology could be used as a good initial-
ization for the Guimond’s method, for instance. The main
advantage of our methodology is that the chosen atlas is
the original image/volume and thus does not have any de-
gree of blurriness imposed by interpolation and iterative
process, which would impose problems in future registra-
tion when using it for atlas based segmentation. Another
potential application of the methodology presented here is
the quantitative evaluation of tumor evolution during radio-
therapy treatment, including dose adaptation. Until now, to

Figure 6. Axial view of patient 9.

our knowledge, the dose is kept unchanged over the entire
therapy even though the tumor volume decreases over time.

Finally we need to mention the computational complex-
ity of our method. The number of registrations to be com-
puted is N (N - 1). All the computations were done with
2.6 GHz processor. One registration takes approximately
17 minutes. The database consists of N = 31 images. Hence
the procedure approximately takes 240h . Although this
method is computationally intensive this does not pose any
serious problems, since our calculations are performed off-
line and all the registrations has to be done only once.

One of our future work objectives is to make a compari-
son with other approaches and a complete evaluation of our
methodology. Also, we would like to investigate the use of
a single anatomical atlas in comparison to a mean atlas un-
der a very good non-rigid registration methods. At last, we
intend to to build a statistical atlas based on [14].
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versité Catholique de Louvain, B - 1348 Louvain-la-Neuve
Belgique, August 2005.

[2] M. B. Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J. Ville-
mure, and J.-P. Thiran. Atlas-based segmentation of patho-
logical mr brain images using a model of lesion growth.
IEEE Trans. Med. Imaging, 23(10):1301–1314, 2004.

[3] B. M. Dawant, S. L. Hartmann, J.-P. Thirion, F. Maes,
D. Vandermeulen, and P. Demaerel. Automatic 3d segmen-
tation of internal structures on the head in mr images using a
combination of similarity and free form transormations: Part
i, metholody and validation on normal subjects. IEEE Trans.
Med. Imaging, 18(10):909–916, 1999.
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