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Abstract

This paper analyzes the robustness issue in three seg-
mentation approaches: the iterative relative fuzzy object ex-
traction, the watershed transforms (WT) by image foresting
transform and by minimum spanning forest. These meth-
ods need input seeds, which can be source of variability in
the segmentation result. So, the robustness of these seg-
mentation methods in relation to the input seeds is focused.
The core of each seed is defined as the region where the
seed can be moved without altering the segmentation re-
sult. We demonstrate that the core is identical for the three
methods providing that the tie-zone transform has previ-
ously been applied on these methods. Indeed, as the two WT
approaches do not return unique solution, the set of possi-
ble solutions has to be considered in a unified solution. So
does the tie-zone transform. As opposed to what we could
think, we show that the core is included in but different from
the catchment basin. We also demonstrate that the tie-zone
transforms of these WTs are always identical. Furthermore,
the framework of minimal sets of seeds, an inverse problem
of segmentation, is extended to the pixel level and related to
the cores. A new algorithm for the computation of minimal
seed sets is finally proposed.

1. Introduction

Watershed transform [5] and fuzzy connectedness [13]
are successful approaches to segment an image. Both need
seeds on the input to define the segments of interest. Seeds
can be either picked by the user or automatically selected.
The choice of seeds is however a source of variability. In-
deed, manual choice can vary depending on the user and the
moment. Automatic selection of seeds also depends of fil-
tering or other processing which generally depends on pa-
rameters. It is why we study in this paper the theoretical

problem of segmentation robustness in relation to the in-
put seeds: the characterization of the cores. The core of
each seed is defined as the region where the seed can be
moved without altering the segmentation result. As opposed
to what we could think, the core is different from the catch-
ment basin. We also analyze the inverse problem of seg-
mentation, i.e., the possible sets of seeds that correspond to
a target segmentation: the so-called minimum sets of seeds.

Three segmentation methods are focused: the iterative
relative fuzzy object extraction (IRFOE) [12], the water-
shed transform by image foresting transform (IFT-WT) [6]
and the watershed transform by minimum spanning forest
(MSF-WT) [11]. As the two WT approaches do not return
unique solution, which is contrary to the idea of robustness,
we use their respective tie-zone transforms [3] (TZ-IFT-WT
and TZ-MSF-WT) which unify the set of possible solutions.

This paper has many theoretical contributions: a gen-
eral characterization of the cores for the three segmentation
methods, the demonstration of equivalence between TZ-
IFT-WT and TZ-MSF-WT methods, the relationship be-
tween cores and non-redundant receptive regions under the
framework of minimal seed sets, and the extension of min-
imal seed sets at pixel level with a new algorithm for their
computation.

The organization of the paper is as follows. We recall the
basic definitions of the three segmentation methods based
on watershed and fuzzy connectedness in Section 2. Sec-
tion 3 deals with robustness problem: Core definitions for
IRFOE and TZ-IFT-WT are recalled in Section 3.1. Sec-
tion 3.2 demonstrates that the sets of shortest-path forests
with max-arc path cost and minimum spanning forests give
identical segmentation, then shows that the core is identical
for the three methods (IRFOE, TZ-IFT-WT and TZ-MSF-
WT). Section 4 recalls the minimal seed set framework, ex-
tends it at pixel level, relates it to cores and presents the new
algorithm.



Table 1. Table of abbreviations

IRFOE iterative relative fuzzy object extraction
WT watershed transform
IFT image foresting transform
SPF shortest path forest
SPF-max shortest path forest

using the max-arc path cost
MSF minimum spanning forest
TZ tie zone
MSS minimal seed set
NRRR non-redundant receptive region

2. Seeded segmentation methods

In this section, we briefly recall the basic definitions
of the three segmentation paradigms focused in the paper:
the watershed transform by image foresting transform (IFT-
WT), the watershed transform by minimum spanning forest
(MSF-WT), and the iterative relative fuzzy object extraction
(IRFOE).

2.1. Watershed by image foresting transform

The watershed transform (WT) is a famous and power-
ful segmentation tool in morphological image processing,
first introduced by Beucher and Lantuéjoul [4] for con-
tour detection and applied in digital image segmentation by
Beucher and Meyer [5].

Under the image foresting transform (IFT) frame-
work [6], the watershed transform is viewed as a graph opti-
mization problem: creation of a shortest-path forest (SPF).

An image is interpreted as a weighted graph G =
(V,A,w) consisting of a set V of nodes representing the
image pixels, a set A of arcs weighted by w, a function
from A to some nonnegative scalar domain. N(v) denotes
the neighborhood of node v, i.e. the set of nodes adjacent to
it. Nodes u and v are adjacent when the arc 〈u, v〉 belongs
to A. A graph (V ′, A′) is subgraph of (V,A) if V ′ ⊆ V ,
A′ ⊆ A and A′ ⊆ V ′ × V ′. A forest F of G is an acyclic
subgraph F of G. Trees are connected components of the
forest (any two nodes of a tree are connected by a path). A
path π(u, v) from node u to node v in graph (V,A,w) is a
sequence 〈u = v1, v2, . . . , vn = v〉 of nodes of V such that
∀i = 1 . . . n− 1, 〈vi, vi+1〉 ∈ A. A path is said simple if all
its nodes are different from each other. The path is trivial
when it consists of a single node 〈v〉. A path-cost function
f assigns to each path π a path cost f(π), in some totally
ordered set of cost values.

Let S ⊆ V be a set of particular nodes si called seeds.
For a given weighted graph (V,A,w) and a set S of seeds,

the image foresting transform (IFT) returns a forest SPF
of (V,A,w) such that (i) there exists for each node v ∈ V a
unique and simple path π(si, v) in SPF from a seed node
si ∈ S to v and (ii) each such path is optimum, i.e., has a
minimum cost for linking v to some seed of S, according to
the specified path-cost function f .

The watershed transform by IFT (IFT-WT) assumes that
the max-arc path-cost function fmax is used:

fmax (〈v1〉) = 0

fmax(〈v1, v2, . . . , vn〉) = max
i=1,...,n−1

{w(vi, vi+1)} (1)

where w(u, v) is the symmetric weight of arc 〈u, v〉 ∈ A,
ideally higher on the object boundaries and lower inside the
objects.

Usual arc weight functions are: w1(u, v) = |I(u) −
I(v)|, I(u) being the intensity of pixel u; w2(u, v) =
max {G(u), G(v)}, where G(u) is the (morphological) gra-
dient of image I at pixel u.

A label map L assigns to each node v the label L(v)
of the corresponding minimum-path root. The catchment
basins correspond to the (labeled) trees: CBIFT (si) =
{v ∈ V,L(v) = L(si)} . Note that the final cost map C is
unique and corresponds to the morphological superior re-
construction of the image from the seeds using a flat struc-
turing element. However, the forests and then the labelings
may be multiple.

Instead of choosing one of the many labelings, the tie-
zone concept [3] can be applied to unify the multiple solu-
tions of a WT: Regions where possible labelings differ are
put in the tie zone (TZ). In the case of IFT-WT, the tie-zone
watershed by IFT (TZ-IFT-WT), returns a unique partition
of the image made of catchment basins and tie zone:

CBTZ−IFT (si) = {v ∈ V, ∀F ∈ Φ, ∃π(si, v) in F} (2)

TZIFT = V \
⋃

i

CBTZ−IFT (si)

where Φ denotes the set of the shortest-path forests F
(IFTs).

2.2. Watershed by minimum spanning forest

Another watershed transform can be defined from the
minimum spanning forest. A minimum spanning forest
(MSF) for graph (V,A,w) is a forest (V,A∗) whose total
weight

∑
a∈A∗ w(a) (sum of the weights of its arcs) is min-

imum and where each node v ∈ V is linked to a seed si ∈ S
by a unique simple path. The watershed transform by min-
imum spanning forest (MSF-WT) introduced in [10] is ap-
plied on a weighted neighborhood graph whose nodes are
the primitive catchment basins corresponding to regional



Input graph:
[0] [2] [2] [0]

◦ 2↔• 1↔• 2↔◦
[max-arc path-cost]

arc weights

A
2↔ A

1↔ A B

(a) MSF 1 and SPF 1

A B
1↔ B

2↔ B

(b) MSF 2 and SPF 2

A
2↔ A B

2↔ B

(c) SPF 3 is not a MSF

Figure 1. A weighted graph with two seeds (◦)
and its 3 possible SPF-max and 2 MSFs.

minima of the image, and whose arcs link neighbor catch-
ment basins and are weighted by the altitude of the pass be-
tween them. In fact, the same paradigm can be applied on
graph where nodes are pixels and arcs have higher weight
between dissimilar nodes (like a gradient). The many pos-
sible MSFs on a weighted graph define partitions that are
solutions of this WT: Each tree of the MSF is a catchment
basin of the MSF-WT, and nodes can be labeled in accor-
dance with their seed label. Tie-zone transform can also
be applied to unify the multiple solutions and get a unique
labeling.

For a given weighted graph, the set of MSF-WT solu-
tions is a subset of the set of IFT-WT solutions using the
max-arc path cost.

Proposition 1 ([2]) Any minimum spanning forest (MSF) is
also a shortest-path forest (SPF-max) using max-arc path
cost fmax.

Reciprocal is false as illustrated in Fig. 1: Three SPF-
max can be built from a weighted graph and its two seeds
A and B (represented by ◦). Cutting any arc results in a
SPF-max. Yet, we must cut one of the arcs of weight 2 to
obtain MSFs of total weight 3 (cf. Fig. 1(a)(b)).

2.3. Fuzzy connectedness approach

Many approaches of segmentation by fuzzy connected-
ness have been proposed. We focus on one of them: the
iterative relative fuzzy object extraction (IRFOE) [12]. It is
shown in ref. [1] that this approach is the dual of the TZ-
IFT-WT: Fuzzy affinity µκ(u, v) (similarity measure) be-
tween nodes u and v plays the role of arc weight w(u, v);
path strength defined as the minimum affinity in the path
corresponds to the max-arc path cost; and the strength of
fuzzy connectedness µK(s, u) between two nodes (maxi-
mum strength of the paths between them) is the dual of the
optimal (minimum) path cost. The subsequent robustness
results developed in the IFT-WT framework will therefore
be valid for the IRFOE approach too.

Observe that this approach uses a unique symmetric
affinity function. If multiple asymmetric affinity functions
are used as in ref. [8], the duality with TZ-IFT-WT is no
longer valid. Such a segmentation does not respect any

global optimality criterion, but is similar to a flooding pro-
cess where optimization is only achieved temporarily at
each flooding level but not necessarily at the end of the seg-
mentation process. Although it is possible to define cores
for robustness of such a paradigm, we will not deal with it
because more complex and longer mathematical treatment
would be necessary.

3. Robustness regions for seeds

Now the three segmentation methods of interest have
been presented, the seed-relative robustness issue can be
dealt with. The problem addressed in refs. [12, 1] is to find
the cores, i.e., the regions where seeds can be moved with-
out altering the segmentation (or labeling). In other words,
the spans of the trees must be the same after moving the
seeds within the cores (trees may change). Figure 2 illus-
trates the concepts of catchment basins, tie zone, cores of
seeds, for a 4 × 8 pixel image. Figure 2(c) shows the cores
(in gray and white) where the seeds (represented by dia-
monds) may be displaced without altering the segmentation
of Fig. 2(b), i.e., a partition of the image in two catchment
basins (in gray and white) and a tie zone (in black).

In the next subsections, we recall the theoretical charac-
terization [12, 1] of the core in the case of IFT-WT and its
dual IRFOE, then, extend it to the case of MSF-WT.

3.1. Cores for the shortest-path forests and the iter-
ative relative fuzzy object

In the case of IRFOE, the core relative to a seed corre-
sponds to its relative fuzzy object (RFO) [12], i.e., the set
of pixels that have strictly higher strength of connectedness
with this seed than with any other seed:

Ks = {v ∈ V, µK(s, v) > µK(t, v), ∀t ∈ S, t �= s} (3)

The robustness property of the core was thoroughly demon-
strated in ref. [12].

By duality, the core relative to a seed for the TZ-IFT-WT
was also defined [1]: it is the set of pixels that have at least
a path from this seed with strictly lower cost than any path
from other seeds. As the cost of the minimum path from
a seed s ∈ S to any pixel v can be given by the superior
reconstruction Cs[v] of the image from this seed, the core
Ks relative to a seed s is defined by:

Ks = {v ∈ V, Cs[v] < Ct[v], ∀t ∈ S, t �= s} (4)

Note that the pixels with paths of same (non-strict) mini-
mum cost linking to different seeds do not belong to any
core. They can belong either to the tie-zone (if these paths
are optimal, i.e., for all path nodes, the cost is minimum,



(a)

(b)

(c)

Figure 2. (a) Gray-level gradient image and
seeds (diamonds). (b) Catchment basins
(gray and white) and tie-zone (black). (c)
Cores (gray and white) of the seeds (dia-
monds).

not only for the final node); or to the protected zone (com-
plement of the core in a catchment basin) of a catchment
basin.

An equivalent definition of the core uses the pass-value
concept. The pass-value of a path is equal to its high-
est arc: ε(π) = max〈p,q〉 in π {w(p, q)} = fmax(π). The
pass-value between two nodes p and q is equal to the min-
imum pass-value of the paths between them: ε(p, q) =
min∀π:p�q {ε(π)} = Cp[q]. The pass-value of a seed s
is equal to the minimum of the pass-values between s and
any other seed: ε(s) = min∀t∈S,t�=s {ε(s, t)}. The core is
then defined by:

Ks = {v ∈ V, ε(s, v) < ε(s)} (5)

3.2. Cores for the minimum spanning forests

As opposed to what one could think (p. 81, [10]), the
catchment basins defined by the MSF-WT are not robust-
ness regions. Figure 3 shows a counter-example. The MSF-
WT labeling of the graph is stable when the seed (repre-
sented by ◦) of tree A is moved within its core (cf. Fig. 3(a)-
(b): after cutting arc 2, minimum weight is 4). It does never-
theless change when seed A is moved out of its core, though
still within its initial tree (cf. Fig. 3(c): after cutting arc 3,
minimum weight is 3).

A◦ 1←→ A• 2←→B◦
�3
A•
(a)

A• 1←→ A◦ 2←→B◦
�3
A•
(b)

B• 1←→ B• 2←→B◦
�3
A◦
(c)

Figure 3. Non-robustness of the MSF when
the seed (◦) is moved within a tree.

Many MSF-WTs are sometimes possible. In this case,
we should consider a unified partition (TZ-MSF-WT) built
from these solutions by tie-zone transform. However, the
catchment basins, complement of the tie-zone, do neither
constitute a robustness region for the seed choice. Fig-
ure 4(a) shows a counter-example where two MSFs of
weight 6 can be built from a graph with two seeds A and
B. If seed A is moved out of its core, though within its
catchment basin (Fig. 4(b)), a third MSF of weight 6 is pos-
sible, which modifies the TZ-MSF.

(a)

(b)

• 2←→ ◦ 1←→ • 2←→ • 1←→ • 2←→ ◦
MSF 1 (=6) A←→ A ←→ A ←→ A ←→ A B
MSF 2 (=6) A←→ A ←→ A B ←→ B ←→ B
TZ-MSF A A A TZ TZ B

◦ 2←→ • 1←→ • 2←→ • 1←→ • 2←→ ◦
MSF 1 (=6) A←→ A ←→ A ←→ A ←→ A B
MSF 2 (=6) A←→ A ←→ A B ←→ B ←→ B
MSF 3 (=6) A B ←→ B ←→ B ←→ B ←→ B
TZ-MSF A TZ TZ TZ TZ B

Figure 4. Non-robustness of the set of MSFs
when the seed (◦) is moved within a tree.

Therefore, we demonstrate that the robustness regions
are contained in the trees and correspond to the cores
characterized by Eqs. 4 and 5. Indeed, the result of the
segmentation by TZ-MSF-WT is stable when we modify
the position of a seed within the core of its tree: It will not
change the labeling associated to the set of MSFs. To prove
it, we propose the following theorem.
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Theorem 1 Let (V,A,w) be a weighted graph, w a non-
negative weight function. Let S ⊆ V be a set of seeds. The
tie-zone transform of the minimum spanning forests is equal
to the tie-zone transform of the shortest path forests using
the max-arc path cost function fmax:

TZMSF = TZSPF−max

CBTZ−MSF (s) = CBTZ−SPF−max(s),∀s ∈ S

Consequently, if the seeds s are chosen randomly in their
respective cores Ks, the TZ-IFT-WT (TZ-SPF-max) is un-
changed, and so is the TZ-MSF-WT. Therefore the cores
for the TZ-MSF-WT method are characterized by the same
Eqs. 4 and 5.

Demonstration of Theorem 1: If p ∈ TZMSF , there are
at least two MSFs that give different labeling for p. Accord-
ing to Proposition 1, these MSFs are also IFT-WT. As there
are at least two IFT-WTs that give different labelings for p,
p ∈ TZIFT−WT . If p ∈ CBTZ−IFT−WT (s), all the IFT-
WTs give the same labeling for p. So, all the MSFs, which
are necessarily IFT-WTs, give the same labeling for p. So,
p ∈ CBTZ−MSF . So we have: TZMSF ⊆ TZIFT−WT

and CBTZ−IFT−WT (s) ⊆ CBTZ−MSF (s),∀s ∈ S.
Now we demonstrate that the IFT-WTs (or shortest path

forests with fmax, SPF-max) that are not MSFs do not affect
the tie zone of the MSFs. Note that the MSF of a weighted
graph (V,A,w) can be viewed as a minimum spanning tree
of the same graph to which a ficticious root node z was
added. Arcs of weight −1 link z to each seed. The mini-
mum spanning tree satisfies the following theorem:

Theorem 2 (Minimum spanning tree [7]) (V, T ) is a tree
of minimum weight for graph (V,A,w) if and only if for
every arc u ∈ A\T the cycle σu (such that σu ⊂ T ∪{u})
satisfies: w(u) ≥ w(v), ∀v ∈ σu (v �= u).

Let F = (V,A′) be an SPF-max of graph (V,A,w) that
is not MSF (cf. Fig. 5(a)). F is not MSF. So, considering
the derived tree (V ∪ {z} , T ) and Theorem 2, there exists
at least one arc 〈c, d〉 ∈ A\A′ such that: if this arc is added,

a cycle σcd ⊂ T ∪ {〈c, d〉} is created and w(c, d) = µ <
ε, ε = max∀u∈σcd {w(u)}. Suppose the cycle includes two
seeds s1 and s2 and 〈a, b〉 is or one of the arcs of maximum
weight in the cycle: w(a, b) = ε. Without loss of generality,
say that it is the nearest arc from s1 with such a weight, so
it is between s1 and 〈c, d〉 in F (cf. Fig. 5). We call it the
extreme pass arc for s2. The path cost C[c] at c in F is:
C[c] = fmax(π(s1, c)) = ε.

As F is an SPF-max, fmax(π(s1, c)) ≤ fmax(π(s2, c)).
So, ε ≤ max {fmax(π(s2, d)), µ}. If fmax(π(s2, d)) ≤ µ,
the previous inequality would lead to ε ≤ µ < ε, which is
impossible. Consequently, ε ≤ fmax(π(s2, d)). As ε is the
maximum weight in the cycle σcd, the path cost C[d] at d in
F is necessarily: C[d] = fmax(π(s2, d)) = ε. Hence, there
exists at least one arc 〈e, f〉 between d and s2 in F , such
that: w(e, f) = ε. Suppose that, if there are many of such
arcs, it is the nearest one from s2. We call it the extreme
pass arc for s1.

Now, let us add arc 〈c, d〉 and remove 〈e, f〉, the extreme
pass arc for s1, so as not to introduce a cycle in the for-
est. Therefore, labels of nodes d to e change: λ(s1) instead
of λ(s2) (cf. Fig. 5(b)). The total weight of the forest de-
creases by ε−µ. But path costs at nodes d to e remain equal
to ε. So, the forest remains a SPF-max.

Then, we search for other arcs 〈c, d〉 and 〈e, f〉 and make
substitution again to iteratively decrease the weight of the
forest until a minimum weight. When no more such arcs are
found, the SPF-max will have become an MSF (cf. Theo-
rem 2). Observe that the cycle σcd created may include only
one seed or even no seed. In this case, we make the same
substitution to decrease the weight of the forest, but this
does not affect the labeling.

In the case of including two seeds, suppose that at each
substitution, advantage is given to s1. So, the MSF (s1)
will show the maximum extension of s1) (cf. Fig. 5(b)).
Now, the same series of substitutions is made but giving ad-
vantage to s2, s3, . . . ∈ S to get MSF (s2),MSF (s3), . . .
(cf. Fig. 5(c)). Clearly, any labeling of node in an SPF-
max has already been proposed by some of the MSF (si)
labelings. Thus, the labelings given by the SPF-max that are
not MSFs do not affect the tie zone transform of the MSFs.
Therefore, the tie-zone transforms of SPF-max (IFT-WT)
and MSF are identical. �

4. Minimal sets of seeds

We now look at the inverse problem of segmentation by
watershed: the minimal seed set (MSS) problem. Given a
partition obtained by WT, it consists in finding the mini-
mal sets of seeds that reproduce the same segmentation by
WT. When first addressed in ref. [9], it was developed only
in the case of segmentation by MSF-WT where the graph
nodes were primitive catchment basins (i.e., resulting from



a classical watershed from regional minima). The prob-
lem is relevant and particularly interesting in the applica-
tions of video segmentation. From an initial segmentation
made by the user, it is possible to minimize the set of seeds
to recover this input segmentation (first frame). Then, we
only have to propagate this minimal set of seeds to segment
the next frames, estimating the new position of few seeds.
Thus, it decreases the dimension of the estimation problem.
Here, we extend the problem of MSS to any given partition
where each segmented region corresponds to a connected
region with differentiated label. Thus, the input partition
can vary at the pixel level precision, instead of the primi-
tive basin level. We propose an algorithm to compute the
non-redundant receptive regions in each of which at least
one pixel seed has to be selected to recover the input par-
tition. We also show the relation between the particular
regions of the MSS and WT seed robustness frameworks:
core, catchment basin, tie-zone, non-redundant receptive re-
gion, redundant receptive region, and dead zone.

4.1. Definitions

For completeness of the article, we first recall the main
definitions of ref. [9].

Let L be the aimed labeling representing a segmentation
(or partition) of the image-graph (V,A,w): each segment
or part of the partition is connected and represented by a
different label λ ∈ Λ. The frontier nodes F (λ) of a segment
λ are those nodes neighbors of other segment(s):

F (λ) = {p ∈ V,∃q ∈ N(p), L[q] �= L[p] = λ} (6)

The strength S(p) of a frontier node p is the minimum cost
of the paths that connect it to other segments, i.e. the min-
imum weight of the arcs linking to neighbors of different
label:

S(p) = min {w(p, q), q ∈ N(p), L[q] �= L[p]} (7)

The receptive region RR(p) associated to frontier node p is
the set of nodes of the same segment which are linked to p
by a path whose cost is lower than the strength of p:

RR(p) = {q ∈ V, L[q] = L[p], ∃π(p, q),
fmax(π(p, q)) < S(p)} (8)

Property 1 If the receptive regions of two frontier nodes
of a segment intersect, that of greater strength contains the
other: p, q ∈ F (λ), RR(p) ∩ RR(q) �= ∅,S(p) ≥ S(q) ⇒
RR(p) ⊇ RR(q).

A receptive region is redundant if it strictly contains another
receptive region:

RR(p) redundant ⇔ ∃q,RR(q) ⊂ RR(p) (9)

otherwise, it is said non-redundant. The dead zone DZ(λ)
of a segment λ consists of the nodes of the segment which
are in none of its receptive region:

DZ(λ) = {p ∈ V, L[p] = λ, p /∈ RR(q),∀q ∈ F (λ)} (10)

We build a minimal seed set by choosing one seed node in
each non-redundant receptive region of each segment, as-
signed by the respective label. Labeling L is thereby recov-
ered by WT from any minimal seed set. Additional seeds in
either dead zone, redundant or non-redundant regions have
no effect on segmentation, as long as they are assigned to
their respective label.

4.2. Relationship with cores and tie-zone

Looking at these definitions, we see that the minimum
seed set determination must be related to the problem of
finding cores. Indeed, they are very close problems. Both
aim to a goal partition stability. The great difference be-
tween the core robustness and the minimum seed set prob-
lems is that the former deals with the stability of the overall
tree spans (not the trees) while the latter focus on the sta-
bility of the label span. In general, many seeds (therefore,
trees) can share the same label of the target partition. In
sum, they are similar problems but their level of application
is different. Moreover, their inputs are different: for given
tree seeds, the cores are determined as the regions where
they can move while either these seeds and the receptive
regions where they can move are unknown.

In fact, we demonstrate that the core problem is implicit
in the MSS problem: Once the MSS problem has been
solved, one has to pick a seed in each non-redundant re-
ceptive region (NRRR). At that moment, the core problem
is automatically solved for all seeds: the core corresponds
to the respective NRRR.

Demonstration: Let RR(p), p ∈ F (λ) be a NRRR and
p the seed we picked to constitute part of a minimum seed
set S. From Definition 9, there does not exist q such that
RR(q) ⊂ RR(p), i.e. if ∀q ∈ F (λ), RR(p) ∩ RR(q) �= ∅,
⇒ RR(p) ⊆ RR(q). And according to Property 1, S(p) ≤
S(q)1 for such frontier nodes q. Using the pass-value defi-
nition (cf. Section 3.1) and Eq. 8, we have:

RR(p) = {v ∈ V, L[v] = L[p], ε(p, v) < S(p)} . (11)

As S(p) is the minimum weight of arcs linking to a node
of different label (cf. Eq. 7), the pass-value between seed p
and any other seed of different label s is:

ε(p, s) ≥ S(p),∀s ∈ S,L[s] �= L[p]. (12)

Consider now the seeds t ∈ S that have the same la-
bel L[t] = L[p] but do not belong to the same NRRR:

1We will take advantage of this result in our algorithm (Section 4.3).



t /∈ RR(p). Hence, ∀π(p, t), fmax(π(p, t)) ≥ S(p) (cf.
Eq. 8) and so:

ε(p, t) ≥ S(p),∀t ∈ S,L[t] = L[p]. (13)

It results from Eqs. 11, 12 and 13 that: RR(p) =
{v ∈ V, L[v] = L[p], ε(p, v) < ε(p)}, which is equiva-
lent to core Kp (cf. Eq. 5). �

If more seeds than the minimum number are chosen, the
cores, which make the spans of each individual tree stable,
do no longer correspond to the NRRRs and must be deter-
mined separately. The labeling, yet, will be stable. If just
a seed per NRRR is picked and assigned by its respective
target label, the set of NRRRs referring to a label can be
viewed as a distributed minimum core relative to the label.

Observe that there is no tie-zone in the MSS because
the target partition has only labeled regions without tie-
zone. Indeed, allowing multiple NRRRs with the same label
avoids the creation of TZ. As the TZ transform applied on
any minimal set of seeds results in the target partition with-
out tie-zone, the catchment basins (that correspond to tree
spans) are the same for MSF-WT, IFT-WT, TZ-MSF-WT
and TZ-IFT-WT (due to Theorem 1).

4.3. Algorithm

The brute force algorithm for computing the MSS would
consist in computing the receptive regions of all frontier
nodes, and their possible intersections to conserve only the
non-redundant ones. Thus, the image pixels might be pro-
cessed many times. The proposed algorithm uses two opti-
mizations so as to process each pixel at most only once, and
less when there are redundant regions or dead zone:

1. During the detection of receptive regions R(p), nodes
whose path cost is greater than or equal to strength
S(p) are not processed.

2. The receptive regions R(p) are detected in increasing
order of strength S(p).

The input graph must have symmetric arcs, the nodes
may represent either pixels or primitive catchment basins.
In lines 1 and 2, frontier pixels are detected and strengths
computed, according to Eqs. 6 and 7. Then, for each label λ,
the receptive regions R(p) are detected in increasing order
of strength S(p) (lines 3–5).

The DetectRR function (lines 7–18) has a main loop
(lines 9–17) that uses an ordered queue Q to propagate fron-
tier node index p in the nodes u whose path cost is less
than the strength of p. Note that index is propagated to the
only neighbors with same label L[u] = L[p] and which have
not already been definitively processed (line 13). Minimum
path cost is computed and updated in lines 14–17 and node
u is inserted in Q. The first optimization is made in line

15. Propagation is interrupted for the nodes with path cost
greater than the strength s of p. These nodes are neither in-
serted nor removed from Q. So, not all the nodes should be
processed, as it is the case of the nodes in the dead zones
for example.

Each node is removed at most once from queue Q (lines
10-12). Map P , initialized with value NIL, associates to
the processed (removed) node v the index of the propagated
frontier pixels p if v ∈ RR(p) (line 12). But before that,
we check if this node v has already been associated to an-
other RR(p′) (line 11). If so, the propagation loop is inter-
rupted (second optimization). It means that RR(p′) inter-
sects RR(p), and as S(p′) ≤ S(p) (increasing processing
order), RR(p) is redundant. It is not worth computing it. In
this case, p is not a frontier node that propagated its index
into an non-redundant receptive region. So, it does not be-
long to the set NRI of indices of frontier nodes resulting in
a non-redundant receptive region (line 18).

In a final step (line 6), we copy the index of the respec-
tive frontier node located in P [p] into map NR[p], when p
belongs to an NRRR. Indeed, map P contains some frontier
node indices whose propagation was interrupted.

Pseudocode 1: Non-redundant receptive region
(NRRR) detection

Inputs: - image (V, A, w) (neighborhood N derived from A);
- labeling L : V → Λ.

Output: - non-redundant receptive region map NR (returns for each
node in NRRR the index of the respective frontier
node, NIL if it is not in NRRR; initialized with NIL).

Auxiliary Data: - map P that returns for the processed nodes the index
of the propagated frontier pixels, NIL otherwise
(initialized with NIL);

- set NRI of indices of frontier nodes resulting in a non-
redundant receptive region (empty at initialization).

1. F ← Find_Frontier_Pixels(L, V, N);
2. S ← Find_Strength(F, w, N, L);
3. ∀λ ∈ Λ,
4. ∀p ∈ F and L[p] = λ, in increasing strength S(p) order,
5. P, NRI ← DetectRR(p,S(p), L, P, NRI, w, N);
6. ∀p ∈ V , if P [p] ∈ NRI , NR[p]← P [p];

DetectRR(p, s, L, P, NRI, w, N):

Auxiliary Data: empty ordered queue Q, state flag done,
cost map C, cost variable c.

7. ∀v ∈ V , done(v)← FALSE; C[v]←∞;
8. C[p]← 0; Insert(p, Q, C[p]); nobreak ← TRUE;

9. while IsEmpty(Q) = FALSE,
10. v ← RemoveMin(Q);
11. if P [v] �= NIL, nobreak ← FALSE; Break;
12. P [v]← p; done(v)← TRUE;
13. ∀u ∈ N(v), done(u) = FALSE and L[u] = L[p],
14. c← max {C[v], w(v, u)};
15. if c < C[u] and c < s,
16. if u in Q, Remove(u, Q);
17. C[u]← c; Insert(u, Q, C[u]);

18. if nobreak = TRUE, NRI ← NRI ∪ {p};



5. Conclusion

This paper analyzed the problem of robustness relative to
input seeds for three segmentation approaches: the iterative
relative fuzzy object extraction, the watershed transforms
by image foresting transform and by minimum spanning
forest. It dealt with the characterization of the seed cores
on the one hand, and with the minimal sets of seed, on the
other hand.

New theoretical results which were not intuitive nor triv-
ial were demonstrated. They allow to link around the ro-
bustness topic problems and approaches that were known as
a-priori different, like shortest-path forest, minimum span-
ning forest, fuzzy connectedness and watershed. So we
showed that the set of shortest-path forests with max-arc
path cost gives the same segmentation as the set of min-
imum spanning forests, and, therefore, that they have the
same core characterization as in the fuzzy connectedness
framework. The equivalence between cores of a minimal
seed set and non-redundant receptive regions was proved
too. Moreover, a new algorithm was proposed for the com-
putation of minimal seed sets at pixel level.

We hope these theoretical results will contribute to the
understanding and evaluation of segmentation robustness.
Robustness measures based on core area and distribution
could be useful to prevent not very repeatable segmentation
results, or evaluate the effect of a prefiltering stage. The
visualization of minimum seed sets, redundant receptive re-
gions and dead zones could help the user with interactive
segmentation routines. For example, he/she could select
only the satisfactory regions of a first segmentation, and
compute the minimal seed sets, which could guide him/her
for a refined segmentation by showing that it is or not worth
picking seeds with some label in some region.
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