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Abstract

Deformable objects play an important role in many ap-
plications, such as animation and simulation. Effective
computation with deformable surfaces can be achieved
through the use of dynamic meshes. In this paper, we intro-
duce a framework for constructing and maintaining a time-
varying adapted mesh structure that conforms to the under-
lying deformable surface. The adaptation function employs
error metrics based on stochastic sampling. Our scheme
combines normal and tangential geometric correction with
refinement and simplification resolution control. Further-
more, it applies to both parametric and implicit surface de-
scriptions. As the result, we obtain a simple and efficient
general scheme that can be used for a wide range of com-
putations.

1. Introduction

Three-dimensional models are fundamental in all areas
of computer graphics. The traditional way to represent them
is through polygonal meshes. Good meshes are needed for
applications ranging from visualization, modeling, simula-
tion and animation. As the complexity of the model in-
creases, the mesh becomes more detailed. Large meshes
are often redundant and inefficient for computation. The
solution for this problem is to use adapted meshes.

Mesh adaptation is an area of intense research because
of its importance. However, most of the work in this area
has concentrated on adapted meshes for static models. The
problem of creating dynamic meshes for deformable objects
received less attention up to now. Although part of the re-
sults obtained for adaptation of static meshes can be used
in the case of dynamic meshes, truly effective computation

can only be achieved by exploiting the specific nature of
deformable objects.

In this paper, we propose a framework for generating
adapted dynamic meshes for deformable surfaces. We
construct an initial mesh by refinement of a coarse base
mesh. During the simulation, the current mesh is main-
tained adapted to the underlying deformable surface by
local modifications to the mesh geometry and structure.
The adaptation is based on the evolution of the surface.
Nonetheless, it treats the simulation process as a “black
box”, since we estimate the dynamics from stochastic sam-
ples that are evaluated at each time-step. Furthermore, our
scheme is general and can be applied to both parametric and
implicit surfaces alike.

The main contributions of our work are as follows:
• General Framework: we develop a complete frame-

work for adaptation of dynamic meshes that approxi-
mate a time-varying deformable surface. The result-
ing meshes exhibit very good properties, in terms of
mesh quality (i.e., small number of faces, well shaped
elements, semi-regular structure, graded variable reso-
lution, bounded connectivity) and temporal coherence
(i.e, it evolves in time through geo-morphing).

• Stochastic Sampling: we employ stochastic stratified
sampling to estimate the error between the mesh ap-
proximation and the true surface in a robust and effi-
cient manner. Additionaly, we formulated a flexible
error metric that can take into account both geometric
and other aspects of the adapted mesh.

• Resolution Control: we build on the infra-structure
provided by semi-regular 4-8 meshes to create an effi-
cient mechanism for dynamic mesh resolution adap-
tation using scheduled simplification and refinement
stellar operations.



• Geometric Quality: we extend the intrinsic Laplacian
mesh smoothing to incorporate curvature sensitive be-
havior as the surface deforms. In this way, we are able
to maintain a triangulation that follows surface features
with controlled aspect ratio.

The paper is structured as follows: in Section 2 we give
an overview of work related to adapted dynamic meshes; in
Section 3 we describe the main components of the proposed
framework; in Section 4, we show examples of the applica-
tion of our framework to various deformable surfaces; and
finally in Section 5 we conclude with an evaluation of the
results and a discussion of future work.

2. Related Work

Related work falls under the categories of topological
data structures for mesh representation, frameworks for
mesh adaptation and applications using deformable mesh
surfaces.

There has been extensive research in multiresolution
mesh representations [13]. This type of structure can be
constructed from a dense mesh using simplification [14] or
from a coarse mesh using refinement [20].

Variable resolution schemes for mesh adaptation can be
developed using local simplification and refinement opera-
tors [19]. These schemes serve as the foundation of mesh
adaptation frameworks, such as progressive meshes [15]
and 4-K meshes [23].

Most of the work in mesh adaptation has been applied
to static surfaces. Some relevant papers in this category
are [26] and [5].

An important related application that exploits adapted
meshes is the view-dependent visualization of terrain data
[9], [18].

The research on adaptive meshes for deformable surfaces
usually is combined with the simulation process. Some ex-
amples are the pioneering work of Welch et al. for varia-
tional modeling [25], the work of Bowden et al. for medical
applications [4], and more recently [8].

Recent work that uses multiresolution meshes for de-
formable surfaces include [16] and [6].

General mechanisms for dynamic mesh adaptation of de-
formable surfaces have been proposed by [17] and [21].
These mechanisms employ edge-based topological data
structures together with local mesh operators, such as the
ones supported by the libraries CGAL [10] and Open-
Mesh [3].

Here, we use the stellar mesh library [22] as the basis
for our dynamic mesh adaptation framework of deformable
surfaces. However, we enhance this infra-structure for the
case of time-varying repesentations.

3. The Adaptation Framework

There are several criteria to determine the quality of a
polygonal representation of a continuous surface. First, the
piecewise linear approximation given by the mesh should
be within a tolerance (according to some error metric). Se-
cond, the mesh size (i.e., the number of elements) should be
small. Third, the shape of polygons (i.e., aspect ratio, orien-
tation) should be bounded and adapted to surface features.
Fourth, the structure of the mesh (i.e., degree of vertices)
should be as regular as possible – which in the case of tri-
angle meshes mean valences close to six.

Note that the criteria above are interdependent and may
conflict with each other. For example, a large number of
elements could be required for accurate approximations. In
essence, the construction of a good mesh can be posed as
a constrained optimization problem. One strategy to solve
such a problem is through a mesh adaptation process that
balances the different criteria according to restrictions.

The adaptation process controls mesh geometry and
topology to achieve its goals. Geometric control determines
the displacement of vertex positions – normal or tangential
to the surface. Topology control determines vertex connec-
tivity by structural operations that may also affect the reso-
lution of the mesh, such as vertex insertion and removal.

Our adaptation framework combines structural and ge-
ometric operations in order to maintain the quality of a
dynamic mesh while the underlying surface is deforming.
It keeps the surface approximation under some prescribed
tolerance using a small number of elements that are well
shaped and aligned to features. Furthermore, the resulting
mesh structure has bounded and graded regularity.

An overview of the whole process is as follows: Given
a deformable surface S(t) and a base mesh M that has the
same topology as S, we assume the ability to sample points
on S at each time step t of the simulation, and that S does not
change topology. The adaptation is an iterative algorithm:
it has an initialization phase and a main loop. In the initiali-
zation, the base mesh is adaptively refined to create a mesh
M0 approximating S at t = 0. In the loop, for each time step
t = i of the simulation, the current mesh Mi is adapted by
structural and geometric operations using a sampling of Si.

As the model deforms, we apply the following two-step
procedure:
Structural Operations – Simplification / Refinement:
First the surface is sampled at the current time step. Then,
the mesh resolution is modified based on the error criteria.
We remove vertices in regions with error below the thresh-
old and subdivide edges in regions with error above it1.
Geometric Operations – Vertex Position Correction:
First, new vertices are projected onto the surface and exis-

1Note that the error metric is usually based on geometric approxima-
tion, but can also incorporate other application-specific criteria.



ting vertices updated for the current time step. Then, all
vertices are displaced on the tangent plane of S using the
local curvature of the surface.

3.1. Stochastic Sampling and Error Metrics

In order to determine the correct level of approximation
we need to evaluate an integral of the error over surface re-
gions. Exact computation might be prohibitive, so, an alter-
native is stochastic sampling. Stochastic sampling selects
points in the region of interest, and keeps the density of
samples per area constant with uniform distribution. The
quality of the integral’s approximation (the sum of the sam-
ples’ errors) is related to the sampling density.

This strategy has the advantage of being independent
from the surface description. All it requires is the compu-
tation of sample points on the surface, which can be done
easily in most cases. Stochastic sampling also provides a
flexible mechanism to estimate different error metrics and
to learn the dynamics of the deformation. In our experi-
ments we have adopted an L∞ norm.

Sampling is performed in the initialization phase and up-
dated at each time step of the simulation. An stratified pat-
tern (in barycentric coordinates) is kept for this purpose on
the triangles of the mesh with a density prescribed by the
application. (See Figure 1(b)).

3.2. Structural Operations

(a) (b) (c)

Figure 1. split (a) → (c) and weld (c) → (a) of
a mesh region are based on error computed
using a stratified sampling pattern (b).

We employ the stellar operations edge split and weld to
change the structure of the mesh. Their action is respec-
tively to refine / coarsen a basic region of the mesh by sub-
dividing two triangles that share an edge / simplifying four
triangles incident to a vertex (See Figure 1).

The mesh representation has an underlying semi-regular
4-8 structure [22]. As a consequence, the mesh structure
adaptation guarantees a bounded connectivity of the mesh.
That is, if the degree of vertices in the base mesh is limited
in the interval [dmin,dmax], the structural operations change
the mesh resolution by creating new vertices with valences
inside this interval. In the case of regular 4-8 meshes, the

vertex valence stays between 4 and 8 – the average is equal
to 6, the optimal degree for regular meshes.

We associate the error over basic mesh regions with split
edges and weld vertices. The set of these regions covers the
entire mesh (See [22]). Also, they play a symmetric role for
mesh adaptation – one is used for refinement and the other
for simplification. To make the adaptation criteria consis-
tent, we compute the error e from a stochastic sampling
over the region, using e with a threshold T for refinement
and simplification.

Split edges and weld vertices are kept on two priority
queues ordered by the error. At each time step (ti) of the
simulation, we first update the error from the current posi-
tion of sample points. Then, we simplify the mesh by re-
moving all vertices with an associated error below T − ε .
After that, we refine the mesh by subdividing all edges with
associated error above T +ε . In this way, the mesh approxi-
mation stays inside a tubular region around the true surface.
Note that we include a tolerance interval of 2ε around the
threshold T in order to deal with hysteresis and avoid unde-
sired instability in the resolution adaptation.

3.3. Geometric Operations

c

(a) (b) (c)

Figure 2. (a) Polygon mesh. (b) Tangent plane
and principal curvatures. (c) Curvature-
based vertex correction.

During the structural adaptation, the vertex positions are
set to reflect the current state of the deformable surface.
However, after the geometry update there is no guarantee
that all the triangles of the mesh will remain well shaped.

We want a mesh with good parametrization. This
happens when neighbor triangles have edges with similar
length. We activate this by performing an intrinsic Lapla-
cian mesh smoothing that is curvature and feature sensitive.

Let’s call p a vertex of the mesh, c the centroid of p one-
ring neighbor’s,~v = p−c the displacement vector, and~n the
normal vector at p. Intrinsic Laplacian smoothing displace
p along the projection of v on the tangent plane at p (along
~d =~v−〈~v,~n〉~n).

We need to keep vertices on the surface features and re-
gions with high curvature. The Laplacian adjustment has
to be curvature sensitive, and behave differently along each
principal curvature direction~ui, depending on the principal



curvature value λi. Larger displacement for lower curva-
tures.

The complete geometry adaptation process displaces
each mesh vertex p according to Equation 1, and then re-
projects it onto surface (See Figure 2).

p = p+ 〈~u1, ~d〉exp(−kλ1)~u1 + 〈~u2, ~d〉exp(−kλ2)~u2, (1)

where ui are the curvature directions, λi are the curvature
values, and k is a constant for the curvature sensitive.

The reprojection step depends on the surface description.
In case of parametric surfaces the projection is trivial, since
we can evaluate the parametrization over the mesh. In the
case of implicit surfaces we use the gradient field of the
implicit function for the projection.

4. Results and Applications

Our method works with implicit and parametric models.
Here, we show examples for both representations with dis-
tinct adaptation criteria. First we demonstrate basic adapta-
tion with a deformable implicit cylinder and dynamic para-
metric height surface. Second, we show an implicit sphere
with variable radius that uses multiple adaptation criteria.
Finally, we present a real medical application that is cur-
rently an aiding tool for diagnosis of dysplastic lesions in
the brain.

4.1. Implicit Cylinder

An implicit cylinder has an overall uniform curvature,
so, a regular 4-8 mesh is a good surface approximation (left
of Figure 3). The shades of green represent the mesh ap-
proximation error, yellow means no error, and red means
an error beyond the threshold. As we bend the cylinder,
there are areas along deformations that have more curvature
and detail. We use the geometrical error to decide when
and where to refine, creating new vertices, edges, and faces.
This result is also on the right of Figure 3. Note the overall
constant approximation error.

4.2. Parametric Height Functions

Height functions are a family of parametric surfaces. The
x,z coordinates act as the parameters to the height function
y = f (x,z).

In Figure 4, we show how the mesh adapts appropriately
to deforming height function using the geometric criteria. In
Figure 5, we animate the deformable sinc height function

y = α sinc(β r) exp(κr), (2)

where r =
√

(x2 + z2) is the distance to the origin, β and κ
are shape parameters, and α is the deformation parameter of

the surface. The upper row of Figure 5 shows snapshots of
the surface’s deformation rendered with Gouraud shading.
The lower row shows how the mesh is suited to the surface’s
curvature, viewed from the top and rendered using pseudo-
colors indicating the value of the highest curvature. The
curvature-sensitive adjustment plays a crucial role to keep
the ridges of the sinc function sharp and well defined, while
the error criteria controls the adaptation everywhere else.

4.3. Multi-criteria Sphere

Here, isosurfaces of an implicit sphere demonstrate how
our method copes with different types of adaptation simul-
taneously. The left hemisphere uses the geometry error,
the right uses a fixed edge size. Figure 6 shows the beha-
vior of the mesh for radii of 0.6, 1.0, 1.6, and 9.0. Dark
gray means higher curvature. The lower row has the isosur-
faces scaled to a common size. Small radii isosurfaces have
high curvature, so their edge size criteria generates coarser
meshes than the geometric error. Larger radii have smaller
curvatures, and the geometric error criteria leads to coarser
meshes.

4.4. Twisted Surface

Now, we present an implicit surface modified by a twist
deformation. The surface is the extrusion of a Lp curve, de-
fined implicitly as yp + zp = rp, where p defines the metric
used on a circular domain, and r is the radius of this cir-
cunference. The twist deformation rotates each transversal
section of the object by an increasing angle according to
its x coordinate. At each time step, the rate of rotation is
increased, and the surface becomes closer to a screw (See
Figure 8).

4.5. MRI: Discrete Volumetric Data

Finally, we show a real medical application of our ap-
proach. Based on discrete volumetric brain MR data, we
perform volume segmentation and calculate an implicit
representation of isolayers of the brain based on a distance
transform. By varying dynamically the isovalue we obtain
a family of isosurfaces that can be used to analyze the MR
data. This tool allows medical professionals to visualize
brain MR intensities as concentric well-adapted surfaces. It
is easier to detect dysplastic lesions through inspection of
these isosurfaces, instead of the orthogonal cuts available
in conventional exams [1]. Work is under way for auto-
matic detection of lesioned areas. In Figure 7, we show the
mesh/error and fully rendered version of two different iso-
surfaces.



5. Conclusions and Ongoing Work

We introduced a complete framework to dynamically
adapt meshes that approximate deformable surfaces with
good properties. Our method is based on a two step adapta-
tion scheme defined by structural and geometric operations.

We also developed a flexible adaptation scheme that sup-
ports a combination of different criteria. The geometric ap-
proximation is estimated through stochastic sampling of the
deformable surface, which makes possible to employ vari-
ous error metrics.

Stochastic sampling is a powerful technique. We are cur-
rently working on its use for dynamic learning and adapta-
tion of mesh deformations. We are also investigating new
operators that will allow the mesh to dynamically change
topology as it deforms.
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Figure 3. Geometric error as refinement criteria: bending of implicit cylinder.

Figure 4. Dynamic adaptation of parametric surface.

Figure 5. Deformations of a height function. Upper row: perspective view. Lower row: adaptation
over the curvature.



Figure 6. Multi-criteria for adaptation of several isosurfaces of an implicit sphere.

Figure 7. Example of a dysplasia diagnostic tool. MRI provides discrete volumetric data.



Figure 8. Implicit twisted surface.


