
Message in a Bottle: Stylized Rendering of Sand Movies

Laurindo S. Britto Neto, Bruno M. Carvalho ∗

Departamento de Informática e Matemática Aplicada - UFRN

Campus Universitário, S/N, Lagoa Nova, Natal, RN, 59.072-970 - Brazil

laurindobneto@gmail.com, bruno_m_carvalho@yahoo.com

Abstract

Stylized rendering, usually referred as non-pho-

torealistic rendering, aims to reproduce artistic techniques

in renderings, trying to express feelings and moods on the

rendered scenes, as opposed to realistic rendering tech-

niques, that aim to produce realistic renderings of artificial

scenes. In this paper, we present a stylized rendering tech-

nique that aims to create synthetic sand-filled bottles, sim-

ulating a typical art craft from the Northeastern region of

Brazil, that usually depicts landscape images. A method for

generating 2D procedural sand textures is presented, and

two new techniques that mimic effects created by the artists

using their tools are introduced. The technique is also used

to generate stylized videos, something close to impossible in

real life with this technique. The temporal coherence within

these stylized videos can be enforced on individual objects

with the aid of a video segmentation algorithm. The tech-

niques were used on synthetic and real videos, and several

snapshots from these videos are shown here.

1 Introduction

Non-Photorealisitc Rendering (NPR) is a class of tech-

niques defined by what they do not aim, the realistic ren-

dering of artificial scenes. Recently, several authors have

adopted the term stylized rendering, defining this class of

techniques in a non-negative manner. The main idea be-

hind stylized rendering is the simulation, in computer gen-

erated renderings, artistic techniques. Characteristic ef-

fects of such artistic techniques can have a great impact

in expressing feelings and emphasizing some information

on the rendered scenes. Stylized rendering can also be de-

fined by their input and output, as the processing of im-

ages and videos into artwork that can have the visual ap-

peal of traditional pieces of art, expressing the visual and

emotional characteristics of artistic styles (e.g., through the

∗This work was supported by CNPq Grant PDPG-TI 506555/04-6.

strength, width, and shape of brush strokes). There are sev-

eral methods reported in the literature that simulate some

artistic style, such as watercolor [2], mosaics [1], impres-

sionist style painting [11, 13] and cartoon [16]. The use of

stylized renderings for processing videos was first proposed

in [11].

Animation techniques can show some information in a

way that cannot be done by simply shooting a real scene

with a video camera. The problem with such techniques is

that they are usually very labor intensive. Moreover, to be

properly used, these techniques require a significant amount

of artistic skill. On the other hand, stylized rendering tech-

niques can be used to generate highly abstracted animations

with little user intervention. This allows non-artist users to

create their own animations with little effort, when com-

pared to traditional animations, where they had to be cre-

ated from scratch. The processing of videos with stylized

rendering techniques is sometimes referred to as video styl-

ization, and can be applied to the whole video or used to mix

real movies with stylized objects, as a means to emphasize

them.

It is very important that the stylized video produced,

from an artificial 3D scene or a real video, exhibit tempo-

ral coherence of the elements (brush strokes, curves, cir-

cles, etc.) used in the renderings. In stylized renderings

of 3D modeled scenes, not moving the elements with the

surfaces being drawn can make the animation appear as it

is seen through a textured glass, the so called shower door

effect [13]. The lack of temporal coherence in styled render-

ings of videos can produce distracting flickering, also called

swimming [6], and it is produced when moving objects are

rendered with elements that do not follow the object cor-

rectly or when static areas are rendered differently in adja-

cent frames, usually due to noise or changes in shadowing

or illumination.

There are several approaches that try to impose tempo-

ral coherence in video stylization. In [11], the information

of an optical flow [7] method was used to track movement

in the video, and move, add or remove brush strokes from

frame to frame. An approach for coherent rendering of

1



static areas in successive frames was proposed in [10], by

keeping the brush strokes of areas not detected as changed,

based on some threshold. Intra-object temporal coherence

is obtained by warping the brush stroke’s control points us-

ing the output of an optical flow method. In [16], the authors

propose to maintain temporal coherence on a cartoon ani-

mation by the use of a segmentation algorithm to segment

objects from a video shot in a end-to-end manner, followed

by the user selection of constraint points on keyframes of

the video shot. These points are then used for interpolat-

ing the region boundaries between frames. The video is

also treated as a 3D volume in the method proposed by [6],

and temporally convex segmented objects are associated in

semantic regions, which have time-coherent basis vectors

associated to them to enforce temporal coherence.

In the stylized rendering technique presented here, the

lack of temporal coherence in some animation is not as no-

ticeable as when drawing in other artistic styles, such as im-

pressionism. This is due to the nature of the material used,

since simulating sand implies in some randomness being

present in the images. Thus, we can tolerate changes in col-

ors or positions of sand grains, since they usually do not af-

fect the overall appearance of the animation. However, this

changes can be distracting if they are too big and too com-

mon. To avoid that, we propose a technique for restricting

the amount of change in color of the grain sands, based on

several thresholds that are defined by the user.

2 Sand Bottles

The creation of landscape pictures in sand filled bottles is

a type of art developed in the last century by coastal crafts-

man families in the northeast of Brazil, mainly in the states

of Rio Grande do Norte and Ceará. In the coast of these

states, there are sands with several colors and shades, that

can be found in beaches and dunes. An example of a typical

sand filled bottle produced using this technique can be seen

in Figure 1.

Figure 1. Sand filled bottle.

To create an image inside a bottle, such as the one shown

on Figure 1, the artist pours sand of different colors inside

an empty, transparent bottle, and, using an iron tool with

one thin sharp end and another flat end (Figure 2), moves

the sand to create shapes on the inner surface of the bottle.

The drawing of an object is done first by roughly delineating

the borders of the object, i.e., removing excess sand, using

the flat end of the tool. Then, the shape of the object is

refined by the artist using the thin end of the tool. After that,

some sand from surrounding objects can be moved inside

the object to create some effect. For example, when drawing

a house, the artist first composes the visible walls with the

sand, pours sand with a different color for the doors and

windows on top of the wall’s sand, and them makes way

in the wall’s sand with the flat end of the tool for the door

and window sand to be placed in front of the wall’s sand.

Finally, the artist pours some sand for the roof and arranges

it to finish the house. A variation of this type of craft is

the creation of pictures between two flat pieces of glass,

producing a “painting” that can be laid on a flat surface.

(a) (b)

Figure 2. The flat (a) and the sharp (b) ends
of the tool used by the artists to compose the

pictures inside the bottles.

Because of environmental reasons, the artists are not al-

lowed to use natural sand anymore. The coastal areas where

the colored sands were extracted are now tourism attractions

and protected by law. Thus, artists now have to use artifi-

cial sand, that not only proved to be easier to manipulate,

but also can be found in bright shades of blue, green, purple

and other colors that were not available in nature.

3 Sand Style Rendering

The simulation of such images using stylized rendering

also opens the possibility of producing something that is

close to impossible in real life, the creation of animations

and videos with the artistic technique described above. To

do this, an artist would have to create a series of bottles or

“paintings”, as described above, with the same background,

and some moving objects. It is easy to see that doing this

would be extremely hard, and that the animation would have

2



Figure 3. Rendering pipeline of our technique.

to be very limited to allow the creation of such sequence.

We now proceed to describe our technique to generate

sand style rendered images and videos, from the generation

of procedural sand textures and the pixel color selection, to

two effects developed to mimic the artists techniques. The

whole process of generating sand style rendered images is

performed with the aid of graphical interfaces, in the order

of the pipeline shown in Figure 3, which takes as input an

image or a video. The dotted boxes in Figure 3 represent

optional steps in the process (the animating effects step can

only appear if some sand effect is present) while the dotted

input line represents an optional input to the pipeline.

3.1 Procedural Sand Textures

Procedural texture generation is a very popular technique

for simulating natural materials. For example, Perlin noise

[14] has been used to procedurally generate 3D textures

simulating marble, rock, and wood [8]. In our case, noise

functions are used to generated 2D textures, since we are

dealing with an image that will be placed on the inside of

a bottle model and all the interaction used to simulate the

artist’s strokes will take place on the “surface” of the sand

object.

Now we describe the method used to generate the sand

textures, first introduced in [4]. In order to generate proper

textures for representing the artificial sand used in making

these bottles, we photographed samples of sand of several

colors used by the artists. The images were then analyzed

in the HSV space in order to determine the distribution that

best describe them. The histograms of the photographed

sand samples were found to be approximated with a reason-

able accuracy by Gaussian distributions, by using

P (x) =
1

σ
√

2π
e

−(x−µ)2

2σ2 , (1)

where the mean µ and the standard deviation σ for the pri-

mary sand colors were determined from the sand samples,

as well as defined by us to create new primary sand colors.

We then generate sand primary color textures at least every

30◦ in the hue space ([0◦, 360◦]) with the same size as the

input image, and store them in texture memory. For reasons

that will become clear in a moment, we also generate white,

black and gray sand textures.

3.2 Rendering Sand

When rendering an image, we compute, for every pixel

location, the correspondent primary sand texture to which

the pixel belongs, and draw the texture value stored on that

location on the frame buffer. However, there are some spe-

cial cases that have to be treated differently. For example, if

the value channel (V of the HSV model) of the input image

is close to 0 (smaller than a user defined threshold), we use

the black sand texture. Another threshold has to be set for

the saturation (S) channel, to treat the cases where the input

color can be approximated by a gray value.

If a color is located between two primary sand colors in

the hue (H) space, we calculate a mixture of the two clos-

est primaries in this space that matches its hue, and draw a

pseudo-random number that will determine the sand texture

from which the pixel value will be retrieved. For example, if

the color of the pixel under examination is formed by 30%
green and 70% cyan, a pseudo-random number smaller than

0.3 (in the range [0, 1]) will assign to the rendered pixel a

value fetched from the green texture, while a value bigger

than 0.3 will assign to the rendered pixel a value fetched

from the cyan texture. However, the mixing of two textures

can be controlled by an upper and a lower thresholds, as

explained in Section 3.2.1.

Before rendering the whole video, usually we select a

frame from it and use it to set up the parameters and colors

used with the aid of a graphical interface. the user can also

select the rendering method, per pixel or per object render-

ing. All the used pseudo-random values can be generated

upfront and stored in texture memory, so the whole process

can be done by pixel shaders.

3



3.2.1 Per Pixel Rendering

In the method of per pixel rendering, for every pixel in

the input image, we access the correspondent sand texture,

based on its input value, and write the texture value in the

correspondent position in the frame buffer. However, first

we have to treat some special cases. In the HSV model,

when the value of the channel V is 0, the values of the chan-

nels H and S are undefined, and the correspondent pixel is

black. Similarly, when the value of the channel S is 0, H

is undefined, and the color of the pixel is defined as gray,

with the intensity of the gray being defined by the value of

the channel V. Thus, based on specified thresholds that can

be changed by the user, we test if the value of the channel

V of a pixel is below a lower threshold, and if it is, we ren-

der it using the black texture. Similarly, if the value of the

channel S is below a specified threshold, we use the gray

texture, probably mixed with the white or black textures to

render the point.

The mixing between two textures is performed using

pseudo-random numbers, as described above, and lower and

upper limits for mixtures can be set by the user. For exam-

ple, if we are mixing the textures A and B with the lower and

upper mixture values of 30% and 70%, and the value of the

H channel of the pixel being processed can be represented

by a mixture of 40% of A and 60% of B, then a pseudo-

random number is drawn and used to select the texture to

be accessed. If the amount of the primary color B needed to

represent the pixel color is below 30% or above 70%, then

the pixel value would be solely extracted from the textures

A and B, respectively. Setting the lower and upper limits to

the same value would prevent sand mixtures.

A problem of temporal incoherence arises when we mix-

ture two or three textures. Due to the random nature of

the choice described above, pixels may have their values

change significantly, since they may come from different

textures, and thus, generate sequences with unwanted flick-

ering. We solve this problem by dynamically storing mixed

textures in texture memory, and accessing them if a pixel

value is unchanged. Another potential problem is that alias-

ing can occur if the camera is positioned too close to the

bottle, rendering little squared sand grains. This problem

can be solved by not allowing the camera to come too close

to the bottle or by defining a larger maximum size for the

rendered images and using mipmaps according to the dis-

tance camera to bottle.

3.2.2 Per Object Rendering

In the method of per object rendering, an object is rendered

using one or more textures according to the averages of its

HSV channels. As in the previous method, lower and up-

per limits can be set to control the mixture of the textures.

In this case, setting the lower and upper limits to the same

value would produce an image similar to a cartoon render-

ing (with the shades coming from the different segmented

objects), but with the variations of the sand textures.

To perform the segmentation of objects in a video se-

quence, we use the fast fuzzy segmentation algorithm de-

scribed in [5], based on the works presented in [9, 3]. This

method computes, for each pixel in the video sequence, a

grade of membership (between 0 and 1) to all objects, with

the object with highest grade of membership to this pixel

claiming it. The algorithm is a region growing segmentation

method, and the number of objects is selected by the user, as

well as seed pixels, that identify with certainty pixels which

belong to the objects of interest. The regions grow based on

the values of fuzzy affinity functions, that are calculated us-

ing statistics collected on the areas surrounding the selected

seed pixels for the objects. The video is treated as a 3D vol-

ume, so occlusions and objects appearing and disappearing

are handled without problems. In order to achieve better

segmentation of moving objects, we adapted the segmen-

tation method described in [5] to incorporate motion infor-

mation from a dense optical flow map in the fuzzy affinity

functions. The dense optical flow map is calculated using a

multi-resolution version of the algorithm presented in [15],

developed for performing the experiments of [12].

4 Simulating Sand Stroke Effects

After pouring sand inside the bottle and delineating ob-

jects, the artist can create some effects in the picture through

strokes of the tool. It is important to simulate them in the

stylized video if the intent of the user is to produce some

image or animation that resembles the type of pictures seen

on the original sand filled bottles. We now proceed to de-

scribe how these effects are made by the artist and how we

simulate them.

4.1 Height and Depth Effect

The first effect created by the artist was named by us

as the height and depth effect, since it can express a rough

sensation of varying height and/or depth in the composed

picture. An example of such effect can be seen on Figure

4. To create such effect, the artist drags sand of a different

color from the center of the bottle to the inner surface of the

bottle, using the flat end of the tool (see Figure 2(a)), and

changing the angle it makes with the vertical axis, to drag

more or less sand. We defined 0◦ as when the tool drags

more sand, i.e., when the flat end of the tool faces the inside

of the glass bottle with maximum width, and 90◦ when the

flat end of the tool faces the inside of the glass bottle with

minimum width.

To simulate this effect in the images produced by the

stylized rendering method proposed here, we included con-

4



(a) (b) (c) (d)

Figure 5. Example of the application of the simulated height and depth effect, where we can see the

original Image (a), mask (b), simulated effect with α = 20◦ (c) and α = 40◦ (d).

Figure 4. Example of the height and depth ef-
fect. The curves drawn by the artist using a

different sand give a rough sensation of vary-

ing height and depth in the object.

trols in the graphical tool developed to change the approach

angle of the flat end of the tool as it hits the inner glass wall.

(This angle refers to the rotation around the vertical axis.)

Besides choosing the tool approach angle, the user has also

to select the color of the sand that will be “dragged” in front

of the original sand, and indicate where he/she wants the

effect to be applied. Thus, basic drawing tools were also

added to the graphical tool.

After the user draws the areas (mask) where the effect

will be applied, selects the sand texture that will be used

in the effect, and the angle of approach of the tool, a dis-

tance map of the mask is computed and its highest value

stored. The distance map is then used to determine if the

selected sand will replace the sand currently in place or not,

according to a Gaussian distribution with mean 0 and stan-

dard deviation given by the equation

σ =

{

σmin, if 1 −
α

αmax

< t,

σmax

(

1 −
α

αmax

)

, otherwise,
(2)

where α and αmax are the angle the tool is making with

the inner surface of the bottle and the maximum angle al-

lowed for the tool (90◦), respectively, t is a threshold set

to limit the smallest standard deviation value, and σmax

and σmin are the maximum and minimum standard devi-

ation values allowed, respectively. The value σmax for a

mask was set as the highest value in the distance map of the

mask. Then, based on the distance map value of a pixel, a

probability from the Gaussian distribution is fetched and a

pseudo-random number drawn to determine if the pixel will

be replaced by a pixel from the sand texture being applied

in the effect or will remain with the value of the sand tex-

ture assigned before applying this effect. An example of

applying this effect can be seen in Figure 5.

4.2 Vegetation Effect

The second effect created by the artist and simulated

here was named the vegetation effect, consisting of high fre-

quency features aimed to represent vegetation an done with

the sharp end of the tool used by the artist. An example of

this effect can be seen in Figure 6.

Figure 6. Example of the vegetation effect
(green object).

To simulate this effect, the user draws, with the aid of

the graphical interface, two lines to delineate the varying

height of the simulated vegetation, and specifies the min-

imum (min) and maximum (max) widths of the bottom

of the vegetation to be rendered. The value min is also

used as the maximum width of the top of the vegetation.

The algorithm then scans the lines looking for the first col-

umn in which both appear, and starts to draw quadrilater-

als whose base lengths are determined by random numbers

in the range [min, max] and whose top lengths are deter-

mined by random numbers in the range [1, min], according

to uniform distributions, until the last column in common

is reached. The heights are determined by the drawn upper

5



(a) (b) (c) (d)

Figure 7. Original (a) and complimentary masks (b) applied to the original image (c) to generate the

vegetation effect seen in (d).

(a) (b) (c)

Figure 8. Three frames of the animation of an effect.

line, and the top portions of the quadrilaterals are clipped to

the drawn upper line. The generated mask (Figure 7(a)) is

inverted to generate is complimentary mask (Figure 7(b)).

After the masks are generated, we compute a modified

distance map for each mask are calculated, in a similar man-

ner to the distance masks used in the height and depth ef-

fect, but with one difference. For each triangle, after the

standard distance map is calculated, we search in the cen-

tral column of the triangle for the point where the distance

map has maximum value. Connecting this point to the two

triangle base vertexes we create another triangle. The val-

ues of the distance map for this triangle are then replaced

by the maximum value of the distance map. This is done

to limit the effect of sand mixing to the vertical borders of

the triangles, leaving the area on the base of the triangles

intact. The rendering of this effect is then performed for

both masks, allowing the two sand textures to switch pix-

els, with highest probabilities when they are closer to the

triangle borders than when they are farther away.(The dark

green on the sand rendering of Figure 7(d) appears darker

than the green in the correspondent areas of the original im-

age shown on Figure 7(c) because the color of the sand pri-

mary used in Figure 7(d) is the closest one in hue space to

the color of the original image.)

4.3 Animating the Effects

In order to allow such effects to be used in parts of videos

in a non-static manner, we implemented a simple mecha-

nism that allows the user to include animations of these ef-

fects. The user defines the initial and final frames of the

video where the sequence will appear, selects the function

(linear or sigmoid) that will turn the effect on and off, and

a slope factor (that will tell us how fast the effect will ap-

pear/disappear). Based on the function and slope factor cho-

sen, the values stored in the distance maps (modified dis-

tance maps, in the case of vegetation effects) will be multi-

plied by a factor (between 0 and 1) before the rendering of

the effect is performed. Figure 8 shows three frames of an

animation created using this method.

5 Experiments

Now we describe some experiments we performed to

show how our techniques work. In Figure 9, we can see

four frames of two animations on sand filled bottles, where

the images composing these animations resemble the type

of scenes usually depicted by the artists. We used a bot-

tle model similar to the ones used by the artists, but any

container model could be used. However, one has to be

careful in choosing the model, since details in the models

can lead to significant distortions in the rendered images

due to refraction calculated when rendering the glass. If

we want to generate a sand-style rendered animation from

a real video to produce an animation with images similar to

the images produced by the artists, we have to blur the in-

put image/video frames, creating an abstracted version of it,

thus, eliminating small details that would not have been cap-

tured by the artist, in a similar way to the approach proposed

in [2] for producing watercolor images from photographs.

If we want to limit the colors used to render an object,

we use the per object method. An example of its usage can

be seen in Figure 10. Figure 10(b) shows the segmentation

map for the original frame shown in 10(a), where the hue

6



(a) (b)

(c) (d)

Figure 9. Four frames of two different animations showing the result of applying the bottle sand
rendering techniques.

indicates to which object a pixel belongs, and the intensity

(mapped from the grade of membership, in the range [0,1])

reflects the confidence that the segmentation algorithm has

in this assignment. Figure 10(c) shows a per pixel rendering

of the frame, while Figure 10(d) was generated using the

map shown in 10(b) to restrict the textures used to render

the pixels belonging to the blue object (belly and knees) to

the green sand texture. This example also shows how the

per pixel rendering maintains some small details inside the

frog’s body, such as the eyes, nose and part of the mouth.

In order to do that in the per object rendering, extra objects

would have to be added in the segmentation step. The per

object rendering, on the other hand, can be used to maintain

the appearance of whole structures, and enforce a certain

level of temporal coherence.

6 Conclusion

In this paper we presented a stylized rendering technique

that simulates a typical art craft from the Northeastern re-

gion of Brazil, that uses colored sand to compose landscape

images on the inner surface of glass bottles. A method for

generating 2D procedural sand textures, initially presented

in [4] is described, and two new techniques that mimic ef-

fects created by the artists inside these sand filled bottles

using their tools are introduced.

The techniques described here are also used to generate

stylized videos, something close to impossible in real life

with this technique. We employed a fast fuzzy segmentation

algorithm to segment videos as 3D volumes, thus, allowing

the segmentation algorithm to deal with occlusion and non-

temporally convex objects. The temporal coherence within

these stylized videos is enforced on individual objects with

the segmentation result, by constraining the sand textures

used in some objects.

The techniques described here were used on synthetic

and real videos, and several snapshots from these videos are

shown here, as flat images, as they would appear in a sand-

box, or inside a sand bottle, as they would appear if made by

an artist skilled in this craft. Future work will include gen-

7



(a) (b)

(c) (d)

Figure 10. A frame of the Frog sequence (a), its segmentation map (b), a per pixel rendering (c), and
the frame with the blue object of (b) rendered using only the green sand texture (d).

erating 2 1

2
D animations, where object movements could be

represented as vertical displacements of sand grains on the

sandbox plane.

References

[1] G. D. Blasi and G. Gallo. Artificial mosaics. The Vis. Comp.,

21:373–383, 2005.

[2] A. Bousseau, M. Kaplan, J. Thollot, and F. Sillion. Inter-

active color rendering with temporal coherence and abstrac-

tion. In Proc. of NPAR’06, volume 1, pages 141–149, 2006.

[3] B. Carvaho, G. Herman, and T. Kong. Simultaneous

fuzzy segmentation of multiple objects. Discr. Appl. Math.,

151:55–77, 2005.

[4] B. Carvalho, L. B. Neto, and L. Oliveira. Bottled sand

movies. In Proc. of CGIV’06, pages 402–407, Los Alamitos,

CA, USA, 2006. IEEE Computer Society.

[5] B. Carvalho, L. Oliveira, and G. Silva. Fuzzy segmentation

of color video shots. In Proc. of DGCI’06, volume 4245,

pages 402–407, London, 2006. Springer-Verlag.

[6] J. Collomosse, D. Rowntree, and P. Hall. Stroke surfaces:

Temporally coherent artistic animations from video. IEEE

Trans. Vis. and Comp. Graph., 11:540–549, 2005.

[7] E. Davies. Machine Vision: Theory, Algorithms, Practicali-

ties, 2nd Ed. Academic Press, London, 1996.

[8] D. Ebert, F. Musgrave, D. Peachey, K. Perlin, and S. Wor-

ley. Texture and Modeling: A Procedural Approach. 2nd Ed.

Morgan Kaufmann, San Francisco, 2003.

[9] G. Herman and B. Carvalho. Multiseeded segmentation us-

ing fuzzy connectedness. IEEE Trans. Patt. Anal. Mach. In-

tell., 23:460–474, 2001.

[10] A. Hertzmann and K. Perlin. Painterly rendering for video

and interaction. In Proc. of NPAR00, pages 7–12, 2000.

[11] P. Litwinowicz. Processing images and video for an im-

pressionist effect. In Proc. of ACM SIGGRAPH’97, pages

407–414, 1997.

[12] B. McCane, K. Novins, D. Crannitch, and B. Galvin. On

benchmarking optical flow. Comp. Vis. and Image Underst.,

84:126–143, 2001.

[13] B. Meier. Painterly rendering for animation. In Proc. of

ACM SIGGRAPH’96, pages 477–484, 1996.

[14] K. Perlin. Improving noise. ACM Trans. on Graph., 21:681–

682, 2002.

[15] M. Proesmans, L. Gool, E. Pauwels, and A. Oosterlinck. De-

termination of optical flow and its discontinuities using non-

linear diffusion. In Proc. of the 3rd ECCV, volume 2, pages

295–304, 1994.

[16] J. Wang, Y. Xu, H.-Y. Shum, and M. Cohen. Video tooning.

ACM Trans. on Graph., 23:574–583, 2004.

8


