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Abstract—Autoencoder (AE) implementations through neural
networks have achieved impressive results on dimensionality
reduction tasks, such as multispectral (MS) imagery compression.
Dimensionality reduction algorithms are necessary when dealing
with large multispectral datasets, since the data captured by mul-
tiple levels of narrow spectral wavelengths causes high processing
and storage costs, particularly when such highly dimensional MS
data are used as input to deep learning networks. Traditional
data compression techniques like Principal Component Analysis
(PCA) are popular in remote sensing applications. However,
its implementation on MS data may make the data unusable
for computer vision (CV) tasks such as image segmentation,
especially when applying severe compression. On the other hand,
AEs provide great generalization capabilities over complex data,
especially when combined with other CV pipelines. For the
relevant problem of semantic segmentation, the results are con-
siderably degraded when using dimensionality-reduced images
with PCA. When using vanilla autoencoders trained with the
traditional MSE loss, the segmentation results improve over
PCA but are still considerably behind the one obtained with
uncompressed data, which indicates a potential domain shift. In
this work, we show that training an AE using a combination
of the MSE loss and an additional proxy loss based on a pre-
trained segmentation module can significantly improve the AE
restoration process, alleviating the accuracy drop of semantic
segmentation even for strong compression rates. Our code is
available at https://github.com/elitonfilho/pca.

I. INTRODUCTION

The generation of massive and complex databases that holds
high-dimensional data could be useful in the recent era of
big data, especially when fuelled by multiple data engineering
methods that aim to extract the greatest number of features for
the same observation. Such massive data structures hold infor-
mation that is not used effectively most of the times, bringing
up the classical “curse of dimensionality” problem [1]–[3]:
high-dimensional data deteriorates the performance of conven-
tional learning methods. Besides that, high-dimensional data
induces increased complexity, higher computational burden,
harder interpretability, and higher risk of overfitting.

Advances in imaging devices and high-throughput data
collection technologies have led to a large data capture in
various domains. Amongst them, multispectral (MS) imagery
is well known for generating great volume of data due to an
elevated number of spectral bands, high spatial resolution, or
high capture rate [4], which is usually the case for current
imaging solutions such as satellites or drone mapping. The use
of multispectral images is reported in a variety of applications
such as agronomy [5], [6] and surveillance [7].

In this context, data compression techniques might be useful
for reducing the amount of stored data without significant loss
of information. When the number of spectral bands is large (as
in most hyperspectral sensors), dimensionality reduction might
even improve some tasks, such as classification/segmentation,
particularly when the number of training data is small (Hughes
phenomenon [1]).

Principal Component Analysis (PCA) is the most popular
technique for dimensionality reduction [8], in particular for
remotely sensed data [9]. PCA uses orthogonal transformations
to obtain a set of linear uncorrelated variables (principal
components), being extended in multiple approaches such
as Kernel PCA [10] and Sparse PCA [11], which allows
dealing with non-linearities. The development of efficient
PCA algorithms leveraged the pre-processing of MS image
datasets to eliminate data redundancy while keeping most of
the relevant information [12]. Using PCA-reduction in deep
learning applications has a noticeable good point: generating
a smaller dataset while maintaining a high correlation to the
original information, which allows for accelerating the training
and inference processes, since more images can be allocated
at once in the memory. However, dimensionality reduction
might destroy discriminative information, which is relevant
for classification tasks.

Autoencoders (AEs) were already studied in the ’90s as an
alternative to dimensionality reduction techniques, but practi-
cal results just appeared in the last decade, when we overcame
the difficulty in training complex multi-layer neural networks
[13]. Multiple studies [14], [15], including research involv-
ing MS imagery data [16], [17], showed that autoencoders
have great potential for learning intrinsic properties of high-
dimensional data. Amongst AE variations, one of the most
common is the Variational autoencoder [18], whose training
is regularized by encoding the inputs as a distribution over the
latent space.

Regardless of the chosen dimensionality reduction ap-
proach, the reconstructed signal usually is not error-free (par-
ticularly for higher compression rates). Hence, when restoring
compressed images, the reconstruction error might be propa-
gated to other tasks relevant to MS imaging, such as semantic
segmentation. This problem might be particularly relevant
when using deep learning approaches, since a possible domain
shift between the reconstructed and the original images might
considerably degrade the inference results of neural networks.

In this work, we initially evaluate the impact of different
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data dimensionality reduction approaches in semantic segmen-
tation tasks. More precisely, we first perform dimensionality
reduction using PCA or vanilla AEs trained with the traditional
Mean Squared Error (MSE) loss. We then fed the reconstructed
images to a pre-trained segmentation module, and noted that
results with the vanilla AE are substantially better than PCA
considering the segmentation task for larger compression rates.
However, they are still considerably worse compared to using
uncompressed data, which indicates a potential domain shift
in the reconstruction process. To mitigate this problem, we
explore a combination of the MSE loss with a task-driven
loss – which is a segmentation error metric in our case –
to train an AE. We use a simple ResNet module [19] that
employs residual learning and identity mapping shortcuts as
the chosen baseline AE (we also tested a U-Net [20], but
the results were inferior). Our results indicate that adding
the segmentation proxy to train the AE provides an accuracy
boost to the segmentation results, even when reducing the
dimensionality to a single channel.

The rest of the paper is organized as follows. In Section III,
we propose an autoencoder architecture as a framework for
dimensionality reduction while detailing our experimentation
procedure. In Section IV, we discuss the proposed method and
illustrate the experimental results on AE/PCA reconstructed
data, finally concluding the paper in Section V.

II. RELATED WORK

While early literature on Principal Component Analysis
dates from the early 20th century [21], it was only with recent
electronic development that its implementation was computa-
tionally feasible on large data structures. It is employed in
multiple computer vision tasks, either as a core idea in deep
learning architectures or as a simple pre-processing tool [22].
This very well-known statistical technique is quite common
when processing raster data: multiple measurements of raster
surfaces can aggregate an exorbitant volume of observations,
especially when dealing with multispectral data, and Principal
Component Analysis is a great approach to lower dimensional
spaces while maintaining spatial correlation between variables
[23]. Recent extensions of PCA, such as robust PCA [24],
bring up important methodological advances to tackle very
large datasets, which is often the case in image processing
and machine learning applications.

Recent hardware developments also enabled the use of com-
plex autoencoders to capture multispectral data distributions.
autoencoders are mostly employed on image restoration tasks.
Amongst them, convolutional architectures are quite common
in image fusion [25] and unmixing tasks [26]. There are also
some authors that explore image compression on encoder-
decoder compositions, since its forward pass until a latent
space can simulate data compression. This is the case of Kong
et al. [27], who employ a spatial attention network based on
variational autoencoders that offer state-of-the-art compression
on 7-band Landsat-8 and 8-band WorldView-3 imagery. Alves
et al. [28] explore a joint compression and denoising method

using Convolutional autoencoder (CAE) and generalized divi-
sive normalization. Cheng et al. [29] also use a convolutional
autoencoder to propose a lossy image compression method
feeding PCA-rotated feature maps generated by the CAE into
a quantization equation.

After the consolidation of task-tailored neural networks
capable of providing state-of-the-art solutions for most com-
puter vision challenges, the aggregation of multi-modal deep
learning tasks became increasingly common. The usage of
domain-specific information contained in the training signals
of related tasks has a clear advantage: the potential for
improved performance if the associated tasks share com-
plementary information, or the inter-regularization of tasks,
without necessarily improving much of the resources footprint
due to their inherent layer sharing [30]. Some applications
of multispectral imagery are proposed by Feng et al. [31]
by mixing super-resolution, colorization, and pan-sharpening
to produce realistic-looking images using only panchromatic
images as inputs, and He et al. [32] that submitted a multi-
object tracking method trained on satellite images that uses a
graph-based spatiotemporal module and a multitask gradient
adversarial learning strategy. Even though there is a vast
literature about task-driven deep learning methods, the impacts
of data compression on task-driven models remain a relatively
nascent subject.

III. THE PROPOSED APPROACH

Our main goal in this work is to propose a dimensionality
reduction approach using an AE trained with a loss function
that combines reconstruction and segmentation error terms.
The input of the AE is a ci × h×w multispectral image, and
the output is cb × h×w. Here, h×w is the spatial resolution
of the image, and ci > cb are the number of channels of the
original and dimensionality-reduced images, respectively.

The encoder module of the proposed AE consists of a set
of convolutional blocks with (stride, padding, kernel size) =
(1, 1, 3), and the number of output channels decreases by a
factor of 2 for every consecutive block after the first block,
which has 64 channels. The last block of the encoder has cb <
ci channels, and its output will produce the dimensionality-
reduced version of the input image. Since we want to reduce
storage requirements, it is typically desired to have cb << ci,
with the extreme case being cb = 1. The decoder has a
similar architecture with blocks used in a reversed order: it
employs the same type of convolutional blocks to expand the
depth of the bottleneck’s feature maps from cb to co. In our
experiments, we adopt ci = co to simulate the autoencoder
task. The proposed architecture is shown in Fig. 1. Notice that,
while the amount of decoder blocks is constant, the quantity
of residual encoder blocks depends on no, being equal to
log2(64/cb) + 1.

We chose to use a simple and efficient ResNet [19] module
as the segmentation network, since its deep representation
presents a good generalization performance on pattern recog-
nition tasks. More precisely, we chose the ResNet-101 variant,
which employs a stack of 101 layers with residual connections



Fig. 1. Representation of the employed autoencoder architecture. The blocks are composed of convolutions (green), batch normalizations (yellow), and
Leaky-ReLU activations (red). In the bottom left, we show the representation of the residual architecture employed in the autoencoder module. The outlined
red block at the end of the encoder sub-module represents the bottleneck of the AE network.

in-between, and trained it using a cross-entropy residual loss
between the predicted and original masks. The segmentation
module is trained on uncompressed data (ci channels), gen-
erating a pre-trained network that will be used both as an
evaluation oracle and a segmentation proxy for the AE.

The dimensionality-reduction AE is trained using two dif-
ferent strategies: the first one uses only the MSE between
the original image x and the output of the decoder x̂ – the
reconstruction loss, which is the usual approach for training
AEs. The second approach explores a joint loss function that
combines the reconstruction and segmentation error terms.
This latter error term involves a set of per-pixel pseudo-
labels produced by the segmentation proxy, encoded as one-
hot vectors l = [lk], and the corresponding outputs produced
by the segmentation module l̂ = [l̂k], coming from a softmax
layer. The joint loss is given by

L = Lmse + ωLseg, (1)

where

Lmse =
1

hwci

ci∑
c=1

h∑
i=1

w∑
j=1

(x(c, i, j)− x̂(c, i, j))
2 (2)

is the classical MSE error computed across all channels
between the uncompressed image and the prediction produced
by the decoder, and

Lseg =
1

hw

h∑
i=1

w∑
j=1

C∑
k=1

−lk(i, j) log(l̂k(i, j)) (3)

is the average per-image cross-entropy loss, which aims to en-
force the consistency of the semantic pseudo-labels produced
by the original high-dimensional data and its compressed
version. Parameter C denotes the number of classes, and ω
is the weight (set to 0.01 based on experiments) that balances
the magnitude of both loss terms.

To train both the segmentation module and the AE, we used
the Adam [33] optimizer with decay (α, β) = (0.9, 0.999).
The training process is conducted for 200 epochs for each
network, and the learning rate follows a multi-step update,

being set to (1−3, 5−4, 1−4) on (50th, 100th, 150th) epochs,
respectively. We used PyTorch 1.10, supported by Python
3.8.10 and CUDA 11.3 to train and validate our models.

IV. EXPERIMENTAL RESULTS

Since our main evaluation task is semantic segmentation,
we need a multispectral dataset with class labels. We used
the Chesapeake Land Cover dataset [34], which contains
land cover labels for six classes (water, tree canopy/forest,
low vegetation/field, barren land, roads, and other impervious
surfaces) and Landsat8 surface reflectance imagery for nine
bands (i.e., ci = 9). We used the tiles from the region of
Delaware, normalizing the values of the multispectral bands
to the range [0, 1] while keeping other characteristics devised
by the dataset creators, such as the patch size (256 × 256)
and the train/val split. Since the AE is fully convolutional,
the whole test images are fed to the network in the inference
phase.

The segmentation network is trained only once using the un-
compressed (9-channel) images, and we trained eight different
AEs: The first four were obtained using only the MSE loss (re-
construction) varying the number of channels cb ∈ {1, 2, 4, 8}
in the encoder bottleneck, and they are denoted as AE-1, AE-
2, AE-4, and AE-8. The other four AEs were trained using
the joint loss function with the segmentation term provided in
Eq. (1), named AES-1, AES-2, AES-3, AES-4.

To validate the quality of the proposed AEs, we computed
segmentation figures of merit by applying the pre-trained seg-
mentation network to the decoded (de-compressed) versions
of the test images varying the number of channels (cb) of the
corresponding encoder. We also compared our results with
PCA-encoded versions of the multispectral images using a
varying number of features (PCA-1, PCA-2, PCA-4, and PCA-
8), which are decoded and fed to the same segmentation
network.

Table I shows the segmentation results using different
feature reduction techniques (PCA, AE, and AES) varying the
target number of features cb ∈ {1, 2, 4, 8}. The best result
for each value of cb is shown in bold, and “Original” relates



(a) Mask (b) Original

(c) PCA-1 (d) AE-1 (e) AES-1

(f) PCA-2 (g) AE-2 (h) AES-2

(i) PCA-4 (j) AE-4 (k) AES-4

(l) PCA-8 (m) AE-8 (n) AES-8

Fig. 2. Segmentation results for the PCA, AE and AES experiments with
bottleneck 1, 2, 4 and 8. The class colors are violet (water), forest (pink),
roads (gray), impervious surface (green) and field (blue)

to segmentation results using the uncompressed dataset. We
used the accuracy, mean accuracy, class-wise intersection over
union (IoU), and the overall mean value (mIoU) between the
output of the segmentation module and the ground truth mask
as figures of merit, with the IoU class mappings following
the order: 1– water, 2– forest, 3– field / low vegetation, 4–
barren land, 5– roads and 6– other impervious surfaces. We
additionally show the MSE between the reconstructed and the

original images in the last column of Table I.
Table I indicates that PCA compression using medium to

severe bottlenecks cb ∈ {1, 2, 4} yields very poor segmentation
results, but very light dimensionality reduction (cb = 8)
showed virtually the same segmentation performance of the
uncompressed dataset (i.e., using the full nine channels). In
fact, the cumulative variance using eight (out of nine) bands
of the PCA reconstructed dataset yields more than 99% of
the entire dataset variance, allowing a faithful representation
of the original dataset (which is corroborated by a very
small reconstruction MSE). The AE approach showed a strong
accuracy gain on the segmentation task compared to PCA with
the same number of features, especially on small bottlenecks
(large compression ratios). We notice, however, a considerable
IoU drop in some classes (particularly 4, 5, and 6, which
represent the impervious surfaces and barren land), which we
believe was caused by a domain shift between the decoded
version and the original image for the task of segmentation.

The AE version with the segmentation proxy (AES) pre-
sented considerably better results, particularly for very small
bottlenecks. For example, AES-1 (reduction to a single chan-
nel) presents larger mIoU values than AE-4 and much larger
than PCA-4, which both encode the compressed versions with
4× more channels (it is even slightly better than AE-8). Com-
pared to the original images, AES-1 achieves 86.7% of the
segmentation mIoU with a channel-wise compression factor
of 9×. We believe that using the segmentation module in the
joint training process alleviates the domain shift problem, since
the segmentation module regularizes the AE to reconstruct
images that are more loyal to the class predictions. Using
this relatively simple approach introduces a slight overhead
in the training process (the use of the segmentation proxy,
which presents fixed weights that are not updated) and has no
impact on the architecture of the AE.

It is also interesting to note in Table I that AES provides
reconstructed images with smaller MSE than AE for cb ∈
{2, 4, 8}, even though AE is trained only with MSE as the
loss. We believe that using the segmentation proxy might also
work as a regularizer for the autoencoder, leading to smaller
MSE on unseen data.

We also show in Fig. 2 the segmentation results produced
by PCA, AE, and AES dimensionally-reduced data (with
different compression factors). We note that reconstructed
images with PCA yield very poor segmentation results for
stronger compression rates (most of the image was classified
as “field” for cb ∈ {1, 2}, and large portions of “impervious
surface” were wrongly detected with cb = 4). Results using
AE are able to retrieve the most predominant classes (such as
water, forest, and fields) even for large compression ratios,
but fail to capture detailed and less frequent classes. This
problem is alleviated with the introduction of the joint learning
approach, and even AES-1 is able to identify less frequent
categories such as road and impervious land classes. It is also
interesting to note that results for AES using cb = 1 and
cb = 8 are visually similar, which indicates that AES-1 might
be a very good choice if large compression rates are desired.



TABLE I
EVALUATION OF METRICS GENERATED BY THE SEGMENTATION MODULE ON ORIGINAL OR RECONSTRUCTED DATA

Experiment Acc mAcc IoU mIoU MSE
PCA-1 0.063 0.167 {1: 0.0, 2: 0.0, 3: 0.07, 4: 0.0, 5: 0.016, 6: 0.0} 0.014 1.04e−1

AE-1 0.886 0.422 {1: 0.335, 2: 0.742, 3: 0.866, 4: 0.0, 5: 0.012, 6: 0.029} 0.331 2.32e−3

AES-1 0.930 0.558 {1: 0.834, 2: 0.86, 3: 0.913, 4: 0.042, 5: 0.164, 6: 0.278} 0.515 2.59e−3

PCA-2 0.423 0.191 {1: 0.0, 2: 0.002, 3: 0.512, 4: 0.001, 5: 0.019, 6: 0.003} 0.089 8.06e−2

AE-2 0.854 0.450 {1: 0.735, 2: 0.628, 3: 0.823, 4: 0.0, 5: 0.107, 6: 0.118} 0.402 2.14e−3

AES-2 0.933 0.578 {1: 0.858, 2: 0.866, 3: 0.916, 4: 0.085, 5: 0.19, 6: 0.299} 0.536 8.70e−4

PCA-4 0.248 0.161 {1: 0.057, 2: 0.001, 3: 0.269, 4: 0.0, 5: 0.016, 6: 0.01} 0.059 3.85e−2

AE-4 0.923 0.501 {1: 0.81, 2: 0.842, 3: 0.904, 4: 0.0, 5: 0.099, 6: 0.162} 0.469 7.00e−4

AES-4 0.938 0.612 {1: 0.879, 2: 0.876, 3: 0.921, 4: 0.168, 5: 0.201, 6: 0.357} 0.567 3.70e−4

PCA-8 0.944 0.638 {1: 0.894, 2: 0.89, 3: 0.928, 4: 0.248, 5: 0.21, 6: 0.394} 0.594 8.00e−7

AE-8 0.928 0.545 {1: 0.851, 2: 0.851, 3: 0.908, 4: 0.058, 5: 0.153, 6: 0.249} 0.512 3.80e−4

AES-8 0.937 0.610 {1: 0.866, 2: 0.872, 3: 0.92, 4: 0.159, 5: 0.203, 6: 0.374} 0.566 3.00e−4

Original 0.944 0.638 {1: 0.894, 2: 0.89, 3: 0.928, 4: 0.248, 5: 0.21, 6: 0.394} 0.594 -

Fig. 3. Relative performance for the semantic segmentation task between
experiments PCA-n, AE-n, and AES-n (n ∈ {1, 2, 4, 8}) and the original 9-
band input. The continuous line displays mean IoU values, while dotted lines
show the mean accuracy.

Finally, Fig. 3 summarizes the relative performance in the
semantic segmentation task of reconstructed inputs from the
PCA, AE, or AES methods and the original 9-band input.
It shows the power of the task-oriented autoencoder in high-
compressed multispectral data: AES-1 can reach obtain almost
87% of mIoU of the core experiment with non-compressed
data while using only 11% of the original image size (channel-
wise reduction). Besides, the storage requirements for the
model should be mostly negligible when compared to large
multispectral datasets. On the other hand, both PCA and AE
present a more consistent accuracy drop when we decrease b.

V. CONCLUSIONS

This paper presented a task-driven dimensionality reduction
technique based on deep autoencoders. The core idea of the

paper is that by using an error metric of the main task as
a proxy to guide the training process of the autoencoder can
regularize the reconstruction process through the decoder when
compared to the traditional reconstruction loss only.

Our results indicate that standard approaches such as PCA
are adequate for very light reductions (which are not useful in
practical applications, since they yield very low compression
rates), but tend to produce very poor segmentation results
on mild and severe dimensionality reductions. On the other
hand, autoencoders showed to be a viable solution for strong
reductions: results using only the reconstruction MSE as the
loss (named AE-cb) are considerably better than PCA for mild
to extreme compression factors. The full approach with the
segmentation proxy (AES-cb) improved over AE-cb for all
tested compression factors, and even dimensionality reduction
to a single feature (cb = 1) can lead to interesting segmentation
results: approximately 86.7% of the mIoU obtained with the
uncompressed raw data, but using only 11.1% of the channels.

We believe this work could serve as a starting point for
deeper research involving multiple sources of MS data, state-
of-art autoencoders, and segmentation models. Although we
used semantic segmentation as the driving task, the same
strategy can be used for other tasks as well, such as object
detection. In future work, we intend to work with hyper-
spectral data as well, for which the proposed dimensionality
reduction approach might even improve segmentation results
over uncompressed data (Hughes phenomenon [1]). We also
plan to investigate different AE architectures, and evaluate the
generalization capabilities in cross-dataset experiments.
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