
Subspace Hierarchical Particle Filter

Bruno Cedraz Brandão, Jacques Wainer, Siome Klein Goldenstein
Universidade Estadual de Campinas – Instituto de Computação

Av. Albert Einstein, 1251, Campinas, SP, Brazil
{bruno, wainer, siome}@ic.unicamp.br

Abstract

Particle filtering has become a standard tool for non-
parametric estimation in computer vision tracking applica-
tions. It is an instance of stochastic search. Each particle
represents a possible state of the system. Higher concentra-
tion of particles at any given region of the search space im-
plies higher probabilities. One of its major drawbacks is the
exponential growth in the number of particles for increasing
dimensions in the search space. We present a graph based
filtering framework for hierarchical model tracking that is
capable of substantially alleviate this issue. The method re-
lies on dividing the search space in subspaces that can be
estimated separately. Low correlated subspaces may be es-
timated with parallel, or serial, filters and have their prob-
ability distributions combined by a special aggregator filter.
We describe a new algorithm to extract parameter groups,
which define the subspaces, from the system model. We val-
idate our method with different graph structures withing a
simple hand tracking experiment with both synthetic and
real data.

1 Introduction

Non-parametric estimation has many advantages over
its parametric counterpart, ubiquitously represented by the
Kalman filter [13]. In many stochastic applications of
computer vision, probability distributions assume arbitrary
shapes over time, requiring solutions that are more powerful
than the Gaussian/Linear estimation.

Particle filter is a tool for non-parametric estimation that
is used extensively by the computer vision [15, 2] and ma-
chine learning [4, 10] communities. It can be seen as a
stochastic search algorithm, where a set of particles, each
one representing a possible system state, forms a distribu-
tion of probability that represents our knowledge of the sys-
tem state. Roughly speaking, higher concentrations of par-
ticles at any given region implies higher probabilities that
such region represents the real state of the system. Unfor-

tunately, estimation under high dimensional search spaces
usually requires exponentially more particles to assure con-
vergence. This is known as the curse of dimensionality [11].

We propose a method to extract subspaces from the
search space according to some implicit structure of the fil-
ter’s observation function. For tracking applications involv-
ing hierarchical models, this function absorbs the hierarchi-
cal structure of the tracked object. Some of its parameters
have a broader influence over the final configuration of the
projected object at the observed image. It is the case of the
wrist position and rotation parameters of a hand tracking ap-
plication, for example. This information will be used to de-
cide which subspaces can be tracked separately and which
should be estimated in bundles. Then, a directed acyclic
graph structure of specialized filters may be built. Special-
ized filters are responsible for tracking a given subspace.
This graph-based divide and conquer approach has the po-
tential to decrease exponentially the number of particles.

In the next section, we review briefly related work. In
section 3, we present a overview of the standard particle
filter. Section 4 contains the description of the Subspace
Hierarchical Particle Filter. In section 5, we present the al-
gorithm to extract the parameter subspaces. A case study
is described in section 6, and, in section 7, experimental re-
sults, based on real and synthetic data, are presented and
discussed. Section 8 summarizes our contributions.

2 Related Work

Much work has been done to extend the particle filter
framework to multi-target tracking, many of which may be
applied to hierarchical models to alleviate the dimensional-
ity problem. In this section, we cover a small selection.

In [11, 12], MacCormick and Isard introduced the parti-
tioned sampling method to articulated object tracking which
made the dimensionality problem tractable. Their partition
of the sample space assumes that the system dynamics f()

is decomposable as

f(xk|xk−2) =
∫

fB(xk|xk−1)fA(xk−1|xk−2)dxk−1.

(1)
Where fA and fB represent the dynamics of two different
objects. Their method is similar to ours for serial topolo-
gies, but it considers characteristics of the dynamics func-
tion instead of the observation function. Their choice is
more appropriate for multi-target tracking. They have also
proposed a branched partitioned sampling that, unlikely
ours, searches over every subspace in each branch, in dif-
ferent order, to improve tracking accuracy. They have il-
lustrated their framework with the bidimensional contour
tracking of the hand.

Deutscher and Reid [3] have presented the annealed par-
ticle filter which, through a series of gradually narrowing
weighting functions, tries to efficiently assign particles to
most promising regions of the sample space. This method
is similar to well known methods [9]. They have introduced
the crossover operation into the particle filter framework
and have shown how it improves the convergence for ar-
ticulated object tracking. The operation can combine the
best parts from particles in different high probable regions,
introducing some new states, not available before, that ex-
plore potentially new high probable regions. We have used
a similar crossover operation to combine the probability dis-
tributions from separate filter branches. They have also il-
lustrated their method with a 35-degree of freedom, multi-
ple camera, body tracking application in uncluttered back-
ground.

To conclude this section, we point to a different approach
to gradually assign higher probabilities to promising regions
that is due to Stenger, the hierarchical Bayesian filter [16].
It performs a tree-search over an integral grid representa-
tion that is hierarchically partitioned as the search descends
into each region. This technique requires multiple level dis-
cretization of the search space, and therefore, may not be
suited for high dimensional tracking applications. It has
been used for hand tracking over cluttered backgrounds, but
no more than six degrees of freedom where estimated at any
time.

3 Particle Filter Overview

Particle filtering is one of many Bayesian non-parametric
estimation techniques. It is known by several names such
as Condensation [8], Bootstrap filter [7], and Sequential
Monte Carlo [5]. In this section, we describe briefly the
algorithm’s main elements. As in [7], we consider the sim-
pler proposal distribution

q(xk|xk−1,Yk) = p(xk|xk−1). (2)

In the Bayesian framework, we represent the knowledge
about the system’s state through the use of probability dis-
tributions. In the case of particle filters, we represent arbi-
trary distributions with sets of particles. Conversely, each
particle may be thought as a sample from the represented
distribution. Each particle may, or may not, have an asso-
ciated weight. A smooth probability distribution might be
extracted from the set of particles using a kernel density es-
timation algorithm [6].

A set of N particles is used to represent our distribution.
The particle filter framework also requires a function that
models the dynamics of the system, an observation func-
tion, a likelihood function, and a resampling procedure. If
our system is n-dimensional, our particle will be a sample
of Rn. The dynamics function f : Rn → Rn should be able
to make reasonable predictions on the near future state of
the system given the current state, in other words

xk+1 = f(xk,uk) (3)

where uk models the uncertainty of our prediction. This
equation also implies a Markovian assumption.

The observation distribution, in Rm, simulates the obser-
vation using distribution samples. We need this procedure
to compare an observation with a particle within the likeli-
hood function. It must model how the measurement noise
is expected to affect the observation. This is important in
order to implement the likelihood function correctly. The
observation function h : Rn → Rm takes one particle and
builds the corresponding observation

yk = h(xk) + vk, (4)

where vk is the observation noise. The likelihood function
assigns a value

wi = p(yk|xik)/
N∑
j=1

p(yk|xjk), (5)

that measures how probably a given observation might have
been generated if the system was in the state described by
the particle xik.

This functions and representations are organized in three
steps to perform the Bayesian estimation.

1. Predict: Each particle of the initial distribution goes
through the dynamics function and a prediction distri-
bution results.

2. Update: A weight, wi, is assigned to each predicted
particle according to the likelihood function. A new,
weighted, particle distribution is formed.

3. Reconfigure: A final, unweighted, distribution is gen-
erated by resampling N particles from the weighted

distribution, with resampling probability correspond-
ing to the weights. Particle with relatively high wi have
higher chances of being copied to the final distribution.

The first two steps are responsible for the Bayesian esti-
mation. The last step is an optimization for particle filters.
In the next section, we describe our proposed filter architec-
ture.

4 Subspace Hierarchical Particle Filter

The Subspace Hierarchical Particle Filter consists of a
group of particle filters arranged into an acyclic graph struc-
ture. Each individual particle filter is assigned to track a
different subspace. With this construction, it is possible to
reduce the impact of the exponential growth in the number
of particles. In this section, we will explain how an already
built filter performs tracking, the typical topologies and our
solution to the issue of combining different distributions.

4.1 General Aspects and Topologies

The Subspace Hierarchical Particle Filter is a directed
acyclic graph where the nodes are particle filters special-
ized on a subspace. All specialized filters have in common
the observation and likelihood functions. Every filter has
its own number of particles and search range. The search
range is defined by a vector that stores the maximum dis-
placement that any parameter of the particle may acquire.
In other words, this limits the movement of the particles
in the search space. A filter that has any parameter search
range assigned to zero do not perform search in that direc-
tion. This means that the specialized filter does not change,
or inject new values on, those parameters. Ideally, a special-
ized filter should be assigned as few as possible parameters
in order to minimize the overall number of particles.

A special filter is needed when we combine distributions
from different particle filters. We will call them aggrega-
tor filters. An aggregator filter usually performs a broader
search but withing a very limited range. Their primary func-
tion is to reject incompatible particles that arise in the com-
bination of different distributions. We will explore this lat-
ter. It may also be used to perform a last fitting step over the
particle distribution.

There are two ways to organize the filters in terms of es-
timation. We may think of our acyclic graph structure as a
combination series and parallel nodes. As stated in the sec-
tion 2, our serial estimation is similar to what is described
in previous works. This basic topology is illustrated in Fig-
ure 1.

Each filter, A to E, has its own parameter subspace, xA

to xE , respectly. There is an aggregator, F, for a last general
fit. During a typical execution of the filter, A receives the

Figure 1. Serial topology and range vectors.

prior distribution, perfoms its estimation, and forwards the
resulting distribution to filter B. The posterior distribution
is the resulting ditribution of filter F.

Particle transfer between filters is performed simply by
resampling the needed number of particles from the previ-
ous filter’s weighted particle set.

Figure 2. Parallel topology example.

Branches may arise at the observation function of hierar-
chical models, hk, when some elements of the observation
vector, d = h(x), are not equally influenced by the same set
of parameters, x, that is,

{∃xξ �= xψ, i �= j|hi(xξ) = hi(xψ) ∧ hj(xξ) �= hj(xψ)}
(6)

Each branch of the observation function will result in the
value of an element of the observation vector.

As we stated, there is the possibility to arrange the filters
in parallel according to the observation function. This situ-
ation is illustrated in Figure 2. The execution of this filter
is similar to that of the serial. Particle transfer from filter
A to filters B to E is actually the same. How to combine
the resulting distributions into filter F is a problem we will
solve through the use of the crossover operation.

Let’s assume a group of converging nodes, each one spe-
cialized into a disjoint set of parameters. We will employ a
multi-parent crossover operation to build the new posterior
distribution. As in Figure 2, we could name the subsets of
parameters of our particle as x = (xA,xB ,xC ,xD,xE).
The multi-parent crossover will choose some subregions of
each filter, from B to E in order to build the particles that
will form the initial distribution of F. The operation should

Figure 3. Incompatible hypothesis generated
after separate estimation of high correlated
parameters.

choose from each filter, preferably, only updated regions.
At subsection 4.3, we will show how to determine those re-
gions automatically.

The crossover operation might generate an inconsistent
set of particles. Therefore, we need the aggregator filter F.
It will naturally reject inconsistent, low probable, particles
and perform a final fit.

When we execute the SHPF, filters are not queued for ex-
ecution until they have their initial distributions completely
filled by the previous filters.

4.2 Discussion

We may not simply unite every parallel distribution, i.e.
by randomly sampling a particle from each converging fil-
ter, because the resulting distribution will be biased towards
the prior. This happens since we usually assign the estima-
tion of a given parameter to a single filter. therefore, one
of the converging nodes will have an updated value while
many others will have the prior’s value.

When we approximate distributions through particles,
tracking a subspace may change the distribution of orthog-
onal subspaces. Particles from any given specialized filter
may only be moved in the directions that correspond to non-
zero elements of the range vector. At the reconfigure step,
particles with high probabilities will have priority to form
the new distribution. This selection might unevenly exclude
particles that are needed to represent orthogonal distribu-
tions. As a consequence, inherited subspaces, i.e. those that
do not belong to any parallel filter, might have their distri-
butions differently changed by the parallel filters. At the
extreme case, each parallel filter will introduce an incom-
patible hypothesis, making it very difficult to combine the
distributions.

This behavior is illustrated in figure 3. The left Figure
shows a very correlated torus-like particle distribution next
to an ellipsoid distribution from the observation. The pa-
rameters corresponding to the Z-axis were estimated pre-

Figure 4. Range masks being forwarded.

viously. We then estimate X and Y separately. The figure
to the right shows the projection from the particles and ob-
servation distribution at each plane. X estimation may only
move the particles parallel to the X-axis. Similarly, esti-
mation over Y may only perform movements parallel to the
Y -axis. If we consider the XY plane projection and the
fact that every filter shares the same likelihood function, we
may agree with the resulting distributions plotted next to the
Z-axis. The one to the left represents the distribution of the
Z parameter after the estimation of the parameter X . Sim-
ilarly, the one to the right, represents Z after Y estimation.
Clearly those distributions are incompatible, since there is
no overlap between the two.

This extreme case tells us that parameters that are very
correlated should be estimated together. Slightly correlated
parameters, as shown in Figure 2, might be estimated in
parallel and then combined through the crossover operation.

4.3 Selecting Particle Subregions

In this subsection, we present an automatic algorithm to
select particle subregions that will be used by the crossover
operation. We will show how to use the range vectors, par-
ticle numbers and topology to preprocess a data structure
containing that information.

The procedure consists of two stages. At the first one,
ilustrated at Figure 4, we forward the range masks and gen-
erate the occupation vectors. The range mask is a binary
mask that assumes one for non-zero regions of the range
vector and zero for zero regions. The occupation vector
records the quantities of each region it has received by each
direct previous filter. When a filter receives a mask from its
predecessor, it updates the occupation vector by increment-
ing the counter for every marked region of the mask, then it
merges the received mask with its own. After receiving ev-
ery predecessor’s mask, the filter is able to forward its new,
merged mask that represents every region it estimates and
every region estimated by its predecessors.

At the second stage we will use the range mask, occu-
pation vector, Occ(ρ,j), the number of predecessors, Π(ρ),
and the number of particles, n(ρ), from each filter, ρ, to
evaluate the proportion from each particle region each fil-
ter should forward for the crossover operation. There are
two situations a filter should forward a region. If a filter
tracks or inherits a region, xj (region will be marked at
the range mask), it will forward a quantity of n(ρ)/Occ(ρ,j)

of those regions for the adjacent filter ρ. If the occupa-
tion vector value for a given region is zero at the adjacent
filter, implying that no predecessor filter estimates that re-
gion, every filter should forward an equal number of those
regions. The number is n(ρ)/Π(ρ). For exemple, filter B
at the Figure 4, forwards the following number of each re-
gion: {n(F)/Π(F,1) = 75, n(F)/Occ(F,2) = 75, 0, 0, 0,
n(F)/Occ(F,6) = 300}.

4.4 Finding Subspaces

In this section, we will show a procedure to partition the
parameters in groups that will form the subspaces of the
specialized filters, and, at the same time, suggest a topology.
One possibility, commonly found in the neural network and
control communities [1], is to evaluate the Jacobian Matrix

J(X) =
∂hi(X)

∂xj
(7)

of the observation function hk. Those elements, jij , of the
matrix that are always zero represent parameters xj , of the
particle, that do not affect certain observation hi. We want
to groups the parameters that act on same set of observations
to get a rough idea of which groups might be estimated in
parallel. Naturally, when the model structure is clear, one
might readily pick those groups, but in situations where the
model is obtained by training, or the model is overly com-
plex, an automatic algorithm is needed.

We will use the Jacobian matrix to generate a new matrix
which elements are assigned to one, if they are non-zero for
some value of X, or zero otherwise. We will call this ma-
trix the Observability Matrix. When we manually write
hk, the observability matrix may be extracted by simple in-
spection.

In order to extract the groups, we assign to each column
of the observability matrix two values: the number of ones,
oj , and the number resulting from the binary pattern of the
column, vj . When we sort the rows by oj , and by vj as sec-
ondary key, the resulting matrix will have a structure similar
to

1 1 0 0 1 1 0 0 0
1 1 0 0 1 1 0 0 1
1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 1 0
1 1 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0

,

Figure 5. Suggested partition and topology.

in which columns with equal vj belong to the same group.
In this example, we have from left to right, the groups {63},
{12}, {3}, {16}, {8}, {2}, labeled after vj .

To decide which groups may be estimated in parallel, we
perform a simple bitwise-and operation between the vj’s of
each pair of groups. Those pairs that have no overlap might
be estimated in parallel in our framework. The order of the
serial estimation may be assumed to be of decreasing oj .
Figure 5 illustrates the relations extracted from the above
matrix. Note that this is a suggestion only, as groups with
no overlapping might still be high correlated through their
predecessors. It is up to the designer to choose one of the
possible topologies. Along with the topology, the designer
must choose the number of particles and define the actual
limits of the dynamics model at each node. We think that
this aspects might be automated by a learning approach [14]
and we plan to investigate this possibility in future works.

4.5 Algorithm

In this section we provide the detailed Subspace Hierar-
chical Particle Filter algorithm. Before execution of the fil-
ter, we must run the Preprocessing function in order to gen-
erate a structure, PT (Particle Transfer), with the quantities
of each regions each filter should forward, as described in
section 4.3. PT(ρ,�,k) is the number of regions xk the filter
ρ should forward to filter �. We will build this structure us-
ing the range vector Range, and the graph topology, given
by the adjacent list, Adj, and the number of predecessors
of each filter, Π. The preprocessing function needs some
auxiliary structures: the range mask, Mask; the occupation
vector, Occ; and the masks sent from every filter to every
other filter, MfP.

Each filter ρ has its particle vector P(ρ) and weight vector
W(ρ), so that

W(ρ,i) =
i∑

j=1

wj and W(ρ,n(ρ)) = 1. (8)

Observations are acquired in the form of the structure O. D
is an auxiliary matrix that marks which regions from which
particles have been filled, that is, β = D(ρ,j) particles of the
filter ρ have their element xj filled.

The parameter limiting filter might be used to limit the
tracking up to that filter. This is useful if we want our filter
to work on a different mode. Normally limiting filter = m,
where m is the last filter. Particle vector, P(1), should have
a valid distribution at the beginning. The posterior will be
available at the same vector, P(1). At the algorithms below,
we assume that logical terms are evaluated to 1 and 0, for
true and false, respectly.

Partial Particle Filter (P,W,O, ρ)
1. Transition Function (P(ρ))
2. Likelihood (P(ρ), O,W(ρ))

Guided Reconfigure (P,W, PT,D, ρ, �)
1. For each i from 1 to Max (PT(ρ,�)):
2. r⇐ Uniform (0, 1)
3. k⇐ Binary Search (W(ρ), r)
4. For each j from 1 to paticle size:
5. If {PT(ρ,�,j) > 0}:
6. P(�,D(�,i),j) ⇐ P(ρ,k,j)

7. PT(ρ,�,j)⇐ PT(ρ,�,j) − 1
8. D(�,j) ⇐ D(�,j) + 1

SHPF (P,O, Adj, PT, limiting filter)
1. D⇐ 0
2. W ⇐ 0
3. Q← {1}
4. While {Q �= ∅}:
5. ρ← Q
6. Partial Particle Filter (P,W,O, ρ)
7. For each � in Adj(ρ):
8. Guided Reconfigure (P,W, PT,D, ρ, �)
9. If {� α ∈ D(�)|α �= n(�)}:
10. Q← {�}
11. Guided Reconfigure (P,W, FP,D, limiting filter, 1)

Preprocessing (PT, Adj, nAdj,Π, Range)
1. For each i from 1 to m:
2. π(i) ⇐ Π(i)

3. For each k from 1 to particle size:
4. Mask(i,k) ⇐ {Range(i,k) > 0}
5. Occ(i,k) ⇐ 0
6. Q← {1}
7. While {Q �= ∅}:
8. ρ← Q
9. For each � from 1 to Π(ρ):
10. For each k from 1 to particle size:
11. Mask(ρ,k) ⇐ {Mask(ρ,k) ∨MfP(ρ,�,k)}
12. Occ(ρ,k) ⇐ Occ(ρ,k) + MfP(ρ,�,k)

Figure 6. A simple hand model.

13. For each � in Adj(ρ):
14. MfP(�) ⇐ Mask(ρ)

15. π(�) ⇐ π(�) − 1
16. If {π(�) = 0}:
17. Q← {�}
18. For each i from 1 to m:
19. For each j from 1 to nAdj(i):
20. For each k from 1 to particle size:
21. If {Mask(i,k) > 0}:
22. PT(i,j,k) ⇐ n(j)/Occ(Adj(i,j),k)

23. Else, if {Occ(Adj(i,j),k)
= 0}:

24. PT(i,j,k) ⇐ n(j)/Π(j)

25. Else:
26. PT(i,j,k) ⇐ 0
27. For each k from 1 to particle size:
28. PT(m,1,k) ⇐ n(1)

5 Case Study

We illustrate, and validate, our method with a simple
hand tracking experiment. We designed a hand model with
15 degrees of freedom, five for wrist 3D position, row and
yaw angles, and two for each rigid finger row and yaw
angles. The observations are the positions of six uniden-
tified markers, one at the center of the palm and one at
each finger tip. Figure 6 illustrates our model. Our setup
is clearly ill-conditioned since we should be able to track at
most twelve parameters reliably. To cope partially with that,
some parameters are given very limited range of variation,
just enough to deal with initial fitting and small changes
during the estimation. It is possible for the estimated pa-
rameters to assume considerably different poses from the
ground truth for the same marker positions, but, we can still
perform interesting experiments with such a simple setup.

All real data acquisition was performed with a main-

Figure 7. Standard particle filter (a). Serial (b)
and parallel (c) SHPF topologies.

stream webcam. We marked a medical glove with six
unidentified markers painted in red from which we only
extract the center position. Drugstore glove, painted with
gouache, is still one of the fastest, and cheapest, ways of
setting up a hand tracking application. The synthetic data
was manually generated, and consists of sequences of hand
model states from which we may extract synthetic obser-
vations. We employ a greedy proximity approach to match
observed markers with those estimated through the model.
This setup is not robust to occlusion. Extending the filter to
track first derivatives of parameters might make these situa-
tions less ambiguous.

6 Experiments and Validation

For validation purposes, we created synthesized se-
quences involving 3D hand rotation, grabbing, translation
and individual finger movement. We tested tree differ-
ent topologies (Figure 7) and different parameter variances.
The standard particle filter is tested with three different
numbers of particles: 1.000, 5.000 and 10.000 particles. We
have a serial and a parallel topology, that closely resembles
the observation function, with 1.000 particles each. Since
our setup has some “loose” degrees of freedom, that would
induce unpredictable deviations, and make it impractical to
compare the hidden states of any two given filters. There-
fore we evaluated how close the filter matches the synthe-
sized markers. All the sequences are of relatively fast move-
ment, with a “grab” movement being performed in one sec-
ond, for example.

Figures 8 and 9 display the sum of squared differences
between each filter estimation and the synthesized data per
frame for the period of a “grab and rotate” operation. As ex-
pected, the error for the SHPF was, most of the time, smaller

 0

 50

 100

 150

 200

 10 20 30 40 50 60 70 80 90 100

S
S

D
 E

rr
or

Frames ("Grab and Rotate" sequence)

P.F.− 10.000
P.F.− 5.000
P.F.− 1.000

Parallel SHPF
Serial SHPF

Figure 8. SSD graph of five filter configu-
rations performing over a synthesized se-
quence.

than that for standard particle filters with similar particle
number. Actually, in some situations, it performed better
than a filter with ten times more particles. The parallel filter
seemed to be more stable than the serial for the same num-
ber of particles. This is reasonable as the crossover opera-
tion forces a broader distribution of particles over the search
space, while sequential filtering narrows the distribution at
each step. Both require much less particles than the stan-
dard filter, but the parallel topology adapts faster to unpre-
dictable changes in observation. Since we use the median of
the distribution to estimate the filter state at any given time,
our filter output is somewhat shakier than that of filter with
much more particles, but is proportionally faster and more
accurate.

We experimented with real data sequences where obser-
vation is sometimes missed or incorrectly assigned to a non-
target region of the image. Fortunately, the filter maintains
enough information in its distribution to be able to recover.

When we start tracking, the SHPF is set to run only at
the first specialized filter. This way, it can match a prede-
termined pose by using rigid motion only. If the filter is al-
lowed to perform complete estimation when fully immersed
in regions of low probability, it may assume unpredictable
states and never recover. Only when the likelihood function
starts to evaluate probabilities above a certain threshold, the
filter is allowed to perform full estimation. Figure 10 shows
four frames from a 15 seconds sequence. The two images to
the left show the initial fitting process. The remaining two
are frames from a grab movement. With this setup, and esti-
mating 15 parameters, the SHPF was capable of performing
30fps tracking on a Pentium 4 3.2Ghz system.

Figure 10. Frames from a real grab sequence. The pictures to the left are from the initial fitting step.

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90 100

S
S

D
 E

rr
or

 (
G

au
ss

ia
n)

Frames ("Grab and Shake" sequence)

P.F.− 10.000
P.F.− 5.000
P.F.− 1.000

Parallel SHPF
Serial SHPF

Figure 9. Previous graph, Gaussian filtered.

7 Conclusions and Future Work

We have proposed a generic DAG framework for parti-
cle filter design that employs the model’s observation func-
tion to partition the parameter space into subspaces that may
be tracked separately. We have argued that some groups
may be tracked in parallel and combined by a multi-parent
crossover operation. An easy way to partition the param-
eter space through the observation function Jacobian was
shown. We have validated our method through a simple
ill-conditioned hand tracking experiment with real and syn-
thetic data.

In future work we intend to complete the mathemati-
cal model of the SHPF. We plan to employ a learning ap-
proach to the filter construction to automatically determine
the topology, number of particles, and limits of the dynam-
ics function of each node. We are also planning to apply
dynamic reconfiguration techniques to the system model in
order to make it capable of adapting to changes in the ob-
servation. This is the case of, for example, the unexpected
disappearance of one on more markers in our current setup
due to occlusion or resolution issues.

References

[1] C. M. Bishop. Neural Networks for Pattern Recognition.
Oxford University Press, 1996.

[2] F. Dellaert, W. Burgard, D. Fox, and S. Thrun. Using the
CONDENSATION Algorithm for Robust, Vision-based
Mobile Robot Localization. In CVPR, volume 2, pages 588–
594, June 1999.

[3] J. Deutscher and I. Reid. Articulated Body Motion Capture
by Stochastic Search. IJCV, 61(2):185–205, 2005.

[4] A. Doucet, N. de Freitas, K. P. Murphy, and S. J. Russell.
Rao-Blackwellised Particle Filtering for Dynamic Bayesian
Networks. In UAI, pages 176–183, 2000.

[5] A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte
Carlo sampling methods for Bayesian filtering. Statistics
and Computing, 10(3):197–208, 2000.

[6] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classifica-
tion. Wiley Publishing, second edition, 2000.

[7] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel
approach to nonlinear/non-Gaussian Bayesian state estima-
tion. In Proceedings-F Radar and Signal Processing, vol-
ume 140, number 2, pages 107–113, 1993.

[8] M. Isard and A. Blake. CONDENSATION Conditional
Density Propagation for Visual Tracking. IJCV, 29(1):5–28,
1998.

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization
by Simulated Annealing. Science, 220:671–680, 1983.

[10] M. Klaas, N. de Freitas, and A. Doucet. Toward Practical N2

Monte Carlo: The Marginal Particle Filter. In UAI, 2005.
[11] J. MacCormick and A. Blake. A Probabilistic Exclusion

Principle for Tracking Multiple Objects. IJCV, 39(1):57–
71, 2000.

[12] J. MacCormick and M. Isard. Partitioned Sampling, Ar-
ticulated Objects, and Interface-Quality Hand Tracking. In
ECCV, pages 3–19, 2000.

[13] P. S. Maybeck. Stochastic Models, Estimating, and Control.
Academic Press, 1979.

[14] R. E. Neapolitan. Learning Bayesian Networks. Prentice
Hall, 2003.

[15] K. Okuma, A. Taleghani, N. de Freitas, J. J. Little, and D. G.
Lowe. A Boosted Particle Filter: Multitarget Detection and
Tracking. In ECCV, pages 28–39, 2004.

[16] B. Stenger. Model-Based Hand Tracking Using a Hierarchi-
cal Bayesian Filter. PhD thesis, University of Cambridge,
March 2004.

