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Abstract

Visualizations are highly valuable in improving the un-
derstanding, as well as the analysis of a variety of physi-
cal phenomena. Two such applications can be as a peda-
gogical tool for enhanced perception of complex topics, or
as an everyday aid that helps engineers interpret the out-
come of simulations. In this paper we try to meet both
these objectives and propose a novel approach to three-
dimensionally visualize time-varying electromagnetic fields
and show how this can be applied to improve the under-
standing of propagating radio waves used in wireless com-
munication networks. To obtain this, we use a numerical
version of Maxwell’s equations to create snapshots of a
propagating electromagnetic field. In this manner we are
able to not only, intuitively get a better general understand-
ing of radio waves, but also disclose important phenomena
such as diffraction, reflection, attenuation and multipath be-
havior.

1. Introduction

The ability for scientists and engineers to visualize phys-
ical phenomena is of utmost importance for correct under-
standing and analysis. Even more, visualizations have been
found to be a valuable complementary pedagogical tool in
teaching all sorts of topics such as oceanography [10] or
chemistry [11], [1]. For instance, by supplying a group of
students with a software for visualizing and animating elec-
tromagnetic phenomena, significantly higher understand-
ing was achieved as opposed to a reference group that was
taught in a traditional lecture format [2].

In the telecoms and datacoms industries, and especially
in the area of wireless networks, there is a great demand
for simulations in order to optimize performance and antici-
pate erroneous constructions of the costly networks. Several

methods exist for planning a network, ranging from statisti-
cal calculations and empirical models [5] to more computa-
tionally heavy deterministic models such as ray tracing [4],
[9]. With a higher demand for bandwidth, the trend is to
create more sophisticated models in order to capture more
parameters from the simulations. This design of new tools
require good understanding of the physical principles upon
which the simulation tools are to be built.

In this paper we demonstrate a novel approach to three-
dimensional visualization of an electromagnetic wave prop-
agating through a medium. Especially, we are focusing on
electromagnetic waves used in networks of the type IEEE
802.11 (WiFi) and the visualization of the interaction be-
tween a wave and typical objects that it might interfere
with. The mathematical model used is derived directly from
Maxwell’s equations and thus, automatically models phys-
ical effects such as reflection, attenuation and diffraction.
Also, our model works in the time domain and can therefore
be programmed to return the time-varying volumetric data
continuously or at certain time intervals. This lets us pro-
duce three-dimensional animations, which intuitively and
pedagogically explain many of the phenomena related to
propagating electromagnetic fields.

In section 2 the Finite-Difference Time-Domain, FDTD,
method used for the computation of the electromagnetic
fields is demonstrated. Here it is also described how the
volumetric data is extracted from this model, as well as the
design of the source that generates the radio waves. Sec-
tion 3 briefly discusses the Visualization ToolKit, VTK,
and its surface rendering filters used for visualizing the
data produced by the FDTD algorithm. In section 4 an
application specific preprocessing filter with the purpose
to generate smooth surfaces will be derived. In section 5
we will demonstrate the general pedagogical impact of our
approach to visualize propagating electromagnetic fields.
Snapshots from two simulations will be shown. In the first
scenario various physical phenomena will be explained and



observed, and in the second visualization a more complex
environment, imitating an indoor wireless network, will be
used as an example of a typical area of application.

2 Finite-Difference Time-Domain method

The standard Finite-Difference Time-Domain, FDTD,
method was first presented by Yee in 1966 [12]. The
FDTD method uses centered finite differences to approxi-
mate Maxwell’s equations in both the time and space do-
main. The basic idea of FDTD is to first update the time
derivative of the electric fields by use of the magnetic field
values, and then update the time derivative of the mag-
netic field values with these new electric field values. This
process is then repeated until the electromagnetic wave has
been advanced a certain distance, or until steady state is
reached.

2.1 Stability and accuracy

There are two main concerns with the FDTD method:
stability and accuracy [8]. In order to avoid instability and
consequently non-physical behavior in the simulations, the
time step size, ∆t, between two consecutive field updates
of the same kind (e.g. the electric field values), has to be
smaller than the Courant limit:
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where c0 is the speed of light in vacuum and ∆x, ∆y, ∆z
are the spatial distances between the grid points in the dis-
cretized three-dimensional electrical domain.

The second problem concerning the accuracy, is due to
the fact that the finite differences that approximate the time
and space derivatives are only second order accurate in time
and space, e.g. using a twice as large step size, ∆x, in-
creases the non-physical error in the calculations four times.

These two issues are a main concern in three-
dimensional electrically large domains, since the need for
computer memory scales as a power of three with the dis-
tance between the grid points and the total runtime is in-
versely proportional to the time step size, ∆t. One solution
to this problem is to use Higher-Order FDTD, HO-FDTD,
[3], which requires twice as many calculations but drasti-
cally decreases the numerical errors. Therefore, a larger
spatial step size between the grid points can be used and
consequently, according to Equation (1), a larger time step,
∆t, is allowed, which in turn decreases the overall total run-
time.

2.2 Signal source

The electromagnetic emitter used in this paper is a point
source, emitting a sinusoidal Gaussian pulse which is cen-
tered at the frequency f0. There are several reasons for
choosing a sinusoidal Gaussian pulse as a source for the
signal, where the most important reason from a visualiza-
tion point of view, is that the propagation of a pulse can
easily be shown. Another reason is that the Gaussian behav-
ior gives a smooth contribution of the emitted pulse to the
FDTD domain, whereas abrupt pulses will introduce non-
physical random values in a vicinity of the source at the time
when the source is turned on. Further, by choosing the pulse
to be sinusoidal it is possible to center the pulse around any
desired frequency. Finally, the bandwidth within the pulse
can be determined by the width of the pulse (a small pulse
in the time domain gives a large spectral content in the fre-
quency domain). The numerical expression for this pulse
is:

Ez |nis
= E0e

−[(n−n0)/nw]2 sin[2πf0(n − n0)∆t] (2)

where the index is denotes the placement of the source in
the grid, n is the actual time step, n0 is the midpoint of
the pulse, or the time when a Gaussian pulse reaches its
maximum. However, note that when n = n0, the sinusoidal
wave is zero, resulting in a total value of zero for the entire
expression. The width of the pulse is determined by nw,
where a higher value results in a wider pulse.

2.3 Extraction of volumetric data

To complete one update step in the time domain, the
HO-FDTD algorithm basically runs through all grid points
in the discretized volume and first updates all the electric
field values and then all the magnetic field values. How-
ever, there are actually six volumes that are being calcu-
lated at all times, one each for the three electric field val-
ues, Ex, Ey, Ez and similarly for the magnetic field values,
Hx, Hy, Hz .

To be able to visualize a propagating electromagnetic
field, these six volumes have to be merged into one single
volume. This can be done by first calculating the Poynting
vector, P = E x H [W/m2] of the electromagnetic field for
all grid points and then take the absolute value of these vec-
tors to obtain scalar values that represent the power density.
These extracted scalar values will finally serve as the input
for the visualization pipeline.

3 Visualization with VTK

The Visualization ToolKit, VTK, is a free, open source
software, suitable for scientific visualizations [7]. It was



chosen here because it contains a wide variety of filters to
process the volumetric data with, it is reasonably fast and,
of course, it is freely available.

3.1 Surface rendering

A propagating electromagnetic pulse can be represented
by an advancing wave front. To create such wave fronts, the
surface rendering algorithm Marching Cubes [6] was used
to produce isovalued surfaces from the three-dimensional
data.

The basic principle of the Marching Cubes algorithm, is
to divide the volume into small cubes, each with the size
of the volume grid resolution, march through all cubes and
at every point decide if the vertices of the cube are above or
below the isovalue. All cubes are then replaced by appropri-
ate polygons, which are finally put together to the estimated
surface.

3.2 Smoothing filters in VTK

As described earlier, the source that generates the elec-
tromagnetic field is a sinusoidal Gaussian pulse. The
pulse will contain several cycles of minima’s and maxima’s,
where the number of cycles depends on the length of the
pulse. When the Marching Cubes algorithm compares val-
ues above and below a certain isovalue, it will find many
corresponding values for every oscillating cycle within this
pulse. As a result of this, the algorithm will mount these
small parts together into fragments of iso-surfaces, which
later will be shown to be highly undesirable. The solution
to this would be to try to smooth the data before apply-
ing the Marching Cubes algorithm. Some smoothing filters
are included in VTK, however, they are designed to deal
with small changes in amplitudes, not oscillating sinusoidal
functions. Therefore, a new application specific smoothing
filter had to be constructed.

4 Smoothing filter

To obtain a better visualization of the calculated power
density, a smoothing filter that approximates an average en-
velope of the pulse was included as a post-processing step
in the HO-FDTD algorithm after the extraction of the power
density values. This smoothing filter can be seen as a run-
ning average algorithm that basically runs through all points
in the volume, and at every grid point it takes the power
density values of the six nearest neighbors in all three di-
rections, adds these to three times the value on the central
point and finally divides the total sum with nine.

4.1 General effects of the filter

In order to verify the effect of this smoothing filter, a
cross section of the calculated absolute values of the Poynt-
ing vector was taken along the x-direction of a simulated
domain, Figure 1. Psm0 represents the unprocessed data
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Figure 1. The effect of repeatedly apply-
ing the averaging process to the calculated
power values before exporting them to the vi-
sualization pipeline.

followed by repetitive use of the averaging process 3, 6 and
10 times. The effect of this smoothing filter is clearly shown
as the minima’s are basically canceled out after ten consec-
utive repetitions. It can also be seen that the overall values
in the pulse are averaged and that the final maximum value
is equal to half the maximum peak value of the unprocessed
data, which is in accordance with theory.

One consequence of the use of this smoothing filter, is
that it introduces some broadening of the final pulse due
to the averaging procedure that incorporates values of the
nearest neighbors. The magnitude and width of this widen-
ing can be measured by normalizing the pulses in Figure 1
and then take the logarithmic to be able to estimate the very
low power density values at the edge of the pulses. This way
the broadening can be approximated to be no more than two
grid points at values 40-60 dB below the maximum value.
Thus, this smoothing filter will introduce a slightly broader
appearance to the pulse at very low values. However, the
visual impact of this is basically insignificant, since during
a simulation there is only a need to show values in a range
of 30-40 dB at a certain instance. A much larger range than
this would introduce too many iso-surfaces with very low
values. A much smaller interval is also undesirable since
there might be absorbing objects in the simulation setup that
can attenuate pulses passing through them with 20-30 dB.



Therefore it is a requirement to be able to show values of
the electromagnetic pulse in a range equal to or larger than
this, e.g. isovalues ranging from 0.001*MAX to 1.0*MAX
(⇔ 30 dB), where MAX is the highest value of the power
density in the volume at the time when the snapshot is taken.

The result of using the smoothing filter before applying
the Marching Cubes algorithm can be seen by observing
the rightwards traveling pulse in Figure 2. The upper frame
shows the unfiltered volumetric dataset, and it is seen that
the Marching Cubes algorithm forms iso-surfaces around all
maxima’s in the pulse. This clearly complicates the appear-
ance of the propagating electromagnetic wave. A much bet-
ter representation is observed in the lower frame, where the
dataset has been smoothed by running the averaging process
ten times.
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9.00e-059.00e-05 0.02260.0226 0.04510.0451 0.06760.0676 0.09000.0900

Figure 2. A snapshot of a rightwards propa-
gating pulse in free space. The upper figure
shows the unfiltered data. In the lower figure
the averaging process has been applied ten
times to the volumetric data.

For the Marching Cubes algorithm, minimum and maxi-
mum values for the iso-surfaces have to be chosen carefully,

as well as the number of iso-surfaces to be shown. The num-
ber of iso-surfaces in Figure 2 is set to four. However, the
number of scalar values above the highest isovalue are so
few that the fourth iso-surface is so small that it can not be
seen.

In each frame there is also a color bar included, this is
related to the power density of the Poynting vector. The
color bars show that the averaging procedure in the smooth-
ing filter decreases the maximum value as expected. The
broadening of the pulse can not easily be observed.

Finally, it must be accentuated that it is only the out-
put data to the visualization pipeline that is affected by the
smoothing filter. The HO-FDTD simulation continues to
run without any kind of smoothing, thus no errors are intro-
duced into the original calculations.

4.2 Optimizing the filter

In order to speed up the averaging process of the smooth-
ing filter, as well as the subsequent visualization process,
a set of tests was carried out to evaluate the outcome of
extracting fewer power values from the HO-FDTD simula-
tions. For instance, by taking only the absolute value of the
Poynting vector at every two grid points in the x-, y- and
z-directions, the amount of volumetric data would decrease
to one eight (1/23 = 1/8) of the original size.

In many ways, this smaller dataset can be beneficiary,
for example, less memory is required for a smaller dataset.
Also, with fewer data points, the smoothing filter will be
much faster, since the averaging process is carried out re-
peatedly within the filter. Another effect is that with the
use of fewer data points, there will also be fewer values be-
tween the peaks in a pulse. As a consequence the averaging
process can be run fewer times and still it removes the max-
ima’s and minima’s.

Table 1 summarizes computational times for three dif-
ferent amounts of extracted grid points. The parameter q
represents the rate of decrease of grid points along all three
coordinate directions, e.g. q = 1 is equivalent to the origi-
nal case in Figure 2, and q = 2 means that only every second
grid point in all three directions is used. The filter time is the
total time for running the averaging process ten times. The
average step time is the time for completing a full update
cycle of all electric and magnetic fields in the HO-FDTD
algorithm, i.e. advancing the pulse one step in time, ∆t.
The final column in the table contains a subjective measure
of the number of averaging repetitions necessary for erasing
the maxima’s and minima’s. As expected, the processing
time of the filter scales well with the number of points in
the dataset, e.g. with q = 1, the volumetric dataset is 23 = 8
times larger than with q = 2. It can also be observed that the
filtering process for q = 1 is equally time consuming as a
full update step of the HO-FDTD process. This will greatly



Table 1. Comparison of three different setups
of the smoothing filter.

q Filter time (s) Avg. step time (s) Est. reps.

1 0.68 0.69 8

2 0.08 0.67 6

3 0.02 0.68 6

affect the overall runtime if the smoothing filter is used fre-
quently during the simulation. From the last column it is
concluded that fewer averaging cycles are required if there
are less points between the peaks in the volumetric dataset.
Summarizing the results in Table 1 it is seen that using a
value of q > 1 would be advantageous, especially if the fi-
nal outcome is an animation which requires a manifold of
snapshots and thus a continuously use of the smoothing fil-
ter.

However, there is one disadvantage of this optimization
of the smoothing filter. In section 4.1 it was seen that the av-
eraging process introduces a broadening of the pulse. Since
the filters in this section use a larger and larger physical dis-
tance between the points in the data set, it is expected that
the broadening of the pulse scales proportionally to q. Mea-
surements were done that confirmed this, i.e. for q = 2, the
pulse broadened four grid points and not two grid points as
stated earlier for the case with q = 1. For q = 3 the final
pulse was 6-7 grid points wider. Thus, it is concluded that
q = 3 will probably introduce a too large discrepancy from
the original pulse shape.

A comparison was finally done in order to visually eval-
uate the result of the filter optimization, Figure 3. In the left
frame the smoothing filter was set to q = 1 and the number of
averaging repetitions was eight. Corresponding settings for
the second frame were q = 2 and six repetitions. It is seen
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Figure 3. A visual comparison between using
q = 1 (left) and q = 2 (right) in the smoothing
process of the volumetric data.

that the two frames are reasonably similar, but a slightly
larger broadening of the pulse is implied in the frame to the
right. Still, the shorter filter time and the following speed-
up of the visualization pipeline are two strong reasons for
choosing a smoothing filter using q = 2.

5 Results

Various simulations of propagating electromagnetic
waves have been performed in order to visually explain
physical phenomena in a pedagogical way, as well as to
validate our approach for more complex wireless environ-
ments. Primarily we are interested in visualizing electro-
magnetic waves found in wireless networks of the type
IEEE 802.11 (WiFi). For this purpose, a general set of pa-
rameters is established for the subsequent simulations.

One of the allowed carrier frequency spectra in the IEEE
802.11 standard is allocated around 2.4 GHz, or equiva-
lently λ ≈ 0.125 m. The signal source that generates
this frequency in our model, is being excited by an elec-
tric field in the z-direction, Equation (2), thus little radi-
ation is emitted in the z-direction and an electromagnetic
field mainly expanding in the xy-direction and shaped as a
donut is expected. Using a uniform grid in all three direc-
tions, ∆x = ∆y = ∆z = ∆, and the possibility to use
large step sizes with HO-FDTD, the grid point distance is
set to: ∆ = λ/7 ≈ 18 mm. The expression for the time
step using the HO-FDTD method has to be slightly adjusted
from Equation (1) according to [8] and [3], and is here set
to: ∆t ≈ 30 ps. This value corresponds to advancing the
electromagnetic wave a distance equal to ∆t · c0 ≈ 9 mm
in vacuum during each time step. Thus, snap shots from the
HO-FDTD simulation can be taken every 9 mm, or equiv-
alently, a maximum of more than 100 snap shots might be
used to make an animation of a propagating wave traveling
one meter. Finally, interfering objects in the form of walls
and floors are included, assigned material coefficients (rel-
ative permittivity and conductivity) corresponding to con-
crete (εr = 4.0, σ = 0.146 S/m). The thickness of the
objects is approximately 200 mm, and the absorption is
thought to be in the order of 20-30 dB.

5.1 Visualizing physical phenomena

In this first part the simulated environment is made up of
a single room with the dimensions 3 m x 3 m x 3 m. The
setup was purposely chosen simple in order to more easily
grasp the interaction between the emitted electromagnetic
wave and its surroundings. The simulation was run for 400
time steps and three snapshots were taken after 80, 160 and
320 time steps, Figure 4, which corresponds to an elapsed
time of approximately 2.3, 4.6 and 9.2 ns. The grey objects
represent segments of concrete walls. The radiating source,



Figure 4. Three snapshots of a propagating
pulse. The snapshots were taken after 80,
160 and 320 time steps.

best seen in the first frame, is intended to be installed on one
of the walls, at a height of 2.0 m and approximately 50 mm
in front of it. Because of this arrangement, there will be an
immediate reflection in the concrete wall of the backward
going part of the pulse that will almost overlap with the for-
ward going part. This is seen as high intensity areas (red)
and is an effect of constructive interference between the two
parts of the pulse originally traveling in opposite directions.

In the second frame, the effect of absorption can be ob-
served at the wall segment located in the middle. There is a
distinct difference in the pulse power intensity in the part of
the pulse that is on the left side, as compared to the part of
the pulse that has traversed the wall. A very coarse estima-
tion of the absorption can be done by comparing the differ-
ent colors of the pulse with the incorporated color bar. The
result of such a comparison gives an approximate estima-
tion of the absorption in the order of 20 dB. Another phys-
ical phenomenon called diffraction is seen at the front edge
of the wall segment in the middle, where some part of the
pulse has actually been bent around the concrete wall. Fur-
ther, it is noted that little energy is emitted in the z-direction,
as expected since the signal source is applied only to the Ez

field value and thus the power flow should be directed or-
thogonally outward from the source direction according to
the Poynting vector.

In the third frame several reflections from the concrete
walls are clearly visible. These secondary wave fronts are
usually referred to as multipath signals and are of a great
concern in designing wireless networks. Also, at this point,
a continuous decrease of the signal power is observed as the
pulse travels further and further away from the source. This
can most easily be seen by making an overall comparison
of the three frames and observing the absolute value of their
corresponding color bars.

5.2 WiFi environment

For the second simulation a larger and more complex
scenario was mounted in order to gather more insight
into the complicated behavior of indoor propagating radio
waves. Parts of a two-storey building was created by adding
walls and floors made of concrete into a 5 m x 4 m x 4.5 m
volume. The reason for choosing two stories was to en-
hance the usefulness of visualizations of three-dimensional
simulations. It is easy to imagine that many of the physical
phenomena shown in Figure 4, also would have been vis-
ible in a two-dimensional simulation of the xy-plane since
the setup used was uniform in the z-direction. On the other
hand, for this new scenario seen in Figure 5, we expect to
see more variations in the z-direction due to the incorpora-
tion of floors / ceilings. To capture information of the radio
wave in a reasonably large vicinity of the main wave, iso-
values for the creation of iso-surfaces were taken in a 40 dB



Figure 5. Six snapshots of a propagating
pulse. The snapshots were taken after 200,
280, 360, 440, 520 and 600 time steps.

interval, i.e. from 0.0001*MAX to 1.0*MAX.

The signal source was the same as the one used earlier,
the placement was 50 mm in front of the leftmost wall and
at a height of 1.2 m. Therefore the initial behavior of the
radio wave, first frame of Figure 5, should not be too dif-
ferent from the second frame of Figure 4. The influence of
the concrete floors are well visualized in the second frame.
Starting from the bottom, four wave fronts can be seen that
are predominantly moving in the z-direction. The first is the
outwards going pulse that has penetrated the bottom layer
of concrete. The second is the reflection from this said con-
crete layer. The third is the reflection from the ceiling, and
finally the fourth is the part of the pulse that has passed
through it. The main wave front, going rightwards, has just
reached the intersecting wall in the middle, and it is seen
that one part of the wave is not obstructed by this wall and
has just started to pass it. In the third frame this becomes
more pronounced and in the fourth frame the same behavior
is observed for the part of the wave that is propagating on

the second floor. Two remarks can be done for this wave
front. First, there is a distinct difference in power density
between the two floors due to the absorption in the concrete,
and second, there is a small delay between them because the
wave front on the upper floor was retarded when it passed
through the high permeability concrete layer. As time goes
by, more and more reflections are becoming present in the
simulation, and adds to the number of copies of the signal in
this indoor environment. In the last two frames a reflection
from the wall in the background and the wall in the middle
is discernible in the left half of the graphs.

This example illustrates well the complicated behavior
of decoding the information in a multipath environment. It
is clearly seen that there are several copies of the same pulse
(information) at many different places and also at the same
place but at different times. Looking closer at the last graph
in Figure 5, it is seen that the rightwards going pulse on the
first floor has just left the simulated domain, whereas a copy
of it is still present close to its origin (transmitting antenna),
seen as the actual main wave to the left on the first floor.
This type of multipath signals reaching a receiving antenna
at different times might cause intersymbol interference, ISI,
that degrades the performance of the network. For a typ-
ical 11 Mbps 802.11b network the time between the data
symbols is 1/11 µs ≈ 90 ns. The time delay should typ-
ically be less than one third of this value to avoid ISI, the
exact value depends on the receiver and how sophisticated
it is built. Of course, for even higher transmission bit rates
this becomes even more severe, so being able to visualize
networks in complex environments is useful to better un-
derstand and predict its behavior.

6 Animations

To be able to create animations, snapshots of the electro-
magnetic fields are taken at certain time intervals. Figure 4
showed the behavior of a propagating wave using a rela-
tively long time between the frames. However, with snap-
shots taken every 10 time steps in the HO-FDTD simula-
tion, frames would be created at a time interval approxi-
mately equal to every 0.3 ns, or equivalently after having
advanced the pulse 90 mm in free space. For the purpose of
enhancing the static visualizations, such movies were cre-
ated. The general response to this was a better understand-
ing of the behavior of propagating electromagnetic waves.

7 Conclusions

Iso-surfaces have been proved to be one way to success-
fully visualize electromagnetic wave information contained
in a volume. From the results in Figure 2 it was concluded
that applying a smoothing filter to the simulated HO-FDTD



data before exporting the archive to VTK, considerably im-
proved the following visualizations. The effects of reduced
maximum values, as well as the broadening of the pulses
due to the smoothing filter was also quantified. However,
keeping in mind that the final result will be single static
figures or animations of a traveling electromagnetic pulse,
these unwanted consequences of the smoothing filter will
not adversely affect the overall perception.

A series of 3D images, as well as animations, have been
produced. These visualizations have been seen to in an intu-
itively and pedagogically way explain several physical phe-
nomena related to the propagation of radio waves. A com-
plex three-dimensional environment, typically seen in in-
door simulations, was finally used to visually improve the
understanding of effects that might deteriorate the perfor-
mance in wireless networks.
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