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Abstract—We present techniques for 3D point-cloud registra-
tion that are suited for scenarios where robustness to outliers
and missing regions is necessary, besides being applicable to
both rigid and non-rigid configurations. Our techniques exploit
advantages from deep learning models for dense point matching
and from recent advances in probabilistic modeling of point-cloud
registration. Such a combination produces context awareness and
resilience to outliers and missing information. We demonstrate
their effectiveness by comparing them to state-of-the-art methods
and showing that ours achieves superior results in general. For
example, our approaches achieve registration error up to 45%
smaller than these methods in partial point clouds for non-rigid
registration, and up to 49% smaller on rigid registration.
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Figure 1: Non-rigid registrations produced by our method for
challenging scenarios. We present the results after each stage
of our pipeline. The source clouds are in orange and the target
ones are in blue. Points without correspondence in the target
are shown in magenta.

I. INTRODUCTION

The recent popularization of 3D scanners and LIDARs has
led to a growing interest on the manipulation and processing
of 3D point clouds. A fundamental task when processing point
clouds is registration, which aims at aligning different sets of
samples. It is a basic block for applications such as SLAM [1],
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scene/object reconstruction [2], [3], automated driving [4],
motion estimation [5], among others.

In rigid registration, two point clouds to be aligned only
differ by a rotation and/or a translation. ICP [6] and its
variants are perhaps the most widely used solutions for this
class of problems. In non-rigid registration, portions from a
source/target point cloud can be deformed independently from
others, such as in articulated or organic figures. In this case,
one seeks for an as-close-as-possible alignment between the
two point clouds. The registration problem becomes consid-
erably harder in the presence of noise, and when portions of
the point clouds to be aligned are missing. Approaching these
challenges is key for achieving robust registration, able to deal
with real-world scenarios.

Recently, deep learning techniques targeted at rigid regis-
tration have obtained impressive results [7]. However, little
work has been done on non-rigid registration. State-of-the-
art works [7], [8] still lack resilience to critical cases, e.g.
when dealing with noisy point clouds and/or when there are
only partial matches between them. This is mostly due to the
difficulty of establishing correspondences among the available
parts. The same observation applies to state-of-the-art non-
learning-based methods, such as BCPD [9].

We present robust techniques for performing non-rigid as
well as rigid registration of point clouds. Our techniques
combine the advantages of deep learning models for obtaining
dense point correspondences with recent advances in proba-
bilistic modeling. They achieve state-of-the-art results for chal-
lenging scenarios involving noisy and missing regions (Fig. 1),
leading to better and faster registration. We also present a self-
supervised training approach for non-rigid registration with
on-par results to supervised training.

Fig. 1 illustrates the use of our technique, trained using
self-supervised learning, for non-rigid registration of point
clouds under multiple difficult situations. It shows the re-
sults produced by the steps of our method (Learning-based
Correspondence and Probabilistic Refinement) for scenarios
including: (i) missing a large portion of one of the point clouds
(Cropped - first row). (ii) several holes across one point cloud
(Holes - second row); (iii) noisy point cloud (Outliers - third
row); (iv) a combination of missing large portions and noise
(Cropped + Outliers - fourth row). Note how our method
consistently achieves good results across all these situations,
properly handling points without correspondences (in pink).



The contributions of of this work include:
• Learning-based techniques for non-rigid and rigid regis-

tration of point clouds that are robust to large missing
portions, as well as to noise. Both techniques outperform
state-of-the-art approaches in these challenging scenarios;

• An adaptation of the SuperGlue network to produce
correspondences between pairs of 3D point clouds;

• A self-supervised training strategy for robust non-rigid
registration of point clouds.

II. RELATED WORKS

Rigid Registration: ICP [6] is one of the most popular
approaches for rigid registration, and several improvements
have been proposed for it (e.g., Tr-ICP [10] and EM-ICP [11]).
Probabilistic approaches like CPD [12], FilterReg [13], GMM-
Tree [14], and Branch-and-Bound-based methods, such as Go-
ICP [15], have shown improved results. Feature matching [16]
followed by RANSAC is largely used to better prune the
correspondences. In general, these approaches rely on iterative
optimization, which becomes expensive when dealing with
challenging scenarios. For an in-depth discussion of these
techniques, see [17].

Recently, neural networks have been used to address the
limitations of traditional approaches. Interestingly, new works
tend to build on concepts from traditional ones to achieve
state-of-art results. DCP [18] takes the correspondence and
transformation estimation from ICP, while RPM-Net [19]
builds on DCP by having an iterative process and solving an
optimal transport (OT) problem. Predator [20] uses an atten-
tion mechanism on features from KPConv convolutions [21]
followed by RANSAC. Other works also using deep features
plus RANSAC include D3Feat [22] and FCGF [23]. Finally,
RGM [24] employs a graph matching network to estimate
the correspondences and a binary-assignment loss function,
instead of directly outputting a rigid transformation.
Non-Rigid Registration: Non-rigid ICP [25] expands the
original algorithm to this domain. CPD [12] models one
cloud as a Gaussian Mixture Model (GMM) and solves a
likelihood problem through Expectation-Maximization (EM).
GMMReg [26] presents a framework that represents both point
clouds as GMM’s and minimizes their statistical discrepancy.
Ma et al. [27] presented a series of papers on the topic.
Recently, BCPD [9] extended CPD using variational Bayesian
inference and Nyström acceleration, instead of EM. Overall,
these approaches have issues with partial clouds as they are
unable to deal with points without correspondences.

FlowNet3D [28] uses a cost volume to learn the flow of
points in the source point cloud in an end-to-end fashion.
This was followed by extensions covering non-supervised
learning [29], [30], pyramid refinement with an improved cost
volume (PointPWC-Net) [31], and recurrent networks (Flow-
Step3D) [32]. FLOT [33] estimates the scene flow modeling it
as an OT problem using deep features. Ouyang and Raviv [34]
expanded PointPWC to explicitly account for occlusions in the
clouds by considering them in the cost volume and in the loss
function. Although these works present impressive results on

LIDAR point clouds, the cost-volume layer has issues learning
large deformations as it uses nearest-neighbors similarities.

CPD-Net [35] predicts the complete deformation using deep
features and an unsupervised Chamfer distance loss function.
PR-Net [36] expands traditional techniques by learning the
shape correlation based on features of the voxelized point
clouds. RMANet [7] presented an unsupervised learning ap-
proach based on a recurrent model that offers superior results
to CPD-Net and PR-Net. These works do not handle partial
point clouds, nor propose ways to do it. A related problem
is shape correspondence [37]. State-of-the-art learning-based
works include NeuroMorph [8] which is based on point-
cloud correspondence and can be extended to the registration
case. Like previously mentioned works, NeuroMorph does not
account for partial correspondences.

III. ROBUST NON-RIGID REGISTRATION

Our non-rigid registration technique consists of two parts:
learning-based correspondences followed by probabilistic re-
finement (Fig. 1). To obtain the correspondences among the
samples of source and target point clouds, we modified the Su-
perGlue network [38] (originally designed to establish matches
among keypoints in pairs of 2D images). The main changes
include defining a feature encoding to support matches be-
tween 3D points, and a new Optimal Transport module that
improved the registration performance by 43% (more details
in the thesis). For the probabilistic refinement, we adapted the
BCPD algorithm to use the soft-correspondence assignments
produced by our network, thus replacing BCPD’s point match-
ing process with a more robust alternative.

BCPD models the registration problem using a GMM. It
iteratively optimizes five variables: the single variance of all
3D Gaussian distributions in the GMM, the scale, the rotation,
the translation, and the non-rigid deformation vectors required
for the matching. While BCPD produces good results, it does
not handle large deformations.

Our technique uses the soft assignments produced by our
network for 3D point clouds as an approximation to BCPD’s
correspondence matrix, P (Fig. 2). BCPD assumes that the
probability matrix comes from a GMM. Although this is not
the case for our soft assignments, we argue that it is feasible
to use it, as both matrices encode correspondence and outlier
information through matching probabilities. The key aspect for
our technique is then to iteratively update all variables given
P, and vice-versa. We achieve this by splitting the BCPD
original loop into two nested ones. An outer loop updates the
correspondences based on the latest variable values. The inner
one optimizes the five variables given the estimated P. This
setup reduces the registration error for partial clouds on our
Custom Dataset by 22% on average, when compared to BCPD.

IV. ROBUST RIGID REGISTRATION

Our rigid-registration approach minimizes the weighted
distance between all points from the source and target clouds,
where the weights are given by the correspondences generated
by our neural network. Since this problem is simpler compared
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Figure 2: Adapted SuperGlue network for learning-based
correspondences. Non-rigid registration uses a single iteration
of the purple, red, and brown modules, producing a soft-
assignment matrix P (brown) as output. For rigid registration,
the network includes all modules, and it performs two itera-
tions, producing a hard assignment matrix Sfinal as output.

to non-rigid registration, we only use the learning-based cor-
respondences, dropping the probabilistic refinement step. We
slightly modify our network used for the non-rigid case, and
we iterate twice (as opposed to a single iteration used for the
non-rigid case). This is illustrated in Fig. 2 by the blue lines
and modules (Hungarian and SVD). The Hungarian algorithm
converts the soft-assignment matrix P into a hard assignment
matrix S, which undergoes an SVD decomposition to estimate
the rotation and translation (R and t). Finally, we also use
cyclic consistency to estimate the final registration.

V. LEARNING-BASED CORRESPONDENCE NETWORK

Our proposed network learns the probability matrix P that
indicates the dense correspondences between source and target
point clouds, Y and X (Fig. 2). Thus, it estimates dense
correspondences in a pair of 3D point clouds. Next we describe
each module of the network.
Feature Embedding: Differently from SuperGlue, we densely
estimate the initial point-cloud features using the DGCNN [39]
network and we focus on considering local geometry informa-
tion. The embeddings for the different layers, l, are given by:

x0m = maxj:(m,j)h
0
θ({xm, xj}) ∀j ∈ Nm,

xlm = maxj:(m,j)h
l
θ(h

l−1
θ ),

xfinalm = hl
θ({xl−1

m , ..., x0m}),
(1)

where Nm are the k nearest neighbors of xm, and {, } is the
concatenation operator. hl

θ is a non-linear function consisting
of a multi-layer perceptron (MLP: 2D Convolution with kernel
size of 1 + Batch Normalization + ReLU) which is followed by
maxpolling across the neighbors. We use five layers (Fig. 2);
the first computes the embedding from the point cloud co-
ordinates (x0m). The next three layers iteratively refine the
embedding (xlm). The last one takes the concatenation of all
previous four layers and does not max-pool (xfinalm ).
Attention Module: We directly use the attention mechanism
of SuperGlue to include more contextual information in the
deep features. As a result, the deep feature xn receives
contributions from X (self ) and Y (cross). Attention enhances

the dense estimated features by alternatively applying multiple
independent layers of self and cross modules in a residual
manner

xl+1
n = xln + δlxn

, δlxn
=

{
attention(xln, x

l
n), if self,

attention(xln, y
l
m), if cross,

(2)
where xln is the current feature values and attention is the
actual module. The attention function is a neural network that
aggregates features from one of its inputs, xln or ylm, based on
a learned similarity between this same input and the queried
one, xln in this case. The same is done to ylm and we apply
alternately self and cross L times, resulting in fYm, fXn (Fig. 2).
Sinkhorn Operator with Dustbins: Given the refined de-
scriptors, a direct way to establish correspondences is through
scores given by the dot products P̃m,n = ⟨fYm, fXn ⟩, where
fYm, fXn are 1×256 feature vectors corresponding to the rows of
the tensors fY and fX . Although this produces good results for
one-to-one correspondences, it is unable to directly account for
points without correspondences. In addition, the dot product by
itself does not produce a valid probability matrix, which in our
case should be a relaxed doubly stochastic matrix. This means
the sum of the probabilities in the rows and columns should
be less or equal to one. To tackle this situation, we use the
Sinkhorn operator proposed by Mena et al [40]. The possible
lack of correspondences is handled by an extra possibility of
assignment in both sets of descriptors, called dustbins (Fig. 2).
The resulting Sinkhorn operator is iterative and it converges
to the desired probability matrix in the limit.
Loss Function:We introduce a new term to the cross-entropy
loss used by RGM to compare the estimated matrix P and
the ground truth P̄ (a hard-assignment matrix). This aims at
classifying if a source point ym ∈ Y has a correspondence
to any target point xn ∈ X . The new loss term compares the
sum of the matching probabilities associated with each source
point, ν = P1Nc , to the ground truth ν̄ = P̄1Nc . Even though
this new term is indirectly covered by the original loss func-
tion, we justify it because we want to minimize the occurrence
of false matches. False matches tend to create artifacts as the
whole neighborhood around each incorrectly matched points
is deformed as well. The complete loss function is given by:

Loss =−
N∑

n=1

M∑
m=1

(P̄m,n logPmn+

(1− P̄m,n) log(1−Pm,n))

−
M∑

m=1

(ν̄m log νm + (1− ν̄m) log(1− νm)).

(3)

VI. EXPERIMENTS

We implemented our models using PyTorch [41] and Python
and used them to register a large number of point clouds under
challenging configurations.

A. Non-Rigid Registration

The main metric used to assess the registration quality of
the evaluated algorithms is the end-to-end point error (EPE),



which is the mean Euclidean distance between the deformed
points and their correspondences. The experiments included
four types of point clouds: (i) Clean; (ii) Cropped, where
contiguous regions covering 30% of the points were removed;
(iii) Outliers, where 20% of target points consist of random
uniformly distributed points; and (iv) Holes, where 25% of
the points in the target point cloud were removed creating
holes around random seed points. For experiments involving
Cropped point clouds, we report Precision and Recall for the
classification of points without correspondences.

We compare our approach to five others designed to, or
adapted by us to, perform non-rigid registration of point
clouds: RMANet, RGM, NeuroMorph, FLOT, and BCPD. We
used three datasets for training and testing. The first one is the
dataset proposed by RMANet. We compiled the second dataset
(referred to as Custom) sampling from different datasets (more
details in the thesis). The third dataset was built from face
meshes [42].

An existing problem when training networks on non-
rigid deformation is creating datasets. Rigid-transformation
approaches can randomly sample rotations, translations, and
crops on the fly. Learning-based non-rigid techniques, on
the other hand, generally rely on non-supervised learning,
using loss functions based on Chamfer and Earth Mover’s
distance, for example. However, these are unable to explicitly
account for points with no correspondences. To address this
issue, we trained our model adding noise to point clouds, and
mainly using the artificial deformation method proposed by
Hirose [43] to generate dense correspondences. We refer to
this dataset as Self in the experiments (Fig. 4).

Fig. 3 compares several techniques considering point clouds
of type Cropped, Holes, and Outliers. For each type, the
original source and target point clouds (Input) are shown on
the top left. These are followed by the results produced by: our
method (Ours), our method trained using self-supervised learn-
ing (Ours-Self), Ours-RGM, Ours-Neuro, RMANet, FLOT,
and BCPD. For the Cropped example, our method and its
variants are able to map source points without correspondences
in the target cloud to plausible locations. FLOT produces a
reasonable result, although one observes misalignment in the
head, arms and legs. RMANet does a good job for the upper
body, but the legs are off. BCPD was unable to map points
without correspondences. For the Holes example, RMANet,
followed by FLOT, are the ones for which misalignment is
most noticeable. The Outlier test case also illustrates the
effectiveness of our method and its variants Ours-Self and
Ours-RGM. Ours-Neuro did not produce a satisfactory result,
indicating that the P matrix generated by NeuroMorph does
define reliable correspondences in the presence of noise. Both
RMANet and FLOT produced unsatisfactory results, while
BCPD achieved good registration. These results highlight that
our method is consistently robust across a range of challenging
scenarios. It also shows that the P matrix generated by
our model leads to better results than RGM’s (Fig. 3l) and
NeuroMorph’s (Fig. 3u). Moreover, it shows that although
BCPD nicely complements our model, it cannot, just by itself,
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Figure 3: Results on Cropped, Holes, and Outlier types of
point clouds on top of the RMANet dataset. Source cloud is
in orange and target is in blue. Source points classified as
having no matches are shown in magenta.



Method

RMANet Custom

Clean Outliers Holes Cropped Clean Cropped

P/D BCPD Prec. Recall P/D BCPD Prec. Recall

Ours 0.020 P 0.020 0.023 0.028 0.018 0.98 0.98 0.060 P 0.036 0.040 0.90 0.92
Ours-Self 0.026 P 0.020 0.026 0.029 0.020 0.93 0.98 0.052 P 0.035 0.037 0.90 0.94
Ours-RGM 0.027 P 0.021 0.027 0.033 0.021 0.92 0.94 0.084 P 0.047 0.073 0.84 0.85
Ours-Neuro 0.008 P 0.023 0.160 0.042 0.140 0.46 0.22 0.019 P 0.038 0.206 0.52 0.32
RMANet 0.012 D - 0.101 0.149 ✗ ✗ ✗ 0.131 D - ✗ ✗ ✗

FLOT 0.043 D - 0.053 0.042 0.045 - - 0.111 D - 0.110 - -
BCPD - 0.042 0.045 0.057 ✗ ✗ ✗ - 0.159 ✗ ✗ ✗

P, D Projection Operation; Direct Generation.

Table I: Performance comparison using EPE as well as Precision and Recall metrics for several methods on
different datasets. BCPD indicates the errors after the probabilistic refinement. We further indicate the results
with a projection operation using the correspondence matrix (P) or with the direct generation (D), in the column
P/D. (✗) means the technique did not handle the given dataset, (-) means the comparison is not applicable. The
best results are shown in bold.

Figure 4: Examples of artificial deformations created by our
adopted self-suppervised training approach. The original point
cloud is in blue while the deformed one is in orange. Notice
that by keeping a pointwise correspondence, we can generate
Cropped, Holes, and Outliers point clouds.

handle large missing regions (Fig. 3h)
Table I summarizes the results comparing the different

approaches for non-rigid registration with Clean, Cropped,
Holes, and Outlier configurations on the two datasets. Our
method (Ours) yields the best general results when considering
all point cloud types. The use of self-supervised learning leads
to comparable results with respect to supervised learning,
especially on the Custom dataset. For Clean point clouds,
our implementation of NeuroMorph obtained the best scores.
However, NeuroMorph cannot handle missing parts, and could
not be trained with such datasets. The second closest to ours
is Ours-RGM followed by BCPD. BCPD obtained scores
close to ours in the RMANet dataset, but could not handle
Cropped clouds. Finally, we highlight how the BCPD-based
probabilitic refinement step improves the results of ours and
RGM’s network, as can be observed by comparing P/D and
BCPD results under the Clean column.

Fig. 5 shows registration results on a real dataset of different
facial expressions from TOSCA [44]. Starting from only 7
pairs of scanned faces, we generated 1,000 face pairs using
self-supervised learning. In Fig. 5c we used the model pre-
trained with the Custom dataset, which can handle the regis-
tration but misses details mostly in the mouth and around eyes.

(a) Source (b) Target (c) Pre-trained

(d) Only-Faces (e) Mixed

Figure 5: Registering facial expressions using source (a) and
target (b) point clouds. Registration results produced by our
model trained on: the Custom dataset (c), fine tuning the
weights on faces (d), and fine-tuning on faces plus some clouds
from Custom (e). The latter keeps the original performance
while better dealing with faces.

We attribute this to the lack of instances of faces (or similar)
in the dataset. To improve the results we fine-tuned our model
using the Face dataset (Fig. 5d). We also fine-tuned it using
the Face dataset plus some clouds from the Custom dataset
(Fig. 5e). Although they produce similar results, the latter
maintains its performance on the Custom dataset. This shows
how the proposed model can be fine-tuned without becoming
too specialized on the new dataset.

We present a set of extra experiments in the thesis. They
include a sensitivity and ablation study that justifies our choice
of architecture and parameters for the proposed neural net-
work. This is followed by discussions about the use of multiple
outer-loop iterations and cyclic consistency, the selection of
BCPD parameters, training with mixed types of noise, and
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Figure 6: Rigid registration produced by various models.

0

1

2

3

Clean Jitter Crop 
90%

Crop 
80%

Crop 
70%

Crop 
60%

Ours Predator RPMNet RGM

(a) Mean Isometric Rotation Er-
ror (MIE)

0

1

2

3

Clean Jitter Crop 
90%

Crop 
80%

Crop 
70%

Crop 
60%

Ours Predator RPMNet RGM

(b) Mean Anisotropic Rotation
Error (MAE)

Figure 7: Rotation errors in degrees, MIE and MAE, compar-
ing different approaches for rigid registration on ModelNet40
dataset on Clean, Jitter, and different percentages of samples
kept for Crop-Noise.

generalization to a different number of points during training
and evaluation.

B. Rigid Registration

For the rigid registration experiments, we used the Model-
Net40 [45] dataset which consists of point clouds from CAD
models. We compare against state-of-art works RPMNet [19],
RGM [24], and Predator [20]. For each cloud, we randomly
rotate by up to 45◦around each of the axes and also translate by
some random amount in the interval [-0.5, 0.5] along each of
the three axes during training and evaluation. The set of point
clouds with these random transformations is called Clean. The
experiments also include a set of Jitter point clouds, obtained
by adding random Gaussian noise to Clean point clouds. The
last set of point clouds, Crop-Noise, builds on Jitter by keeping
only a percentage of the source and target points. To evaluate
rigid registration, we adopt the mean isotropic error (MIE)
and the mean anisotropic error (MAE) largely adoped in the
literature (with MIE(R) and MAE(R) are in degrees).

Fig. 6 compares the results produced by our method (Ours),
Predator, RPMNet, and RGM for the rigid alignment of
incomplete point clouds with partial overlap. Our method
produces better registration of the vase and plant, while other
methods cause the partial clouds to cross each other. Fig. 7
compares the rotation errors in all test cases for Predator,
RPMNet, and RGM. It shows that our method has smaller
errors for all tested cropping levels. We present further analysis
and a sensitity study in the thesis.

VII. CONCLUSION

We presented a learning-based model that can be applied
for both non-rigid and rigid registration of point clouds while

being robust to noise and missing portions. This was accom-
plished by adapting and improving a network designed to
match sparse features in 2D images to densely match features
in 3D point clouds. This is a considerably harder problem
performed on unstructured data, as opposed to on a regular
image grid. Additionally, the proposed work combines the
advantages of deep-learning and probabilistic modeling. To
the best of our knowledge, this is the first time such setup
is explored in the context of non-rigid registration of 3D
point clouds. Our experiments show that our models outper-
form previous techniques in terms of robustness in a series
of challenging scenarios. Improving our model for handling
large deformations and point clouds at different scales is an
important direction for future exploration. Better integration
of the neural network with the probabilistic refinement can
further improve performance.

VIII. PUBLICATION

The results of this work covering rigid and non-rigid regis-
tration were reported in an article entitled Robust Point-Cloud
Registration based on Dense Point Matching and Probabilistic
Modeling published in the The Visual Computer journal.
The paper can be found here. We encourage the reader to
access our source code repository, which provides our official
implementation, example results, and the pre-trained models.
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