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Abstract

This paper makes a rereading of two successful im-
age segmentation approaches, the fuzzy connectedness (FC)
and the watershed (WS) approaches, by analyzing both by
means of the Image Foresting Transform (IFT). This graph-
based transform provides a sound framework for analyzing
and implementing these methods. This paradigm allows to
show the duality existing between the WS by IFT and the
FC segmentation approaches. Both can be modeled by an
optimal forest computation in a dual form (maximization of
the similarities or minimization of the dissimilarities), the
main difference being the input parameters: the weights as-
sociated to each arc of the graph representing the image.
In the WS approach, such weights are based on the (possi-
bly filtered) image gradient values whereas they are based
on much more complex affinity values in the FC theory. An
efficient algorithm for both FC and IFT-WS computation is
proposed. Segmentation robustness issue is also discussed.

1 Introduction

This paper deals with two successful methods of semi-
automatic segmentation. On the one hand, the segmenta-
tion by fuzzy connectedness (FC) comes from the fuzzy set
theory and was proposed by Udupa and Samarasekera [20]
and has been improved [10, 17, 18, 19] and is still being
developed [22]. It is based on the hangingness among el-
ements within an object. So, this region-based technique
detects “similarity” between pixels and return quite “homo-
geneous” regions. Each object is represented by a fuzzy set
where a membership degree is associated to each element.

On the other hand, the segmentation by watershed (WS)
comes from the mathematical morphology theory [8]. First
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proposed by Beucher and Lantuéjoul [4], the watershed
transform has been successfully applied to image segmenta-
tion and successive variants and improvements of the orig-
inal paradigm have been proposed [5, 6, 11, 12, 13, 14, 15,
16, 21]. The WS approach detects frontier (the watershed
lines) between regions of little dissimilarity (the catchment
basins). It can be viewed as a computation of influence
zones and achieved by successive morphological dilations.
The most famous implementations [14, 21] adopt a flooding
strategy of the image viewed as a topographic surface.

The WS can be obtained by other paradigms like the Im-
age Foresting Transform (IFT). First introduced by Lotufo
and Falcão [11], this graph-based paradigm can model a WS
transform by computing a forest of minimum-cost paths. It
returns segmented regions, the trees, where the “dissimilar-
ity” between each node was “minimized”.

The main contribution of this paper is to show the duality
between the IFT-WS and the FC segmentation methods, and
give an algorithm that solves both problems. The following
concepts make the duality possible: (1) the interpretation of
WS as a graph optimization problem in IFT framework [11]
(strictly speaking, the other WS transforms cannot be seen
like dual of FC methods); (2) the necessary existence of tie-
zones [2] in this optimization problem; and (3) the use of
symmetric arc weights in the IFT-WS. This last condition
is apparently not satisfied [11]. However, we show in this
paper that the asymmetric arc weight generally used in IFT-
WS can be seen as a symmetric one. Consequently, the ro-
bustness properties demonstrated in the FC framework [19]
are valid for the IFT-WS approach too.

The paper is organized as follows. The IFT notations,
definitions and algorithms are recalled in section 2. Sec-
tion 3 presents the WS in the IFT framework, possible sym-
metric arc weights and a new algorithm for IFT-WS that
takes into account the tie-zones. Section 4 presents the FC
segmentation, shows the duality between the FC and the
IFT-WS approaches and discusses the segmentation robust-



ness issue. Note that due to space limitation, the duality is
presented without all the necessary demonstrations. An ex-
tended paper with the required formalism is in preparation.

2 The Image Foresting Transform

The IFT is a general framework based on graph theory
in which an image is interpreted as a graph and pixels as
its nodes. To simplify, we call pixel or spel any spatial ele-
ment: point, pixel or voxel. The key idea of this transform
is to obtain, according to a path-cost function, a shortest
path forest from an input image-graph. Depending on the
path-cost function and some other input parameters (adja-
cency, arc weights), the IFT can compute different image
processing operations [9]: distance transforms, connected
filters, interactive object delineation (“live-wire”) and both
WS and FC segmentations as shown in sections 3 and 4.

2.1 Notation and definitions

Under the IFT framework, an image is interpreted as a
weighted graph G = (V,A, I) consisting of a set of nodes
or vertices V that represent the image pixels, a set of arcs A
and an intensity map I , that is, a function from V to some
scalar or vectorial domain (e.g., Z in the case of grayscale
digital images, Z

3 for RGB color images). The intensity of
vertex v is denoted by I(v).

An adjacency relation A is a binary irreflexive relation
between vertices of V (e.g., 4− or 8−adjacency in 2D and
6− or 26−adjacency in 3D). The set of vertices adjacent to
or neighbor of vertex u is denoted by N(u). If vertices u
and v are adjacent, then the arc 〈u, v〉 belongs to A.

A path π(u, v) from a node u to a node v in a graph
(V,A, I) is a sequence 〈u = v1, v2, . . . , vn = v〉 of nodes
of V such that ∀i = 1 . . . n − 1, 〈vi, vi+1〉 ∈ A. A path
is said simple if all its nodes are different from each other.
A path with terminal node v is denoted by πv . The path πv
is trivial when it consists of a single voxel 〈v〉. Otherwise,
it can be defined by a path resulting from the concatenation
πu · 〈u, v〉 of its longest prefix πu with terminus u and the
last arc 〈u, v〉 ∈ A. A path-cost function f assigns to each
path π a path cost f(π), in some totally ordered set of cost
values, whose maximum element is denoted by +∞.

A graph G′ = (V ′, A′) is subgraph of G if V ′ ⊆ V ,
A′ ⊆ A and A′ ⊆ V ′ × V ′. A forest F of G is an acyclic
subgraph F of G. Trees are connected components of the
forest.

Let S ⊆ V be a set of particular nodes si called seeds.
For a given weighted graph G = (V,A, I) and a set S of
seeds, the Image Foresting Transform returns a forest F of
G such that (i) there exists for each node v ∈ V a unique
and simple path π(si, v) in F from a seed node si ∈ S to v
and (ii) each such path is optimum, i.e., has a minimum cost

for linking v to some seed of S, according to the specified
path-cost function f .

In other words, the IFT returns a shortest (cheapest in
fact) path forest where each minimum-cost tree is rooted to
a seed (but possibly not all seeds are roots of a tree). In
this paper, the shortest-path forest is also referred to as an
optimum-path forest or an optimal forest. In general, there
may be many paths of minimum cost leading to a given
pixel and then, many optimal forests; only the path costs
are uniquely defined.

Observe that, if we independently pick an optimum path
for each pixel, the union of those paths may not be a forest.
Moreover, as claimed in [9], certain graphs and cost func-
tions may not even admit any optimum-path forest. Suf-
ficient condition for the existence of the IFT is to use a
smooth path-cost function, i.e., a function f satisfying the
three following conditions, given that for any pixel v ∈ V ,
there is an optimum path πv ending at v which either is triv-
ial, or has the form πu · 〈u, v〉: (i) f(πu) ≤ f(πv); (ii) πu
is optimum, and (iii) for any optimum path π′

u ending at u,
f(π′

u · 〈u, v〉) = f(πv).
Usually, the path cost depends on local properties of the

image–such as color, gradient, and pixel position– along the
path. Two popular examples of smooth functions are the
additive path-cost function fsum and the max-arc path-cost
function fmax, defined by:

fsum (〈v〉) = h(v)
fsum (πu · 〈u, v〉) = fsum(πu) + w(u, v)

fmax (〈v〉) = h(v)
fmax (πu · 〈u, v〉) = max {fmax(πu), w(u, v)} (1)

where 〈u, v〉 ∈ A, h(v) is a fixed but arbitrary handicap
cost for any paths starting at pixel v, and w(u, v) is a fixed
nonnegative weight assigned to the arc 〈u, v〉.

2.2 Algorithms

The efficient ordered queue-based algorithm for IFT pro-
posed in [9, 11] is essentially Dijkstra’s algorithm [7], ex-
tended for multiple sources and a more general path-cost
function. It computes three attributes for each vertex v ∈ V :
its predecessor P [v] in the optimum path, the cost C[v] of
that path from the tree root to v, and the corresponding root
label L[v].

Note that other algorithms are able to compute the IFT.
For example, the ordered queue is not necessary. One can
process the image data in raster-scan and anti raster-scan
order alternatively until stability of the result (algorithm not
presented here and based on Berge’s one [3]).



3 Watershed segmentation under the IFT
framework

The watershed approach is often compared to a flood-
ing simulation. If the pixel intensity represents the altitude,
the image corresponds to a topographic surface. Holes are
punched at some marked places. Then, the topography is
inundated in water. Water springs from the holes (mark-
ers) and create catchment basins corresponding to objects.
Watershed lines are dams built for separating the catchment
basins growing from different sources (markers).

In order to define objects using the IFT, we assign a dis-
tinct label to each object and select at least one seed pixel
per object (including background). After that, the IFT out-
puts an optimum-path forest where each object is repre-
sented by a set of trees rooted at seeds with the same label.

The path-cost function should be such that pixels of a
given object are “more strongly” connected to its internal
seeds than to any other. A suitable example is the function
fmax when the w(u, v) is a dissimilarity function between
u and v, usually computed based on properties of the input
scene I . Ideally, function w(u, v) must be higher on the
object boundaries and lower inside the objects.

3.1 Watershed transforms by IFT

Many watershed transforms can be obtained by IFT ac-
cording to the arc weight function. For example, the so-
called watershed by dissimilarity [11] uses a symmetric arc
weight function: w1(u, v) = |I(u) − I(v)|.

Other example is the IFT-watershed on gradient [9, 11].
In this watershed transform, the arc weight that should be
equal to some gradient intensity is: w2(u, v) = G(v),
where G(v) is the morphological gradient [8] of image I at
pixel v. This algorithm simulates the flooding by the use of
an ordered queue, and looks like the Beucher and Meyer’s
ordered queue algorithm [5, 14]. With this arc weight func-
tion, the max-arc path-cost function of Equation 1 can be
simplified into:

fmax(〈v1, v2, . . . , vn〉) = max {h(v1), G(v2), . . . , G(vn)} (2)

In this case, the IFT computes a region watershed transform
where the trees of the forest, i.e., the disjoint sets of the for-
est, correspond to the catchment basins. Observe that all
vertices are covered by this forest and no watershed line is
returned, but only regions. Note also that the final cost map
is unique and corresponds to the morphological superior
reconstruction [8] of the gradient image from the seeds us-
ing a flat structuring element. However, the forest and then
the labeling may be multiple. Indeed, the IFT can result in
many optimal forests because many paths of minimum cost
are sometimes possible.

It may be desirable to deal with symmetric arc weight,
as in the watershed by dissimilarity. Instead of using the

previous asymmetric arc weight, we can use the symmetric
weight w3(u, v) = max {G(u), G(v)}. In this case, the
path-cost function of Equation 1 becomes:

fmax(〈v1, v2, . . . , vn〉) = max {h(v1), max {G(v1), G(v2)} ,

. . . , max {G(vn−1), G(vn)}}
= max {h(v1), G(v1), . . . , G(vn)} (3)

To get equivalent results for watersheds on gradient with
asymmetric and symmetric arc weights (Equations 2 and
3), we can define the handicap function as: h(s) = G(s)
for any seed s and h(v) = ∞ elsewhere. The role of the
handicap function can be found in [12].

3.2 Tie-zone watershed

As we saw in the previous section, many optimal forests
and so, many partitions may correspond to an input image-
graph. The tie-zone watershed (TZWS), introduced by Au-
digier, Lotufo and Couprie [2], returns a unique partition
by definition. Indeed, this novel watershed paradigm avoids
the introduction of bias due to a specific implementation [1].
We recall the definition for completeness of the paper.

A node is included in a specific catchment basin CBi
when it is linked by a path to a same seed si in all the opti-
mal forests, otherwise it is included in the tie-zone T :

CBi = {v ∈ V, ∀F ∈ Φ, ∃π(si, v) in F} (4)

T = V \
⋃
i

CBi (5)

where the set of all optimal forests is denoted by Φ.
Considering all the optimal forests, the nodes of the tie-

zone can be linked to different seeds by paths of equal min-
imum cost. The TZWS labeling solution is defined without
ambiguity because it synthesizes all the possible labelings
due to optimal forests.

The algorithm presented in [2] and based on Dijkstra’s
computes the TZWS in the case of a lexicographic path-cost
function. This function has two components of decreasing
priority: the max-arc path-cost function and the distance to
the flat zone border. This lexicographic function has the
effect of reducing part of the tie-zone that occurs on flat-
zones. In the case of the max-arc path-cost function without
lexicographic component, the cited algorithm cannot man-
age the flat zones correctly and cannot return the TZWS.

We propose here two algorithms for computing the
TZWS in the case of the max-arc path-cost function with-
out lexicographic second component. First, it is possible to
obtain the TZWS from any optimal forest by means of a se-
quential algorithm. Scan all the pixels and for each pixel,
try to propagate each neighbor’s cost to it. If the proposed
cost is equal to the previous one and if the pixels have dif-
ferent labels, then assign the pixel to the tie-zone. Repeat
this sequential scanning until stabilization of the labeling.



The second algorithm (cf. Pseudocode 1) is based on
Dijkstra’s and utilizes a union-find strategy to deal with
the flat zones. Indeed, the Dijkstra-IFT algorithm without
union-find would not manage the following case: when
two pixels of different labels meet together in a flat zone
of the cost map, the entire flat zone should belong to the
tie-zone. But the ordered queue used does not handle
already processed pixels. It is why the union-find is added
to the Dijkstra-IFT algorithm: each pixel needs to point at
the root of the flat zone it belongs to. When pixels meet in
a flat zone (lines 15-19) and form a tie-zone, it is sufficient
to merge (“union”, line 19) their respective flat zone roots
(“find”) and label the resulting root as a tie-zone. When
the ordered queue is empty (each pixel has been processed
only once), a scanning of the entire image is necessary (line
22) to get the final labeling.

Pseudocode 1: TZWS algorithm by union-find

Inputs: image (V, A, I), neighborhood N (derived from A),
seeds S, handicap h (infinity for non-seed nodes),
labeling λ and arc weight w functions.

Outputs: cost C, label L, predecessor P maps.
Auxiliary Data: empty ordered queue Q, state flag done,

cost variable c, flat zone root map R.

1.∀p ∈ V , C[p]← h(p); R[p]← p; done(p)← FALSE;
2.∀p /∈ S, L[p]← NIL; P [p]← NIL;
3.∀s ∈ S, L[s]← λ(s); P [s]← s; Insert(s, Q, C[s]);

4.while IsEmpty(Q) = FALSE,
5. v ← RemoveMin(Q); done(v)← TRUE;
6. if L[Find(P [v])] = TZ, L[v]← TZ;
7. ∀p ∈ N(v), and done(p) = FALSE,
8. c← max {C[v], w(v, p)};
9. if c < C[p],
10. C[p]← c; L[p]← L[v]; P [p]← v;
11. if p in Q, Remove(p, Q);
12. Insert(p, Q, c);
13. if C[p] = C[v], R[p]← Find(v);
14. else, if c = C[p],
15. if C[p] = C[v], /* flat zone */
16. if Find(p) �= Find(v),
17. if L[Find(p)] �= L[Find(v)],
18. L[Find(v)]← TZ;
19. R[Find(p)]← Find(v); /* union */
20. else, if L[Find(p)] �= L[Find(v)],
21. L[Find(p)]← TZ; L[p]← TZ;

22. ∀p ∈ V , L[p]← L[Find(p)];

Find(v): /* with path compression */

while R[R[v]] �= R[v], R[v]← Find(R[v]);
return R[v];

4 Fuzzy Connectedness Segmentation under
the IFT Framework

First, we report the key ideas of the fuzzy connected-
ness (FC) approach [20] and relate to the IFT formalism
(section 4.1). Different FC-based segmentation methods are
presented (section 4.2). The segmentation robustness is dis-
cussed in section 4.3. Finally, we illustrate the concepts
presented (section 4.4).

The segmentation by FC aims to create fuzzy sets from
an image to represent the objects. In this case, a fuzzy set
O is a set O of spatial elements (called spels; i.e. points,
pixels or voxels depending on the data dimension) assigned
by the degree of belongingness (membership) µO to an ob-
ject. This degree is a real number between 0 and 1. When it
is 0, it means that the spel does definitely not belong to the
object. When it comes close to 1, it certainly belongs to the
object. In case of multiple object segmentation, a degree of
belongingness to each object can be assigned to each spel.
And, the final object extraction can be obtained by several
ways: by applying a minimum threshold to this degree or by
simply assigning the pixel to the object with highest degree.

The idea of the FC is that the objects correspond to sets
of close spels (in intensity and position), i.e. spels that are
“more strongly connected” or have a “greater fuzzy con-
nectedness”. In general, seeds representative of each object
are given as an input of the method that returns sets of spels
hanging together with the seeds.

4.1 Key ideas on fuzzy connectedness

In this section, we sum up several basic concepts of FC
approach that are fully developed in [19] and reinterpret
them from the IFT point of view.

A fuzzy digital space is defined as (Zn, α) where Zn is
a set of spels in an n-dimensional space (but it could be any
set of elements) and α is a fuzzy spel adjacency. The adja-
cency is a reflexive and symmetric relation. It associates to
each pair of spels a value µα bounded by 0 and 1 and gen-
erally given by a nonincreasing function of their Euclidean
distance. Therefore, a spel is adjacent to itself and has an
adjacency value of 1 (reflexivity). And any two spels whose
fuzzy adjacency value is not zero are said adjacent. Note
that the adjective “fuzzy” is used when a real value bounded
by 0 and 1 is assigned to a spel of a set or to a pair of spels.

Like IFT, FC also uses the concept of vertices (spels) and
arcs if we consider that –by the symmetry of the adjacency–
there exists an undirected arc between any two adjacent (or
neighbor) spels. Note that the arcs are weighted by the ad-
jacency value that only depends on spatial configuration be-
tween spels. But this positive weight does not matter –once
we know that it is positive– if we are only interested in scan-
ning all neighbors of a spel.



FC methods are based on two fuzzy relations:
• A local fuzzy relation κ called affinity on the set of spels.
The affinity value µκ assigned to a pair of spels is based on
the nearness of spels in space and in intensity (or in features
derived from intensities). Affinity represents local “hanging
togetherness” of spels.
• A global fuzzy relation K called connectedness, on the
set of spels, based on affinity κ. The connectedness value
µK assigned to a pair of spels is the strength of the strongest
path linking these spels. The strength of a path is the lowest
affinity along the path.

The affinity is a reflexive and symmetric fuzzy relation
whose valuing function may depend on: (i) the fuzzy adja-
cency (spatial distance) α between the spels; (ii) the homo-
geneity ψ, whose value is bounded by 0 and 1 and is greater
when both spels belong to the same homogeneous region;
(iii) intensity-based features φ, (when the intensity feature
is closer to an expected value of the features for a given
object); (iv) the actual location of the spels, a shift-variant
value not used in practice. A typical functional form for the
affinity value µκ is: µκ = µα

√
µψµφ where µα is 1 for the

hard 4− or 6−adjacency relation. Note that µψ and µφ are
evaluated in the neighborhood of each pixel and that neigh-
borhoods may depend on space-variant local scales. Details
of the design of such affinity functions to correctly represent
the nearness or similarity between spels are given in [18].

The affinity value between two spels can be viewed as
the weight of a virtually added arc shared by these spels.
Imagine now that, instead of valuing the similarity between
spels, we value their dissimilarity (with the complement or
inverse of the affinity value for example). This dual arc
weight can be seen as a cost or penalty to pixels that are
not sufficiently near. It is exactly the case of the arc weight
used in IFT. For the special case of WS by IFT, this weight
is given by some gradient function (i.e., heterogeneity mea-
sure) of the image to segment. And for non-adjacent ver-
tices, no arc is considered or, virtually, the arc has an infinite
weight.

In FC methods, the strength of a path is defined as the
minimum affinity value of any pair of spels in the path
(see the so-called “fuzzy κ−net” from [19] that assigns this
strength to each possible path). In IFT framework, a path-
cost is assigned to each path. In the case of WS by IFT, this
cost corresponds to the maximum arc, which is exactly the
dual of the path strength.

Associated to a given affinity κ, the fuzzy connectedness
K assigns to a pair of spels the value µK defined as the max-
imum path strength when all paths linking these two spels
are considered. Dually, in the IFT case, paths of minimum
cost are computed.

The duality between FC and IFT-WS concepts is summa-
rized in the upper part of Table 1. Correspondences between
main notations used in IFT-WS and in [19] are given. The

Table 1. Duality in concepts and segmenta-
tion methods.

Fuzzy connectedness (FC) Watershed (WS) by IFT

fuzzy spel affinity µκ(c, d) arc weight w(c, d)

path pcd: path π(c, d):
〈c = c1, c2, . . . , cL = d〉 〈c = c1, c2, . . . , cL = d〉
path strength: (max-arc) path cost:
min1<l≤L µκ(cl−1, cl) max1<l≤L w(cl−1, cl)

strength of FC µK(c, d): optimal path cost C[d]:
max∀pcd {path strength} min∀π(c,d) {path cost}
FOE (threshold θmin) reconstruction (threshold θmax)

(IFT cost map)
RFOE (strict max FC) independent reconstructions

from each seed (strict min cost)
=⇒ CORES

IRFOE (iterative blocking) TZWS: one synchronous IFT
(seeds compete together)
=⇒ CATCHMENT BASINS

lower part shows the dual segmentation methods presented
in the next section. Note that all the FC (and IFT-WS) meth-
ods have variants if other affinities (arc weights) are used
(e.g., a scale-based affinity, other gradient).

4.2 Segmentation by fuzzy connectedness

4.2.1 Fuzzy object extraction by connectedness thresh-
olding

Now FC has been defined, many fuzzy object extractions
are possible. Initially, Udupa and Samasekera [20] pro-
posed a fuzzy object extraction, FOE, based on a thresh-
old θ. For a given object seed o, after computing for each
spel the FC with the seed, set a minimum threshold on the
strength of connectedness to obtain the set of object spels.
The fuzzy κθ−object O is defined by:

O = (Oθκ
, µO)

Oθκ
= {v ∈ V, µK(o, v) ≥ θ} (6)

µO(v) =
{
η(I(v)), if v ∈ Oθκ

,
0, otherwise

(7)

Note that the extracted object spels have an associated value
given by a function η of their intensity while the remaining
spels have value 0. In the case of a hard segmentation (by
fuzzy connectedness), the function η is a constant (1 for bi-
nary segmentation or the object label λ for N-ary segmenta-
tion, e.g.). Observe also that the strength of connectedness
between any two object spels is greater or equal than the
threshold value; and the strength of connectedness between



an object spel and any other spel out of the object is less
than the threshold.

In IFT context, FOE is equivalent to (i) computing the
IFT from a unique object seed on the “dual graph” (com-
posed by the same vertices and arcs but with “dual” weight–
complement to 1, e.g.), then (ii) setting the “dual” max-
imum θmax threshold on the cost map (i.e., the superior
reconstruction of the image) and finally (iii) applying the
function η to the selected spels if a fuzzy object is expected.

4.2.2 Relative fuzzy object extraction

Udupa, Saha and Lotufo [19] proposed then another ob-
ject extraction method: the relative fuzzy object extraction
(RFOE). In this method, strength of connectedness to the
object and also to all co-objects are considered. Indeed, the
objects are let to compete among themselves in having spels
as their members. The spels will belong to the object that
has the highest strength. Therefore, the object definition
depends on how the spels hang together among themselves
relative to others. This method does not need any threshold.

The relative fuzzy κ−object O is defined as the set of
spels more strongly connected to the object seed o than to
the background (or co-object) seed b:

O = (Pobκ
, µO)

Pobκ
= {v ∈ V, µK(o, v) > µK(b, v)} (8)

µO(v) =
{
η(I(v)), if v ∈ Pobκ

,
0, otherwise

In the IFT framework, the RFOE is dually equivalent to
independently compute IFT-WS from each seed t ∈ S (one-
by-one) and finally assign to each pixel v the label λ(s) cor-
responding to the seed s that links it with a strict minimum
path-cost Cs[v], considering all cost maps Ct (superior re-
constructions). Each labeled region we obtain is called core
Ks (just as in [19]) of the seed s:

Ks = {v ∈ V, Cs[v] < Ct[v], ∀t ∈ S, t �= s} (9)

where Cs corresponds to the superior reconstruction of the
image from seed s. Note that there can be pixels with no
label. They do not belong to any object because there are
many paths of same (non-strict) minimum cost linking to
different seeds.

So, instead of using the RFOE algorithm of [19], we can
follow this procedure: (i) For the extraction of n objects
(background included), compute n superior reconstructions
of the “dual” image-graph from seeds of different objects.
(ii) Then compute the strict minimum of the reconstructions
at each pixel. The cores are obtained.

4.2.3 Iterative relative fuzzy object extraction

We saw that some spels can have same connectedness with
two different objects and therefore do not belong to any ob-

ject. Sometimes the path, where the connectedness to an ob-
ject was computed, passes through the other object (core).
For the RFOE method, these two paths tie together. In fact,
one of these paths invades the other object for trying to link
a disconnected region to the core it comes from. The idea
of the iterative relative fuzzy object extraction (IRFOE) pro-
posed in [19] is to avoid this “passing through” by blocking
any paths that try to pass through an object but come from
other objects. This is exactly the same concept implicitly
used in IFT. Indeed, the blocking is inherent to the forest of
optimal paths: when a node is assigned to a particular tree,
it cannot be used by any other growing tree.

The effect of the IRFOE is to expand iteratively the ini-
tial objects, the cores, obtained by RFOE, by reducing the
chances of ties thanks to the blocking strategy. Neverthe-
less, not all ties are untied because some regions are linked
to many seeds with same connectedness but without any
path overlapping. Under the IFT framework, they corre-
spond to the tie-zone defined in Equation 5 while the objects
defined by IRFOE correspond to the CBs of Equation 4.

In practice, the IRFOE algorithm extracts first the cores
and at the second iteration, any path from other seeds pass-
ing through a core is penalized by a low connectedness
value (zero). In fact, affinity between any spel of an object
obtained at iteration i is automatically set to zero at the next
iteration j. This constitutes a barrier to protect the objects
of iteration i. In other words, pixels that have been con-
quered in previous iteration cannot be used by paths from
other object seeds in the subsequent iterations.

It is shown that the objects iteratively defined are non-
contracting: object of iteration i < j is included in object
of iteration j. Moreover, the objects maintain their disjoincy
at every iteration. Observe that these properties are valid in
the TZWS-IFT case: the cores are always included in the
catchment basins and these are disjoint.

Thus, alternatively to the IRFOE presented in [19], the
algorithm of TZWS by union-find proposed in section 3.2
finds the optimal paths without overlapping in an ordered
way and returns directly the catchment basins without need-
ing iterative object extraction.

4.2.4 Variants of the fuzzy connectedness approach

First, note that the RFOE of [19] extracts only one object
relative to a background (the co-objects). It must theoreti-
cally be applied n times if n objects have to be segmented.
The generalization of this method was proposed in [17]:
the multiple relative fuzzy object extraction (MRFOE) pro-
cesses many objects together. Let S be the set of object
seeds and o a particular seed. The set of seeds different from
o is denoted by b(o) = S\{o}. Therefore, the definition of
relative fuzzy object in Equation 8 becomes:

Pob(o)κ
= {v ∈ V, µK(o, v) > µK(o′, v), ∀o′ ∈ b(o)}



This does not change anything in the correspondence with
multiple reconstructions where strict minima among them
determine which object is better linked to a spel.

In addition, the MRFOE method [17] allows individ-
ual affinity for each object. Indeed, one drawback of the
RFOE method is that the same affinity relation must be
used for different objects. “This restriction somewhat com-
promises the effectiveness of the segmentation that can be
achieved” [17]. On the other hand, if different affinities are
used for different objects, then most of the properties we re-
port in the next section will not hold. It is why the MRFOE
method combines the multiple object affinities in a single
affinity so that the theoretical results are valid as well as
more effective practical segmentation is achieved.

Saha and Udupa [18] proposed scale-based affinity func-
tions to improve the segmentation results of the fuzzy con-
nectedness methods. Zhuge, Udupa and Saha [22] have
recently introduced the vectorial scale-based relative fuzzy
object extraction (VSRFOE) where the method of MRFOE
with scale-based affinities is generalized from scalar images
to vectorial images.

Finally, we can cite the approach of Herman and Car-
valho [10] that proposes a multiseeded segmentation by FC.
This method is somewhat different from those reported be-
fore because multiple affinities are indeed allowed and spels
may belong to many objects with same maximum FC.

4.3 Robustness of the segmented objects

A series of useful properties and theorems are demon-
strated in [19] and are valid for symmetric affinities (like
in RFOE) or arc weights (like w1 or w3 of section 3.1). We
recall only two of them and translate them in IFT-WS terms.

Any pair of spels in the defined object is linked by a
best path entirely contained in the object. This property
(Prop.3.2 of [19]) is also valid in the case of IFT-WS for
both cores and catchment basins because the trees that rep-
resent them are composed of optimal paths by definition.

More interestingly, Theorem 3.4 of [19] guarantees the
robustness of the objects (iteratively defined by the IRFOE)
with respect to their respective seeds. Indeed, if the user
designates other object seeds but still in their respective
cores, the same objects will be obtained at any iteration
of the IRFOE. Observe that the seeds must belong to the
cores to guarantee the robustness of the objects. In IFT-WS
framework, the robustness of the cores and the catchment
basins is also guaranteed as long as the seeds are picked
in the respective cores and, obviously, the max-arc path-
cost function and a symmetric arc weight function are used.
Note that the lexicographic cost (used in [2, 11]) could not
be used because it would untie flat zones (of the tie-zone)
differently if seeds were chosen in different places, and so,
robustness would not be valid anymore.

• 0.6←→ • 0.5←→ • 0.5←→ • 0.6←→ • 0.1←→ •
	0.7 	0.3 	0.4 	0.3 	0.7 	0.1

• 0.3←→ • 0.3←→ • 0.3←→ • 0.3←→ • 0.9←→ •
	0.9 	0.2 	0.2 	0.2 	0.2 	0.9

◦ 0.2←→ • 0.2←→ • 0.2←→ • 0.2←→ • 0.2←→ ◦
(a)

3
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(b)

3 4 5 4 3 9
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3 4 5 4 3 9
1 7 6 7 1 1
0 2 2 2 2 0

(c) (d)
cores - catchment basins - tie-zone

Figure 1. Images and object extractions.

4.4 Illustration

Figure 1(a) presents an example of image with fuzzy
affinities between the spels “•”. Two seeds “◦” were picked.
Figure 1(b) shows a gradient image with the respective sym-
metric arc weights w3 (section 3.1). We could also see
the weights of the arcs of this image-graph as the “dual”
weights of those from image (a). In this example, we ap-
plied w(c, d) = �k(1 − µκ(c, d))� with k = 10 to compute
the complement of the affinity and get an integer dissimi-
larity measure. Figure 1(c) is the output of the TZWS algo-
rithm. The tie-zone is in italic whereas the two catchment
basins (CB) are boldfaced. They correspond to two seeds
placed in “0”. But two any other seeds chosen in the re-
spective cores (underlined) would lead to the same cores
and CBs (robustness). Disregarding the numbers, (c) cor-
responds also to the segmentation of (a) (duality). Observe
the “blocking” applied by the right-hand core on the paths
to the spel “9” coming from the left-hand seed and having
an equal cost of 9. Figure 1(d) presents the segmentation of
another image, which differs from (b) only in the flat zone
of “8”. The cores are reduced to 2 and 3 spels while the
CBs are the same. Now, the blocking is also applied for
paths passing by the flat zone “2” and going to “3” and “4”.

5 Conclusion

In this paper, we talked about two successful segmenta-
tion methods. We showed the duality between the water-
shed by image foresting transform (IFT-WS) and the fuzzy
connectedness (FC) segmentation approaches using the IFT
framework. The IFT, an optimal forest computation, is a
sound framework for understanding both. As the IFT-WS
method finds the paths that link spels of an object by mini-



mizing the dissimilarity among them, the FC method finds
the paths that link spels of an object by maximizing the
similarity (connectedness) among them. The methods solve
dual problems.

Only parameters of the problems really differ because
the methods were historically developed in different con-
texts. For example, FC works on fuzzy sets (fuzzy adja-
cency and fuzzy segmented object) that are in general not
used in IFT-WS but could be. The outstanding difference of
parameters is the design of the arc weight functions (IFT-
WS) and their analog affinity functions (FC). In WS ap-
proach, the image is generally filtered and a gradient or
dissimilarity operator is applied. In the FC approach, no
preprocessing is applied but, instead, complex affinity func-
tions determine the arc affinity. Examples of the sophisti-
cation of such affinity functions are given in [18] where the
affinity can be scale-based. Observe that these sophistica-
tions could be modeled and integrated in the WS approach
as preprocessing steps for computing other arc weights than
the usual.

In addition, we saw that the duality is established when
the WS is used in its IFT formulation with tie-zone (TZ).
The tie-zone, that includes spels that have same connected-
ness/cost to at least two objects, must be taken into account
to guarantee a unique segmentation. So, the new efficient
algorithm of TZWS with union-find is another contribution
of this paper: it can compute both FC and WS segmentation
methods.

As a last contribution, we showed that the usual asym-
metric arc weight for IFT-WS can be viewed as a symmetric
one, so that all properties demonstrated for FC –in particu-
lar, the segmentation robustness– hold for IFT-WS too. In
future, we think that both research domains –FC and WS–
can benefit from the other one’s advance using the duality.
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