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Abstract—The recent studies on Video Surveillance Anomaly
Detection focus only on the training methodology, utilizing pre-
extracted feature vectors from videos. They give little attention
to methodologies for feature extraction, which could enhance the
final anomaly detection quality. Thus, this work presents a self-
supervised methodology named Self-Supervised Object-Centric
(SSOC) for extracting features from the relationship between
objects in videos. To achieve this, a pretext task is employed to
predict the future position and appearance of a reference object
based on a set of past frames. The Deep Learning-based model
used in the pretext task is then fine-tuned on Weak Supervised
datasets for the downstream task, using the Multiple Instance
Learning training strategy, with the goal of detecting anomalies
in the videos. In the best case scenario, the results demonstrate
an increase of 3.1% in AUC on the UCF Crime dataset and an
increase of 2.8% in AUC on the CamNuvem dataset.

I. INTRODUCTION

The research area of video surveillance anomaly detection
is a promising field that aims to detect events that deviate
from the normal pattern captured by a specific camera. These
events are referred to as anomalies or abnormalities, and
their exact appearance can vary across different application
domains. Examples of anomalies include car crashes, fights,
robberies, assaults, and more.

Multiple Instance Learning (MIL) [1] is an approach used
to detect such anomalies that uses both normal and abnormal
videos into the training process. The MIL approach relies on
weakly labeled videos, where each video is labeled only to
indicate if it contains an anomaly without specifying the exact
location and duration. In their work, Ref. [1] also introduced
the weakly labeled dataset UCF-Crime, which comprises hun-
dreds of real videos encompassing various anomaly categories.

In the past few years, several studies have utilized the MIL
approach to propose more robust models, cost functions, and
learning strategies. However, all of them have not focused
on the feature extraction step. Instead, they have employed
pre-trained feature extractors such as I3D [2], Slow-Fast [3],
C3D [4], etc. The feature extraction step is a crucial process
because it determines the video representation used in the
anomaly detection process and directly influences the quality
of the final results. Using weights from models trained on
other datasets may lead to suboptimal results. Hence, this work
proposes a self-supervised approach called Self-Supervised
Object-Centric (SSOC) video anomaly detection to pre-train a
feature extraction model using a video dataset.

It is important to note that this work focuses only on the
feature extraction step and does not propose a MIL approach.
Instead, it employs existing video surveillance anomaly de-
tection approaches to evaluate the video features extracted by
SSOC on a weakly labeled video anomaly detection dataset.
Figure 1 illustrates the location of this work’s proposal within
the video surveillance anomaly detection pipeline.

Fig. 1. The SSOC approach proposed in this paper focuses on the feature
extraction step (represented by the red rectangle) in the video surveillance
anomaly detection pipeline. To obtain the results, existing MIL methods are
employed.

In this way, the main objective of this work is to develop
a feature extraction methodology designed to leverage videos
that involve interactions between objects and/or humans, aim-
ing to capture the relationships between then in a scene. To
achieve this objective, the Self-Supervised Learning approach
provides an ideal framework. It involves (a) a pretext task,
where a Deep Learning Network (DNN)-based model known
as a pretext model is trained in an unsupervised manner, and
(b) a downstream task, where the trained pretext model is fine-
tuned for the desired task, such as video surveillance anomaly
detection.

The code for this work is available publicly at https://
github.com/daviduarte/ssoc. Furthermore, an open-source plat-
form was developed in this study to standardize feature
extraction and comparison among different MIL-based video
surveillance anomaly detection methods. The source-code
is also available publicly at https://github.com/daviduarte/
camnuvem-research-platform. Ensuring a fair comparison has
been a significant challenge, given the variations in data
preparation methodologies employed by different studies [5].
Thus, the main contributions of this work are as follows:

i A feature extraction methodology based on Self-
Supervised Learning for extracting features related to
object interactions in videos.

https://github.com/daviduarte/ssoc
https://github.com/daviduarte/ssoc
https://github.com/daviduarte/camnuvem-research-platform
https://github.com/daviduarte/camnuvem-research-platform


ii The development of an open-source research platform that
automatically extracts features from videos and compares
the results among several video surveillance anomaly
detection methods.

Section II will discuss the background and important works.
Section III will provide details about the SSOC. Section IV
will discuss the results achieved. Section V will present the
discussion and conclusions.

II. RELATED WORKS

A. Convolution

Traditional convolutional blocks acquire representations
from images by aggregating features using a local receptive
field. Features from distant areas of image are aggregated
together in the deeper layers of the networks. In videos, 3D
convolutions are employed, extending the 2D receptive field
to the temporal axis. Many recent works on image and video
understanding, including those focused on Video Surveillance
Anomaly Detection [1], [6], rely on 2D or 3D convolutions [2],
[4], [7], [8]. However, most works utilize only a small temporal
window with a few frames to generate features. This limitation
can degrade the performance of video understanding tasks,
particularly those that need more contextual and long-range
information, such as video surveillance anomaly detection and
robbery detection [5].

B. Transforms

Transformer models based on multi-head attention [9] have
been extensively used in text understanding tasks. Subse-
quently, this model was successfully adapted to images in
the ViT model [10], where the input is represented by 16x16
patches tokens. In the context of videos, each token represents
2D segments from frames or 3D tubelets (spatio-temporal
patches) [11], [12]. In recent years, a significant number
of works have employed Transformers and their variations
in video understanding tasks [11]–[15]. However, a major
challenge is the quadratic complexity in terms of memory
and computation, which arises from the number of tokens in
the input, making this approach resource-intensive. To address
this problem, some works have focused on selecting the most
significant tokens [16] and also combining convolutions with
ViT [17].

C. Recovering Objects

To accurately predict certain types of actions, having in-
formation about other objects in the scene is beneficial. For
instance, when observing someone making coffee, recognizing
the coffee filter and thermos can aid in correctly classifying the
action. If only the moving person is detected, there is a risk of
misinterpreting the action as something else, such as making
tea or cooking eggs [18]. Consequently, a branch of research
focuses on explicitly detecting objects in videos using object
detectors or object trackers to understand their relationships.
Within this branch, some works employ graph reasoning tech-
niques to reason about objects [19]–[24]. In these approaches,
objects in the scene are detected and represented as nodes

in a complete graph, and various strategies are employed to
establish connections and extract relevant information.

The work of Ref. [25] examined the influence of pose
estimation and spatial characteristics obtained through the
tubelet of individuals in a temporal window. Similar to our
work, Ref. [26] employed Self-Supervised Learning to predict
features from pre-detected objects. However, in their pretext
task, they propose using object class or object action labels,
extracted by a pre-trained action classifier. In contrast, our
work aims to predict object coordinates and appearance at a
future point, and it does not involve explicit object detection
during testing. Instead, it utilizes entire frames to conserve
computational resources.

D. Self-Supervised Learning

The work described in Ref. [27] utilizes self-supervised
learning to generate representative features for videos captured
from an egocentric perspective. To perform the pretext task,
they employed the Free Semantic Label approach [28], which
involves simulating a 3D environment to predict the relative
positions of objects from the observer. The pretext model was
subsequently fine-tuned on downstream tasks, such as Natural
Language Queries [29] and room prediction.

III. METHODOLOGY

The objective of the SSOC approach is to train a DNN-based
model that can understanding the relationships between objects
and/or humans over time using an unsupervised approach. The
goal is to facilitate transfer learning to other video under-
standing tasks, such as video surveillance anomaly detection.
The self-supervised approach is well-suited for achieving this
objective because it leverages the inherent structure of the
dataset to automatically generate labels that optimize a pretext
DNN-based model. This enables the model to understand the
dataset’s intrinsic structure, thereby allowing fine-tuning in a
downstream task.

Section III-A will provide a description of the pretext task,
which focuses on learning the object relationships in the scene.
Section III-B will discuss how the pretext model, which has
been optimized in the pretext task, will be fine-tuned using
video surveillance anomaly detection datasets.

A. Pretext Task

In the pretext task, a reference object r is selected within a
small video segment, and its position and appearance feature
vector F in a future frame are estimated based on a set of past
frames, as indicated by Equation 1, where p represents the set
of past frames and g represents a DNN-based model.

g(p) = F (1)

By estimating the position and appearance of an object in
the future, it is expected that the model will learn how the
objects influence each other and their intrinsic relationships.
The term “object” here is generic and several object classes
could be used, like “person”, “car”, “motorcycle”, etc.



This approach is depicted in Figure 2. A temporal window
(or scene) with T + T ′ frames is considered, where the first
T frames are used as the set of past frames p to predict the
feature vector F for the reference object r in the (T + T ′)-
th future frame. The reference object r is chosen as the
object in the first frame of the temporal window with the
highest confidence score. The method uses the Object Tracking
module (gray square at the bottom of Figure 2) to provides
the re-identification and tracking of object r in any of the
T frames. Therefore, given the object r in the first frame
and using the Object Tracking module, it is possible to
access its position and appearance in the (T + T ′)-th frame
(the last frame in the temporal window). This will be the
label in the training process. The appearance of an object is
represented by a vector Fa ∈ Rf , where f is the vector size,
extracted from an intermediate layer of some object detector
(implemented as part of the Object Tracking module), and it
is named the appearance feature vector. The position of an
object is represented by a vector X ∈ R4, named the position
feature vector, which describes the bounding box of the object
(x1, y1), (x2, y2), where the first 2D coordinate represents the
top-right bounding box corner and the second 2D coordinate
represents the bottom-left bounding box corner. Concatenating
the appearance feature vector and the position feature vector
results in the object feature vector F ∈ Rf+4. The feature
vector F of the reference object r is shown in the black
rectangle in the output of the Object Tracking in Figure 2.

Fig. 2. The pretext task of the SSOC approach. This tasks aims to teach a
DNN-based model how the objects interact in the scene.

The pretext model is composed of a deep neural network
called backbone model, followed by a fully connected network
(FCN) represented on top of Figure 2. The backbone receives
the first T frames from the scene as input and outputs a feature
vector of size fi, corresponding to an intermediate layer that
serves as a representation for the first T frames of the scene.
This feature vector is then passed to the FCN, which aims to
estimate the coordinates and appearance F of size f+4 for the
reference object r in the future (T +T ′). The real coordinates
and appearance F of the reference object r in the (T +T ′)-th
frame are estimated by the Object Tracker, which computes
it through the re-identification of object r in all the T + T ′

frames.
In the training process, the output of the FCN and Object

Tracker is compared and the error is backpropagated through

Fig. 3. Downstream task for the SSOC approach.

the FCN and backbone networks. The weights of the Object
Tracker are kept frozen during this process. The quality of
the training depends on the quality of the implementation of
the Object Tracker and the object detector implemented in
it to perform re-identification in the frames. The idea is to
force the backbone model to predict the main object of the
first frame of the scene (the one with the highest score in the
Object Tracking’s object detector) in the future. Note that, as a
design consideration, the backbone model does not explicitly
detect the objects in the scene to keep the computational
requirements low. In this work, the Object Tracker module
is implemented using the YoloV5 as object detector. More
information about its implementation can be found in the
official GitHub repository of this work.

B. Downstream Task

In the downstream training phase, only the backbone net-
work from the pretext model is used. The idea here is that
the backbone weights have been modified in the pretext
task to understand the object relations in the scene. The
FCN is excluded following the transfer learning methodology,
where the last layers are removed to utilize only the features
generated from the backbone. In this task, the resulting model,
shown in Figure 3, is called the downstream model, and the
training process will fine-tune this model.

Although this work focuses on fine-tuning in the video
surveillance anomaly detection task (detailed in Section III-C),
this methodology can be applied to any video dataset that
presents relations between different types of objects. There-
fore, Figure 3 contains a generic block labeled as “Video Un-
derstanding Task” (last gray box) to represent the downstream
task.

In the training process, the error can be backpropagated
through the backbone network, or new trainable layers can
be inserted while keeping the backbone weights frozen. This
choice depends on the experimental setup. For this work, all
the details of the experimental setup are described in Section
III-C.

C. Experimental Setup

As explained earlier, the video understanding task used to
measure the proposed approach is video surveillance anomaly
detection using Multiple Instance Learning (MIL) [1]. Among
the many approaches available, the Robust Temporal Feature
Magnitude learning (RTFM) [6], Weakly Supervised Anomaly
Localization (WSAL) [30], and Real-World Anomaly Detec-
tion Surveillance (RADS) [1] were chosen. RTFM and WSAL



are modern techniques that are top-ranked on the UCF-Crime
dataset, while RADS is a traditional technique commonly used
in the evaluation of MIL works [6], [30]. Therefore, to clarify,
the RTFM, WSAL, and RADS methods were used in the Video
Understanding Task block shown in Figure 3.

The datasets used to generate the results presented in
Section IV are the UCF-Crime dataset [1] (Section IV-A1)
and the CamNuvem dataset [5] (Section IV-A2), sampled at
30 fps (original sampling rate). The parameters T and T ′ are
set as T = 16 and T ′ = 16, so the objective is to teach
the backbone model to predict the feature vector F of the
reference object r 16 frames into the future, given the 16 past
frames. These values were set empirically. We chose a small
window initially to demonstrate the effectiveness of the SSOC
method, with the intention of evaluating the potential impact
of increasing the window size in future works.

In the pretext task, the training phase used the training
partition, and the test phase used the test partition of both
the CamNuvem and UCF-Crime datasets. In the downstream
task, both the training and test phases also utilized the training
and test partitions of the CamNuvem and UCF-Crime datasets.
There was no mixing of samples from these datasets. At no
point were test samples used to adjust weights in the training
phase, whether in the pretext task or the downstream task. The
feature vector fi (the output of the Backbone in Figure 2) has
a size of 2048, while the feature vector f + 4 (the output of
the FCN) has a size of 1280 + 4 = 1284. The loss function
used was Mean Squared Error (MSE).

Regarding the transfer learning methodology, this work
chooses to keep the weights of the backbone model frozen in
the downstream task (Figure 3) and add new trainable layers
on top of the downstream model. These layers are part of the
RTFM, WSAL, and RADS architectures.

In the training of the downstream task, we followed the
experimental methodology of RTFM, WSAL, and RADS,
which means that all the final feature vectors of size f + 4
generated from the first T frames of the temporal windows
were averaged to result in 32 segments. RTFM was trained for
1500 epochs with a learning rate of 0.001, using normalized
input data. WSAL was trained for 500 epochs with a learning
rate of 0.0001 for I3D and 0.001 for SSOC+I3D, as the latter
did not converge with the former learning rate value. The input
data was standardized for WSAL. RADS was trained for 75
epochs with a learning rate of 0.001, using normalized data.
The utilized loss function was MSE.

The I3D model [2] was used as the backbone model
because it has been widely used in the evaluation of many
video surveillance anomaly detection works [1], [6], [30]. We
extracted an intermediate layer to be the features of the set of
T frames (Figures 2 and 3). The I3D weights in the pretext
task were pre-trained on Kinects [2].

In the results Section (Section IV), our proposed SSOC
method applied in the I3D backbone (SSOC+I3D) will be
compared with the I3D network pre-trained on the Kinect
dataset. Note that the models are the same, the difference is
that our SSOC+I3D followed the novel pre-training procedure

described in Section 2.

IV. RESULTS

This Section presents the results of the SSOC method
described in Sections III-A and III-B, using the experimental
setup described in Section III-C. Section IV-A1 describes
the results for the UCF-Crime dataset, and Section IV-A2
describes the results for the CamNuvem dataset.

A. General Evaluation

Tables I and II present the AUC values for the UCF-Crime
dataset and CamNuvem dataset, respectively. The tables are
divided into two parts: (i) All test set, which represents the
AUC values calculated over all samples in the test partition,
and (ii) Only abnormal videos, which represents the AUC
values calculated over only the abnormal samples in the
test partition. As done in Ref. [5], using method (ii) allows
for a better measurement of how well a method performs
at localizing the anomaly in the video. The first column
represents the approach used to acquire the feature vectors
from the videos, namely I3D and SSOC+I3D. The second,
third, and fourth columns present the values using the RTFM,
WSAL, and RADS methods, respectively. All values were
calculated after 5 runs. In each cell, the highest value is
depicted, followed by the mean and standard deviation in
parentheses.

1) UCF-Crime dataset: Note that in Table I, considering
the All test set partition, the RTFM method achieved an
AUC of 0.747 using the I3D feature vector, while it achieved
an AUC of 0.734 using the SSOC+I3D feature vector. This
represents a worsening of 0.013 in AUC, which is a 1.3%
absolute worsening. The WSAL method achieved an AUC of
0.723 using the I3D feature vector, while it achieved an AUC
of 0.751 using the SSOC+I3D feature vector. This represents
an improvement of 0.028 in AUC, which is a 2.8% absolute
improvement. The RADS method achieved an AUC of 0.700
using the I3D feature vector, while it achieved an AUC of
0.728 using the SSOC+I3D feature vector. This represents
an improvement of 0.028 in AUC, which is a 2.8% absolute
improvement. Figure 4a shows the ROC curves for RTFM,
WSAL, and RADS using all the samples in the UCF-Crime
dataset.

In the Only abnormal videos partition of Table I, the
RTFM method achieved an AUC of 0.540 using the I3D
feature vector, while it achieved an AUC of 0.528 using the
SSOC+I3D feature vector. This represents a worsening of
0.012 in AUC, which is a 1.2% absolute worsening. The
WSAL method achieved an AUC of 0.630 using the I3D
feature vector, while it achieved an AUC of 0.633 using the
SSOC+I3D feature vector. This represents an improvement
of 0.003 in AUC, which is a 0.3% absolute improvement.
The RADS method achieved an AUC of 0.479 using the I3D
feature vector, while it achieved an AUC of 0.549 using the
SSOC+I3D feature vector. This represents an improvement of
0.070 in AUC, which is a 7% absolute improvement. Figure 4b



shows the ROC curves for RTFM, WSAL, and RADS using
only the abnormal samples in the UCF-Crime dataset.

RTFM WSAL RADS
All test set

I3D 0.747
( 0.745 ± 0.002)

0.723
(0.700 ± 0.016)

0.700
(0.698 ± 0.001)

SSOC+I3D
(ours)

0.734
(0.723 ± 0.011)

0.751
(0.739 ± 0.008)

0.728
(0.721 ± 0.006)

Only abnormal videos

I3D 0.540
(0.531 ± 0.007)

0.630
(0.616 ± 0.012)

0.479
(0.477 ± 0.001)

SSOC+I3D
(ours)

0.528
(0.511 ± 0.012)

0.633
(0.622 ± 0.008)

0.549
(0.539 ± 0.006)

TABLE I
GREATER VALUES OF AUC FROM 5 RUNS USING UCF-CRIME DATASET.

RTFM WSAL RADS
All test set

I3D 0.858
(0.848 ± 0.006)

0.807
(0.798 ± 0.006)

0.791
(0.788 ± 0.002)

SSOC+I3D
(ours)

0.884
(0.878 ± 0.003)

0.838
(0.837 ± 0.001)

0.776
(0.772 ± 0.002)

Only abnormal videos

I3D 0.560
(0.522 ± 0.021)

0.628
(0.598 ± 0.018)

0.519
(0.518 ± 0.001)

SSOC+I3D
(ours)

0.616
(0.601 ± 0.014)

0.573
(0.562 ± 0.009)

0.467
(0.465 ± 0.001)

TABLE II
GREATER VALUES OF AUC FROM 5 RUNS USING CAMNUVEM DATASET.

2) CamNuvem dataset: Note that in Table II, considering
the All test set partition, the RTFM method achieved an
AUC of 0.858 using the I3D feature vector, while it achieved
an AUC of 0.884 using the SSOC+I3D feature vector. This
represents an improvement of 0.026 in AUC, which is a
2.6% absolute improvement. The WSAL method achieved an
AUC of 0.807 using the I3D feature vector, while it achieved
an AUC of 0.838 using the SSOC+I3D feature vector. This
represents an improvement of 0.031 in AUC, which is a 3.1%
absolute improvement. On the other hand, the RADS method
achieved an AUC of 0.791 using the I3D feature vector, while
it achieved an AUC of 0.776 using the SSOC+I3D feature
vector. This represents a worsening of 0.015 in AUC, which
is a 1.5% absolute worsening. Figure 5a shows the ROC curves
for RTFM, WSAL, and RADS using all the samples in the test
set.

In the Only abnormal videos partition of Table II, the
RTFM method achieved an AUC of 0.560 using the I3D
feature vector, while it achieved an AUC of 0.616 using the
SSOC+I3D feature vector. This represents an improvement
of 0.056 in AUC, which is a 5.6% absolute improvement.
The WSAL method achieved an AUC of 0.628 using the
I3D feature vector, while it achieved an AUC of 0.573 using
the SSOC+I3D feature vector. This represents a worsening
of 0.055 in AUC, which is a 5.5% absolute worsening. The
RADS method achieved an AUC of 0.519 using the I3D
feature vector, while it achieved an AUC of 0.467 using the
SSOC+I3D feature vector. This represents a worsening of
0.052 in AUC, which is a 5.2% absolute worsening. Figure 5b

shows the ROC curves for RTFM, WSAL, and RADS using
only the abnormal samples in the test set.

V. DISCUSSION AND CONCLUSIONS

We proposed the SSOC approach to generate high-quality
feature vectors from videos, aiming to extract relationships
between objects and/or humans. We evaluated our approach
alongside the traditional I3D feature extractor and found that,
out of the 12 cases evaluated, 7 of them (58%) achieved
better results. In particular, the WSAL and RTFM methods,
applied to the UCF-Crime and CamNuvem datasets respec-
tively, demonstrated superiority over traditional approaches in
all evaluated metrics.

A significant limitation of this work is the label generation
process, where the success of the training relies on the quality
of the Object Tracking module. Therefore, in future works,
the evaluation of the Object Tracking module using well-
defined metrics will be explored, as well as the comparison of
SSOC with alternative feature extraction approaches (beyond
just I3D) to establish the validity of SSOC.
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