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Abstract

Accurate feature tracking is the foundation of several
high level tasks, such as 3D reconstruction and motion
analysis. Although there are many feature tracking algo-
rithms, most of them do not maintain information about
the error of the data being tracked. In this paper, we
propose a new generic framework that uses the Scaled
Unscented Transform (SUT) to augment arbitrary feature
tracking algorithms, by introducing Gaussian Random Vari-
ables (GRV) for the representation of features’ locations
uncertainties. Here, we apply the framework to the well-
understood Kanade-Lucas-Tomasi (KLT) feature tracker,
giving birth to what we call Unscented KLT (UKLT). It
tracks probabilistic confidences and better rejects errors,
all on-line, and leads to more robust computer vision ap-
plications. We also validade the experiments with a bundle
adjustment procedure, using real and synthetic sequences.

1. Introduction

Several problems in computer vision depend on the de-
termination of correspondences through a sequence of im-
ages. Feature tracking, finding correspondences along im-
age sequences, tracks selected image features as they move
through the image frames. It is an instance of the general
problem of optical flow, that represents the motion estimate
of a sequence frame at sparse image positions.

It is important to select reliable features to track, that do
not suffer from the aperture problem effect [15]. There are
many feature tracking algorithms, each relying on different
assumptions and objectives.

The Kanade-Lucas-Tomasi feature tracker (KLT), used
in this paper, is based initially on the work of Lu-
cas e Kanade [10], and was developed by Tomasi and
Kanade [15]. The matching criteria between consecutive
frames is based on the minimization of the sum of squared

differences (SSD) of window intensities, assuming a trans-
lational movement model.

Shi and Tomasi [12] extended this algorithm in order to
take into account more complex displacements, considering
the affine model. They have proposed a technique to moni-
tor the quality of the features being tracked. If the residual
of the match between image regions in the first and the cur-
rent frame exceeds a threshold, the feature is considered un-
reliable and is rejected. Later, some works presented an ex-
tension of Shi-Tomasi tracker that take into account changes
in illumination and reflection [5, 6].

Robust matching approaches automatically detect fea-
tures to be rejected. Examples include Torr et al. [16] that
adopts a RANSAC [2] approach to eliminate outliers and
Fusiello et. al. [3] that propose an extension to the KLT, by
introducing an automatic scheme for reject features based
on a rejection rule called X84.

The Scale-Invariant Feature Transform (SIFT) [9] is a
method to feature selection that extracts distinctive invari-
ant features from images so that they can be used to match-
ing between different frames. The features are scale and
rotation invariant, and are shown to provide reliable match-
ing through a wide range of affine distortion, changes in
3D viewpoint and are partially invariant to illumination
changes. It uses a cascade filtering approach, and opera-
tions with high computational cost are applied only in fea-
tures that satisfy initial requirements.

Unfortunately, none of these algorithms consider the
uncertainties of the data being tracked, the information
about the estimate’s reliability, as does the statistical opti-
cal flow [13].

In Section 2, we discuss types of tracking errors and the
importance of an uncertainty measure related to each fea-
ture point location. Section 3 presents the UKLT formaliza-
tion. In Section 4, we show experimental results using real
sequences and ground truth data, and an application on a
bundle adjustment procedure. Finally, we discuss our con-
clusions and future work.



2. Tracking errors and uncertainty estimation

Reliable feature tracking is the core for several problems
in the field of computer vision. Structure from motion algo-
rithms, for example, can reconstruct the 3D scene depth and
camera motion from a set of feature points tracked through
a sequence of frames. The quality of the reconstruction de-
pends on the accuracy of the feature tracking.

There are two main categories of tracking errors: loca-
tion imprecision and false matches [20]. In the former, fea-
ture points are in a location differing of a few pixels from
the true position. False matches occur when a feature is
mapped to a different location, causing gross mistakes.

In this paper, we introduce a new generic framework that
augments arbitrary feature tracking algorithms to track the
first two moments of a probability distribution (mean and
covariance). Here, for simplicity, we focused on one of
the most commonly used methods, the vanilla KLT [15],
to demonstrate the potential and benefits of our method.

Representing the features’ locations as Gaussian Ran-
dom Variables (GRVs), completely described by the first
two moments of a probability distribution, we associate to
each location an uncertainty measure, represented by the
second central moment. At this way, we have a confidence
region that represents the location errors, information that
can be used in a great variety of applications.

If we have a reliable estimate of uncertainty, we can im-
prove the parameters fit to noisy data, using a weighted least
squares fit that takes into account the uncertainty infoma-
tion, by minimizing the Mahalonobis distance between the
data and the predicted model [17]. This is used in several
computer vison problems, such as bundle adjustment and
epipolar geometry estimation.

Although the use of covariance matrices for the features’
locations uncertainty representation have been discussed in
the literature [8], with our method we have obtained good
results in bundle adjustment for structure from motion and
in the improvement of the feature location estimates. Al-
though estimation of uncertainties also have errors, their
use is valid and provides specially good results with our
method.

Chowdhurry [1] has derived an explicit expression for
the error covariance in motion and structure estimates as a
function of the error covariance in the feature positions in
the images, but his work does not consider the effects of
outliers. Steele and Jaynes [14] proposed a method to im-
prove the uncertainty estimates of the features’ locations,
propagating the covariance through the Jacobian of the fea-
ture location estimator. Their estimate does not take into
account the uncertainty of the feature tracking algorithm. In
the same way, Zhu et al. [21] have used a confidence mea-
sure based on the gray level difference, without considering
the inherent error of the tracking algorithm.

3. Tracking random variables

In this paper, our main goals are: feature uncertainty rep-
resentation and to improve the accuracy in the feature loca-
tion’s estimates. To accomplish this, we need to formulate
the problem with appropriate mathematical models.

The feature uncertainty representation is done through
the modeling of the feature locations as GRVs. This allows
us to use a probability distribution (in fact, we use only its
first two moments) to represent the correspondence.

When using concepts of predictive filters, a family of
parameter estimation techniques, we can obtain better es-
timates. These filters propagate the parameters and their
uncertainties through a system dynamics, and combine this
preliminary estimative with data obtained from the system’s
observations [4]. There are different types of predictive fil-
ters, each relying on different assumptions and objectives.

The linearity constraints required by the well-known
Kalman Filter (KF) are not satisfied in many practical ap-
plications, and suitable extensions have to be used. The
Extended Kalman Filter (EKF) is an estimator for nonlin-
ear systems that linearize all the nonlinear models, so that
we can use the traditional linear KF equations. However,
the EKF has some drawbacks, usually leading to poor rep-
resentations of the nonlinear functions and probability dis-
tributions of interest, that results in incorrect estimates.

The Unscented Kalman Filter (UKF) [7], based on the
Unscented Transform (UT), uses the true nonlinear model,
thus surpassing the EKF limitations. We use the UT in this
paper to estimate transformed GRVs.

3.1. The Scaled Unscented Transform

The Unscented Transform (UT) calculates the statistics
of a random variable that undergoes a non-linear transfor-
mation. The key idea of the UT is that is easier to ap-
proximate a Gaussian distribution than an arbitrary nonlin-
ear function/transformation [7]. In this paper, we will use
the Scaled Unscented Transform (SUT), an extension of the
Unscented Transform that ensures the positive definiteness
condition of the transformed covariance matrices [18].

Consider a random variable ~x (dimension n) that under-
goes a nonlinear transformation ~y = g(~x). Let ~̄x and Σx

be the mean and covariance matrix of ~x, respectively. To
calculate the mean and covariance of ~y, we generate a de-
terministic set X of 2n+1 sigma points Xi as follows [18]:

X0 = ~̄x,

Xi = ~̄x + (
√

(n + λ)Σx)i, i = 1, . . . , n, (1)

Xi = ~̄x − (
√

(n + λ)Σx)(i−n), i = n + 1, . . . , 2n,

whit λ = α2(n + κ) − n, where α determines the spread
of the sigma points around ~̄x and κ is a scale parameter. Fi-
nally, (

√

(n + λ)Σx)i is the ith row of the matrix square



root. This deterministic choice of the sigma points guaran-
tees that they completely capture the true mean and covari-
ance of the prior random variable ~x. We use α = 0.9 and
κ = 0 for all sequences. The value of α was chosen to min-
imize the particle spread, decreasing the occurrence of false
outliers.

Each sigma point has a associated weight Wi:

Wm
0 =

λ

n + λ
,

W c
0 =

λ

n + λ
+ 1 − α2 + β, (2)

Wm
i = W c

i =
1

2(n + λ)
i = 1, . . . , 2n,

where β is used for incorporate knowledge of the higher
order moments of the distribution. We use β = 2 for all se-
quences, since this should always be the value for Gaussian
priors. The subscript m indicates the weight for the mean
calculation, and c for the covariance calculation. The sigma
points are propagated through a nonlinear transformation

Yi = f(Xi).

The mean and covariance are approximated as

~̄y =

2n
∑

i=0

Wm
i Yi, (3)

and

Σy =

2n
∑

i=0

W c
i (Yi − ~̄y)(Yi − ~̄y)T . (4)

Figure 1 illustrates the method. The SUT approach results
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Figure 1. The Unscented Transform.

in an approximation that is accurate to at least the second or-
der. The third and higher order moments accuracy is deter-
mined by the choice of α and β [19]. Just for comparison,
the Extended Kalman Filter calculates the posterior mean
and covariance accurately only to the first order [7].

3.2. Unscented KLT: UKLT

When analyzing the feature tracking uncertainty, the ex-
isting algorithms usually consider only the relationship be-
tween the noise models and the feature points’ covariances,
emphasizing the local image characteristics and ignoring
the inherent error of the tracking algorithm. In this paper,
when we use the SUT to propagate the GRVs through a non-
linear transformation, represented here by the KLT feature
tracking algorithm, we are taking into account its inherent
error.

Let u(µi,Σi)k be the state vector of our system, where
for each discrete time step k we have the mean and covari-
ance (that describes a GRV) of each feature point i. At time
step k, we apply the SUT (Algorithm 1) to each feature
point i in the state vector u(µi,Σi)k: generate the sigma
points (Equation 1), propagate them using the KLT tracker,
and finally calculate the corresponding mean and covari-
ance (Equations 3 and 4). Note that with the use of only
the first two moments, we have a trade off between flexibil-
ity of representation and computational cost.

Algorithm 1 The Scaled Unscented Transform
1: function SCALED UNSCENTED TRANSFORM
2: given n feature points selected by the KLT algo-

rithm
3: for each feature point do
4: generate 2L + 1 sigma points, where L is the

RV dimension;
5: propagate the sigma points using the KLT

tracker;
6: calculate the mean (Equation 3);
7: calculate the covariance matrix (Equation 4);
8: end for
9: end function

For each time step k, we also make an observation of the
system, denoted by v(µi,Σi)k, that considers the local im-
age characteristics. This gives extra information to combine
with the first GRV. We do this through the generation of a
new GRV, whose covariance is estimated based on the gray
level variation. The covariance is given by the inverse of the
matrix

C =

[

∇2x ∇x∇y

∇x∇y ∇2y

]

,

where ∇x and ∇y represent the gradient in the x and y di-
rections, respectively. The mean is the coordinate estimated
by the KLT tracker.

On the context of predictive filters, we can see the SUT
estimate as the state prediction, and this new GRV as an
observation of the system. To obtain a better estimate of
the next state, we make the fusion of this two partial es-
timates using the Maximum Likelihood Estimation (MLE),



(a) Artichoke synthetic sequence. (b) Cow synthetic sequence. (c) Hotel real sequence.

Figure 3. First and last frame of each sequence. The sequences (a) and (b) have a ground truth.

an inference strategy that consists on choose the world para-
meters that maximize the observed measured probabilities.
Figure 2 illustrates the ideas of our method.
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Figure 2. Our algorithm.

The MLE finds the better estimate of the features’ posi-
tions and covariances, and the algorithm is reiterated using
this new locations as inputs. The UKLT algorithm is sum-
marized in Algorithm 2.

Algorithm 2 Unscented KLT
1: function UNSCENTED KLT (UKLT)
2: given an image sequence;
3: select feature points and calculate their initial

Gaussian distribution
4: for each feature point do
5: compute the SUT using algorithm 1;
6: use the KLT feature tracker to obtain the obser-

vation;
7: fuse this estimates using MLE;
8: end for
9: end function

3.3. Rejecting outliers

Due to the difficulty of the feature tracking problem,
the existing matching methods commonly output bad corre-
spondences, making outlier rejection an essential step. Us-
ing the problem formalization of Section 3, outliers are re-
jected on-line, during the tracking itself.

Our algorithm propagates five points and calculates a co-
variance matrix for each selected feature point. When one
of the five sigma points is mapped to a wrong location (i.e.
far from its “real” position), our method discards the re-
spective feature point. This usually happens when the main
sigma point (the KLT estimate for the original location) is
mapped to a region that is very close of the limit between a
rich and a poor texture pattern. One or more sigma points
falls on the poor texture and KLT looses the tracking.

When the Equation 4 or the result of the MLE fusion
is an non-positive semi-definite matrix (that is, it is not a
covariance matrix), the feature point is also rejected. This
aspect still needs a deeper mathematical analysis.

4. Results

In this paper, we compare the tracking accuracy of our
algorithm against the standard KLT on three different se-
quences. We generate the first synthetic sequence, Fig-
ure 3(a), by a sequence of controlled translational warpings
of the known Artichoke image. For the second synthetic
sequence, Figure 3(b), we rendered the animation of a tex-
tured 3D model of a cow – we know the 3D coordinates,
and their 2D projected image coordinates, for every frame.
The real sequence is the Hotel1, a static scene observed by a
moving camera rotating and translating. The Cow sequence
has an image resolution of 512 × 512 pixels, and the other
two sequences of 512 × 480 pixels. The three sequences
have 50 frames.

To analyze the results of our algorithm, we evaluate its
performance in two steps: feature tracking and 3D recon-
struction. Shortly, we apply both KLT and UKLT in each
image sequence and (a) measure the accuracy of the esti-
mated locations using different metrics and (b) use the cor-

1CMU/VASC Image Database. http://vasc.ri.cmu.edu/idb/
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(a) Artichoke sequence (b) Cow sequence

Figure 4. Euclidean distance of the estimated feature positions from the real ones (synthetic se-
quences) (lower is better).
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(a) Cow sequence (b) Hotel sequence

Figure 5. RMS distance of the feature points to the corresponding epipolar lines (lower is better).

respondence set on a bundle adjustment procedure and mea-
sure the reprojection error. The results confirm that the use
of the random variables obtained by our method (Section 3)
leads to a improved feature tracking and consequently to a
more accurate 3D reconstruction.

4.1. Feature tracking analysis

As we have the ground truth for synthetic sequences, we
can measure the difference between the estimated and the
“real” position of each feature point. We compare the dif-
ference frame by frame using the estimates of the KLT and
UKLT algorithms.

Figure 4(a) shows a plot of the distance error magnitude
for the synthetic Artichoke sequence and Figure 4(b) for the
Cow sequence. Note that our method gets better estimates
in both sequences. This lower error is not only because of
better estimates, but also because our method reject features
that are not well tracked, while KLT algorithm stills pre-
serves them (Section 3).

As a second validation procedure, we compute the fun-

damental matrix between the first and last frames of each
sequence, and then compute the Root Mean Square (RMS)
distance of the tracked points from the corresponding epipo-
lar lines. If the epipolar geometry is estimated exactly, all
points should lie on epipolar lines. Figure 5 shows the
RMS distance of the feature points from the correspond-
ing epipolar lines in each sequence frame. We compute
the fundamental matrices using the UKLT and KLT corre-
spondences. Figure 5(a) shows the results for the synthetic
Cow sequence and Figure 5(b) for the real Hotel sequence.
Note how our method reaches better results than the stan-
dard KLT.

We also compare the fundamental matrix estimated from
the ground truth correspondence set with the fundamental
matrix estimated from the correspondences tracked. We
used the algorithm proposed by Zhang [20]. Table 1
presents the results.

Based on the experimental results, we can conclude that
our method tracks features more robustly than KLT, getting
better estimates and rejecting outliers. Our method also
propagates a GRV that represents the features’ locations.



Sequence UKLT KLT
dEpLine dGT Zhang dEpLine dGT Zhang

Artichoke 1.31 1.87 57.10 2.26 3.40 178.66
Cow 1.98 2.59 28.11 4.81 10.01 56.53
Hotel 1.18 – – 3.94 – –

Table 1. Error metrics. dEpLine: RMS distance to the epipolar line; dGT: distance between the real
and the estimated position; and Zhang: fundamental matrix comparison using the Zhang’s method.
Measurements for the last frame (lower is better).
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Figure 6. Reprojection error magnitude.

This information is useful in various applications, as in a
bundle adjustment procedure.

4.2. Application to bundle adjustment

The tracked features are used to estimate camera motion
and 3D scene depth using a structure from motion algo-
rithm. To estimate the unknown 3D feature and camera pa-
rameters from the observations, and reconstruct the scene,
one minimizes some measure of their total prediction error.

Bundle adjustment is the model refinement part of this,
refining the visual reconstruction to obtain both 3D struc-
ture and viewing optimal parameters estimates. We say op-
timal because bundle adjustment involves the minimization
of a cost function, related to the model fitting error. The
choice of the cost function is an important step [17].

One of the most basic parameter estimation methods is
nonlinear least squares, a classic formulation of bundle ad-
justment computations.

Suppose that we have vectors of observations vi pre-
dicted by a model zi = zi(x), where x is a vector of
model parameters. Nonlinear least squares takes as esti-
mates the parameters values that minimize the weighted
Sum of Squared Error (SSE) cost function [17]:

f(x) ≡
1

2

∑

i

∆zi(x)T Wi∆zi(x), (5)

where ∆zi(x) is the feature prediction error and Wi is an ar-
bitrary symmetric positive definite (SPD) weight matrix. In
this paper, we use W as the covariance matrix obtained by
our method, giving us an uncertainty measure of the struc-
ture and motion parameters.

In this paper, we use the structure from motion and bun-
dle adjustment procedures described in [11]. To evaluate
the quality on the 3D reconstruction, we reproject the esti-
mated feature points and measure the error magnitude to the
ground truth, in the case of the synthetic sequences, and the
RMS distance to the epipolar line for the real sequence.

Figure 6(a-b) illustrates the results for the synthetic se-
quences and Figure 6(c) for the Hotel sequence. Note the
superior performance of our method. In the Artichoke se-
quence, the reconstruction obtained by our method is better
in all frames after frame 12. In the Cow sequence, the rota-
tion cause the instabilities.

4.3. Implementation issues

We have implemented our algorithm using Matlab. The
running times on a 2GHz Pentium 4 with 256Mb of memory
are in Table 2.

Our algorithm takes 107.79 seconds for the Artichoke
sequence, 143.59 seconds for the Cow sequence and 111.04
for the Hotel sequence. The KLT part refers to the time



Sequence UKLT KLT
Total time KLT part

Artichoke Sequence 107.79 75% 21.26
Hotel Sequence 111.04 76% 24.62
Cow Sequence 143.59 79% 27.31

Table 2. Running times.

taken to propagate the feature sigma points. Note that the
cost of the UKLT algorithm its higher, since it involves the
tracking of five times more points. The standard KLT al-
gorithm takes 21.26 seconds for the Artichoke Sequence,
27.31 seconds for the Cow sequence, and 24.62 second for
the Hotel sequence. As the outlier rejection is done on-line,
we do not need additional steps (and time) for this.

5. Conclusions

We have devised a method to estimate the random vari-
able that undergoes a non-linear transformation, and com-
bined this method with the KLT feature tracker. In this way,
it is possible to use the standard KLT algorithm to propagate
the associated uncertainty of each feature point. We empha-
size that any other feature tracking algorithm could be used
instead of KLT.

Our approach represents the feature locations as a GRVs,
which enables us to propagate the uncertainty of the fea-
ture points. Using this representation, we know in what
direction the error is high, making possible to use a more
adequate error minimization measure. This information is
important in a wide range of applications, such as bundle
adjustment.

The results confirm that our method better discard fea-
tures that should be considered outliers. This significantly
improves the quality/accuracy of the tracking, and avoid
large errors in high level tasks. The on-line outlier rejection
avoids post-processing steps, increasing the process robust-
ness. Future work includes the use of other trackers and the
extension of the results to 3D algorithms.
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