
Fast and Easy Computation of Approximate Smallest Enclosing Balls

Thomas Martinetz, Amir Madany Mamlouk
Institute for Neuro- and Bioinformatics

University of Lübeck
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Abstract

The incremental Badoiu-Clarkson algorithm finds the
smallest ball enclosing n points in d dimensions with at
least O(1/

√
t) precision, after t iteration steps. The ex-

tremely simple incremental step of the algorithm makes it
very attractive both for theoreticians and practitioners. A
simplified proof for this convergence is given. This proof al-
lows to show that the precision increases, in fact, even as
O(u/t) with the number of iteration steps. Computer ex-
periments, but not yet a proof, suggest that the u, which
depends only on the data instance, is actually bounded
by min{

√
2d,

√
2n}. If it holds, then the algorithm finds

the smallest enclosing ball with ε precision in at most
O(nd

√
dm/ε) time, with dm = min{d, n}.
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1. Introduction

The smallest enclosing ball (SEB) is a classical problem
in computational geometry. In its simplest formulation a set
S of n points x in Rd is given, the goal is to find the ball
with smallest radio containing S. It appears frequently as
an intermediate step in many applications, e.g., the tuning of
Support Vector Machine parameters [5], gap-tolerant classi-
fiers [4], k-center clustering [2], hand-recognition [3], face-
recognition [11] or the detection of genetic binding sites [8],
among others.

There are elaborated combinatorial algorithms which
provide exact solutions, also in high dimensions (see e.g.
[13, 15, 6]), but without a polynomial worst-case bound.
Approximate solutions can be obtained in polynomial time,
e.g., via core-sets, see e.g., [1, 10]. Much simpler for obtain-
ing approximate solutions in polynomial time and, hence,
interesting for the practitioner, is the algorithm introduced
by Badoiu and Clarkson [1].

2. The Badoiu-Clarkson algorithm

The algorithm is an iterative three-lines procedure and
works as follows:

1. let ct be the guess for the center at step t, set c0 = 0;

2. at step t, choose xt as the point of S which is furthest
away from ct;

3. iterate according to

ct+1 = ct +
1

1 + t
(xt − ct) . (1)

At every step, the algorithm moves the current center, to-
wards the furthest point, by a fraction of the radius of the
actual approximation of the SEB. Figure 1 illustrates the al-
gorithm. To better understand how the algorithm works, we
note that the iteration step can be rewritten as

ct+1 =
1

t + 1
(x0 + x1 + · · ·+ xt) . (2)

Thus, the Badoiu-Clarkson algorithm is actually a method
that selects points of S in such a way that the barycentre of
the selected points converges against the center of the min-
imal enclosing ball.

Formula (2) is easily obtained by setting

ut = t(ct − c). (3)

where c denotes the unknown center of the SEB of S. By
plugging the iteration rule in (1) into Formula (3), we find

ut+1 = ut + xt − c , (4)

which implies Formula 2.
Theorem 1 states the convergence of the algorithm. It

was proven in [1]. Here we give a simplified proof based on
the following lemma [7]. Since the lemma has a short proof,
it is include here for completeness.

Lemma 1 Let S be a set of points in Rd and B its smallest
enclosing ball, then any closed half-space that includes the
center of B also includes a point on the surface of B.



Proof Let c and R be center and radius of B, and H a
closed half-space including c. We can suppose without loss
of generality that c = 0 and the normal to the border of H
pointing outside is e1. By contradiction, assume the state-
ment is false. In this case, for every x, either S ∩ H and
|x| < R, or e1 · x > 0 is valid. This implies the existence
of a ε > 0 such that |x− εe1| < R, for every x in S, con-
tradicting the minimality of B.

Theorem 1 Let S be a finite subset of Rd, c and R be the
center and radius of the smallest enclosing ball for S, then
for every step t

|ct − c|
R

≤ 1√
t

and
|Rt −R|

R
≤ 1√

t
, (5)

with Rt as the radius of the smallest enclosing ball with cen-
ter ct.

Proof Without loss of generality we can set c = 0 and
R = 1. We introduce

ut = tct . (6)

Then, the iteration rule (1) can be written as

ut+1 = ut + xt (7)

and the change of the length of ut obeys

u2
t+1 − u2

t = 2ut · xt + x2
t . (8)

By Lemma 1, there is always at least one point x ∈ S on
the closed half-sphere of the SEB opposite to the actual es-
timate ct. Hence, for xt as the point of S which is most dis-
tant from ct always

ut · xt ≤ 0 (9)

is valid. Thus we obtain

u2
t+1 − u2

t ≤ 1 (10)

and, hence, the length of ut is bounded by

|ut|2 ≤ t . (11)

For the convergence of ct, this yields

|ct − c|
R

=
|ut|
t

≤
√

t

t
=

1√
t

. (12)

2.1. O(u/t) convergence

Next, we are going to show that in fact the precision of
the solution increases like O(u/t) with the number of iter-
ation steps.

Figure 1. Example run for 80 normal dis-
tributed points on a plane. The approximated
center ct and thus the enclosing ball con-
verges against the real center c, shown here
after 1, 2, 5, and 100 iterations.

Theorem 2 Let S be a finite subset of Rd, c and R be the
center and radius of the smallest enclosing ball for S, then
there is a positive number u = u(S) such that for every
step t

|ct − c|
R

≤ u

t
and

|Rt −R|
R

≤ u

t
, (13)

with Rt as the radius of the smallest enclosing ball with cen-
ter ct.

Proof As in the proof of Theorem 1, we can set c = 0 and
R = 1 without loss. The stated convergence rate is achieved
if ut stays bounded (see eq. (12)). This is indeed the case.
Let S′ be the set of points of S on the surface of the SEB
and α the distance between S′ and S − S′. Theorem 1, to-
gether with Lemma 1, allow to conclude that after

tα = 1 + 1/α2 (14)

iterations each xt will lie on the surface of the SEB, i.e.,
|xt| = 1. With u′

t we introduce the projection of ut onto
the subspace E′ spanned by these x ∈ S′. If u′

t stays
bounded, then also ut. From tα on, the xt ∈ S for which
(xt−ct)2 is maximal is the xt ∈ S′ for which (xt−ct)2 =
x2

t + c2
t − 2ut · xt/t is maximal, or equivalently, for which

ut·xt = u′
t·xt is minimal. Lemma 1 states that u′

t·xt ≤ 0.
Before proceeding, let’s set

−δ = max
|u′|=1

min
x∈S′

{u′ · x} (15)

We now discriminate two cases:



1) δ > 0;

2) δ = 0.

Note that u′ with |u′| = 1 varies only within the sub-
space E′. For case 1), it can easily be proven that u′

t re-
mains bounded. Case 2) is a little bit more tedious.

1) For each iteration step, u′
t · xt ≤ −δ|u′

t|. Analogously
to Equation (8), we obtain

u′2
t+1 − u′2

t = 2u′
t · xt + x2

t

≤ −2δ|u′
t|+ 1 .

The negative contribution to the change of |u′|t increases
with |u′

t| and keeps it bounded. Even more, since after tα
iterations |u′

t| decreases as soon as it becomes larger than
1/2δ, it holds

|u′
t| ≤ max{|u′

tα
|, 1

2δ
+ 1} . (16)

2) If δ = 0, the set

U = {u ∈ E′ ; |u| = 1 and min
x∈S′

{u · x} = 0} (17)

is non-empty. Therefore, S′ is contained in the convex set
of E′ determined by

u · x ≥ 0, ∀u ∈ U. (18)

At least one of the previous inequalities is strict, otherwise
S′ would be a proper subset of E′. Therefore, the sets

S′′ = {x ∈ S′ |u · x = 0 for all u ∈ U} (19)

and S′′
c := S′−S′′ are linearly separable by a maximal pos-

itive margin ∆ [9, 12]. That is, there is an unity vector v in
E′ such that

v · x = 0 ∀x ∈ S′′ and v · x ≥ ∆ ∀x ∈ S′′
c . (20)

u′ changes according to the MinOver learning rule [9, 12],
a slight modification of the perceptron learning rule [14].
Therefore, after a finite number of learning steps, xt will
always be an element of S′′. Then the xt ∈ S′ that min-
imizes u′

t · x is identical to the xt ∈ S′′ that minimizes
u′′

t · x, where u′′
t is the projection of u′

t onto the sub-
space E′′ spanned by the x ∈ S′′.

These considerations allow us to bound u′ in term of,
only, the margin ∆ and the positive number δ′ defined by

−δ′ := max
|u′′|=1

min
x∈S′′

{u′′ · x} . (21)

To find such a bound, we decompose a vector x′ ∈ E′, first,
as

x′ = x′
v + x′v (22)

with xv orthogonal to v; further, we decompose

x′
v = x′′ + x′

n , (23)

with x′′ ∈ E′′ orthogonal to xn. That is,

x′ = x′′ + x′
n + x′v. (24)

For a xt that minimizes u′
t · x′, we have:

a) either xt ∈ S′′. In this case it also minimizes u′′
t · x,

and therefore, u′′
t · xt ≤ −δ′|u′′

t |;

b) or xt ∈ S′′
c . In this case xt ≥ ∆ and therefore, ut ·

xt ≤ 0 implies u′
t v · x′

t v ≤ −∆u′t.

Now, if xt visits S′′, only the component u′′
t changes, and it

actually decreases if |u′′
t | > 1/2δ′. If xt visits S′′

c , the com-
ponent u′t grows at least by ∆. Therefore, after at most

β =
1
∆

(
1
∆
− utα) (25)

visits to S′′
c , the component |u′

t v|, and in consequence |u′′
t |

and |u′
t n|, will stop increasing due to visits to S′′

c . Thus, the
following bounds hold

|u′′
t | ≤ max{|u′′

tα
|+ β,

1
2δ′

+ β + 1} (26)

|u′
t n| ≤ |u′

tα n|+ β . (27)

From the above bounds, we find a bound to |u′t| as follow.
After step tα, x′t is either zero or bigger than ∆, since only
vectors of S′ are chosen. If u′t = u′t−1 + x′t−1 ≤ 0, from
step t−1 to step t, the absolute value of u′ decreases, hence

|u′t| ≤ |u′tα
| ; (28)

if u′t > 0,

0 ≥ ut · xt = u′
t · x′

t =
u′

t v · x′
t v + u′tx

′
t ≥ −|u′

t,v|+ u′t∆

Therefore,

|u′t| ≤ max{|u′tα
|, 1

∆
|u′

t,v|} . (29)

It was shown above that |ut| is overall bounded by a
number that depends only on the data instance S. By set-
ting

u∗ = supt{|ut|}
u = sup {u∗} (30)

we finally obtain

|ct − c|
R

≤ u∗

t
≤ u

t
. (31)

To finish the Section, we show by a simple example that
O(1/t) is the best converge rate achieved by the Badoiu-
Clarkson algorithm in a worst case scenario.



Example. Let S = {−1, 1}. In this case

ut = 0,±1, 0,∓1, 0,±1, . . . (32)

and,

ct = 0,±1,∓1
3
, 0,±1

5
, . . . (33)

Hence, ct converges against the origin at a rate exactly 1/t,
for this instance of the problem. Note also that there is a
non-countable number of possibilities for the sequence (ut)
but all of them are bounded by one.

2.2. On a bound on u∗

Computer experiments and intuition, but not yet a proof,
suggest that u∗ = maxt |ut| is always bounded by

u∗ ≤
√

2d . (34)

In most of the cases which we have encountered, this is
a rather conservative bound. The next section will take a
closer look at it. If n ≤ d, everything happens in a subspace
of at most n dimensions. In this case u∗ ≤

√
2n. Combined

this yields as the proposed bound for u

u ≤ min{
√

2d,
√

2n} . (35)

3. Empirical Results

For all test sets, two random points were pre-specified
to lie on opposite sites, respectively, to guarantee for the
points to span the intended hypersphere and therefore to en-
sure for a known ground truth for the precision measure-
ment. In all three scenarios the convergence follows a line
of slope −1, which demonstrates the O(1/t) convergence
we have proven.

In a first trial, we generated 5.000 points in 100 dimen-
sions randomly distributed on a ball of unit radius. Even
though this is a straightforward model, we have a more or
less untypical situation in which all points are potential at-
tractors for the center. In a real-life scenario, it is very likely
to have only few points that are actually located on the SEB.
Anyhow, in Figure 2 (top), it can be nicely seen, how the
slope of these points is clung to the O(1/t) slope.

Then, we distributed 100 points in 100 dimensions ran-
domly on the vertices of a unit hypercube. This distribution
appears to be much more challenging for the algorithm due
to the equally distributed points on the edges of the cube.
But still, after a finite number of steps, the slope clings to
the line of slope −1, as it can be seen in Figure 2 (mid-
dle).

The third scenario illustrates the worst case, on which the
estimation is based for the step size of the learning rule in
Formula (1). For 100 dimensions, we took 100 linear inde-
pendent points that are all located on the same hemisphere

Figure 2. Deviation from the exact center ×
number of iterations (double-log plot). Top:
n = 5000, d = 100 randomly distributed on an
unity ball. Middle: n = 100, d = 100 on a hyper-
cube. Bottom: n = 101, d = 100, all but one or-
thogonal and on a single hemisphere. Devi-
ation decreases to zero along a line of slope
−1, as proven. The line of slope −1/2 gives
the old upper bound.



of a unit hypersphere and only one point in the other half.
But again, in Figure 2 (bottom), it can be seen that after
a finite number of steps the slope changes to the proposed
O(1/t) convergence.

3.1. The proposed bound for u∗

To test a bound on the constant u∗ at least empirically,
we calculated many SEB with Badoiu and Clarkson’s algo-
rithm in different dimensions and with different number of
points:

a) randomly distributed on a ball of unit radius;

b) randomly distributed on the vertices of a unit hyper-
cube;

c) and orthogonal points located on a quadrant with only
one point on other adjacent quadrant (analog to the two
scenarios above).

For each run we determined the u∗ which occurred and
compared it with the assumed bound. In Figure 3, these u∗-
values (normalized by

√
2d) are shown for the first two sce-

narios. The dimension varied from 2 to 32, and in each di-
mension the number of points n varied from 2 to 4d, result-
ing in about 170.000 u∗ values. The line in Figure 3 indi-
cates the bound which must not be exceeded. In both sce-
narios the u∗ values are largest around n = d. For n < d
the effective dimension decreases with decreasing n and,
hence, the task becomes easier. For n > d the task becomes
easier with increasing n since the probability increases that
ut ·xt is largely negative with an iteration step, which keeps
u∗ small, see Equation (8). Indeed, a few u∗-values come
close, but none exceeds the proposed bound.

As the number of points in the hemisphere scenario c is
bound to d + 1 points, the corresponding scatter plot is not
very illustrative, but the proposed bounds have not been ex-
ceeded in any case.

Since the value u depends only on the data instance,
the algorithm is expected to be O(1/t) at least in average.
While it has not been shown yet, the expected value for u
can be inferred by sampling. Figure 4 shows how the sample
means µ depends on min{

√
2n,

√
2n} for scenario a) and

b). The curves µ ± 1.96σ, (where σ is the standard devia-
tion of the samples) and the proposed bound are also shown.
Note that the curve µ+1.96σ is always below the proposed
bound.

4. Summary

We have shown that for a given set S, Badoiu and Clark-
son’s algorithm converges at least as O(u/t) to the cor-
rect SEB. Intuition and computer experiments, but not yet
a proof, suggest that always u ≤ min{

√
2d,

√
2n} is valid.

Figure 3. The u∗-values (dots) we obtained
in about 170.000 calculations of SEB in d =
2, 3, . . . , 32 dimensions and with n = 2, . . . , 4d
points in two different scenarios. Top: ran-
domly distributed on a hypersphere. Bottom:
randomly distributed on the vertices of a hy-
percube. The proposed bound is indicated by
the line. This bound holds in all tested config-
urations. On average, u∗ is smaller for the hy-
persphere scenario.

In case this bound holds, Badoiu and Clarkson’s simple al-
gorithm finds the smallest enclosing ball around points with
ε precision in at most

O
(

min
{

n d3/2

ε
,
n3/2 d

ε
,
n d

ε2

})
(36)

time. Hence, with the other quantities fixed, asymptoti-
cally the computational time increases like O(n), O(d),
andO(1/ε), respectively. The extension of our convergence
analysis of Badoiu and Clarkson’s algorithm to smallest en-
closing balls around balls (SEBB) is straightforward.



Figure 4. Dependence of the sample means
µ over min{

√
2n,

√
2n} for two different sce-

narios. Top: randomly distributed on a hyper-
sphere. Bottom: randomly distributed on the
vertices of a hypercube. The curves µ±1.96σ,
(where σ is the standard deviation of the
samples) and the proposed bound are also
shown. Note that the curve µ+1.96σ is always
below the proposed bound.
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