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Abstract—Image classification is one of the classical problems
in computer vision, and CNNs (Convolutional Neural Networks)
are widely used for this task. However, the choice of a CNN
can vary depending on the chosen dataset. In this context, we
have trainable activation functions that are crucial in CNNs
and adapt to the data. One technique for constructing these
functions is to write them as a linear combination of other
activation functions, where the coefficients of this combination
are learned during training. However, if we have a large number
of activation functions to combine, the computational cost can
be very high, and manually testing and choosing these functions
may be impractical, depending on the number of available
activation functions. To alleviate the difficulty of choosing which
activation functions should be part of the linear combination,
we propose two heuristics: Linear Combination Approximator
by Coefficients (LCAC) and Major and Uniform Coefficient
Extractor (MUCE). Our heuristics provide an efficient selection
of a subset of activation functions so that their results are better
or equivalent to the linear combination that uses all 34 available
activation functions in our experiments (C34), considering the
image classification problem. Compared to the C34 function,
the LCAC function was better or equivalent in 62.5%, and the
MUCE function in 87.5% of the conducted experiments.

I. INTRODUCTION

Image classification has a wide range of applications,
including medical image analysis [1], remote sensing [2],
and cosmology [3]. There is extensive research focused on
improving CNNs for image classification [4], [5].

There are numerous types of research to improve these
CNNs to make them more effective, and the activation func-
tions are studied in one of these branches [6]–[8]. Activa-
tion functions have a fundamental role because, according
to the choice of this function, we can improve the network
performance [9]. Among the activation functions, the fixed
functions do not change during the learning process, and the
learned functions are built in the learning process phase of
the network [10]. Since 2017, there has been a significant
increase in the number of papers related to learned activation
function [10]. From the techniques developed for trainable
activation functions, we highlight the parameterized activation
functions and functions based on ensemble methods. Parame-
terized activation functions are functions derived from standard
activation functions with the addition of some parameters to
be learned. Activation functions based on ensemble methods
are a mixture of several different activation functions, where
these functions are combined using specific parameters that

will be learned. A common approach is to linearly combine
these functions, learning the coefficients during training [9],
[10], which is the focus of this work.

Although linear combinations of activation functions allow
learning their coefficients in the network learning phase, they
may not be satisfactory. It is because we can have different
results according to the chosen set of activation functions.
Also, manually choosing which function remains may be
unfeasible because if we think of using n different activation
functions, we will have 2n − 1 possible combinations, which
overgrow as n grows. Another problem to be addressed is that
the more activation functions we use, the greater the time spent
on training, and the more memory will be required. To tackle
this problem, we propose two heuristics, which help to choose
functions from the set of activation functions available, so that
the result is equivalent to or better than choosing to use all
functions in the linear combination.

In our experiments on the image classification problem,
we use 25 activation functions implemented by the PyTorch
framework and 9 recent activation functions from literature,
resulting in the 34 activation functions. Hence, the function
named C34 stands for the linear combination of these 34
activation functions. In this paper, we try to choose a subset of
the considered function by applying the proposed heuristics:
Linear Combination Approximator by Coefficients (LCAC)
and Major and Uniform Coefficient Extractor (MUCE). With
those heuristics, we reduce the number of activation functions,
leading to equivalent or better results than combining all the
available activation functions using the C34 function. For
our experiments, we chose the datasets MNIST, KMNIST,
FashionMNIST, SVHN, CIFAR10, and CIFAR100. For the
neural network architectures, we chose the ResNet-18 as the
simplest, MobileNet, SuffleNet as networks proposed to be
used in mobile, and the ResNet-50 network, which is a more
robust network. The obtained results demonstrate that the
heuristics LCAC and MUCE manage to be better or equivalent
to C34, at 62.5% and 87.5%, respectively, by analyzing the
Table I. If we disregard the MobileNet network, the MUCE
heuristic was better or equivalent in all cases.

II. RELATED WORK

There has been a growing interest in research on activation
functions. Among the works, we can mention research on fixed



activation functions, and a greater tendency towards trainable
activation functions. Among the authors that proposed fixed
activation functions, we can mention Elfwing et al. [11], who
proposed SILU and dSiLU. Alcaide [12] proposed a multiple
of the SILU function, where the multiplicity factor was tuned
according to the problem. Chieng et al. [13] proposed the
function Flatten-T Swish, whose feature is to work with a
function that merges ReLU and Sigmoid, using a parameter
T . For T = 0, the function is a product of ReLU and Sigmoid.
Qin et al. [14] proposed a function derived from Sigmoid.
Roy et al. [15] proposed the LiSHT function. Farzad et al. [16]
proposed the Elliott function, which is similar to the Sigmoid.

As for the trainable functions, we have the parameterized
functions and the functions built as an ensemble of functions.
Among the parameterized functions, we can mention the
PReLu [17], which is equal to the ReLU function when the
input of the function is positive, and it has an added weight
to be learned by the network when the input is negative. The
Flexible ReLU function, proposed by Qiu et al. [18], adds
a parameter to the domain and another to the image of the
ReLU function. Clevert et al. [19] proposed the ELU, which
is a combination of ReLU when the input is positive, and
in the negative part, a parameter α to be learned is intro-
duced. The image of this function varies between ]− α,+∞[.
Other architectures similar to ELU were proposed, such as
SELU [20], PELU [21], CELU [22], MPELU [23], FELU [24],
PREU [25], EELU [26], PDELU [27].

From the works that use an ensemble of activation functions,
we can mention [28] that proposed three ways to combine
functions. The first used a linear combination between the
ELU and LReLU functions, the second used product and
sum with Sigmoid, LReLU, and ELU, and the third one was
building a network using the PReLU, PELU, and Sigmoid
functions. In [29], activation functions are learned in a sub-
network with a single activation layer defined as

V AF (ai) =

k∑
j=1

bjg(αjai + α0j) + β0,

where ai is the input and αj , α0j , βj and β0 are the parameters
learned from the data during the training process and g is
an activation function. The activation functions proposed by
Scardapane et al. [30] are based on the linear combination of
the kernel functions. Sütfeld et al. [31] proposed a function
formed by the linear combination of the functions Tanh, ELU,
ReLU, Id, and Swish, where the coefficients are learned.
In [32], the function is constructed as

h(x) =

(S+1)/2∑
S=1

aS+ max(0, x−bS)+

(S+1)/2∑
S=1

aS− max(0,−x−bs),

where bS ≥ 0 is fixed during training and aS+, a
S
− are trainable

parameters. Note that for x ≥ bS , we have a sum of ReLU
functions translated from bS .

III. METHODOLOGY

An activation function derived from the linear combination
of other activation functions can be expressed as:

f(x) =

n∑
i=1

aifi(x), (1)

where ai ∈ ℜ the coefficients that must be learned in the
network training phase, and fi are fixed or learned activation
functions, for i ∈ {1, 2, · · · , n}. Notice that ai = 0 has the
same effect as removing the corresponding activation function
fi from the linear combination. For this, it is necessary to have
a bijection between the ai’s coefficients and the fi’s activation
functions. An arbitrary ordering of how the fi’s activation
functions will appear in the linear combination is chosen to
promote bijection. Once chosen, this ordering is maintained.

After training, we will have the activation function f
generated by the fi activation functions. Our objective with the
two proposed heuristics is to find a proper subset of activation
functions {gt, 1 ≤ t ≤ m,m ≤ n} ⊂ {fi, 1 ≤ i ≤ n}
in such a way that it significantly reduces the number of
activation functions placed in the linear combination, while
the accuracy of the network using this new activation function
g(x) =

∑m
t=1 atgt(x) can lead to results equivalent to or better

than the network using f(x).

A. Model evaluation

We used the Stratified k-Fold Cross Validation [33] to
evaluate the accuracy of the learned activation function, which
divides the data into k disjoint parts (a.k.a. folds) while
preserving the proportion of samples of each class in the folds.
Then, k iterations are made so that, at each iteration, one of
the k folds of samples is chosen as the validation set, and
the remaining k − 1 folds are set as the training set. Given
a subset of activation functions {gt, 1 ≤ t ≤ m,m ≤ n} ⊂
{fi, 1 ≤ i ≤ n}, for each iteration l, 1 ≤ l ≤ k we will have
a learned function f l(x) =

∑m
t=1 atgt(x). To evaluate the

accuracy of the set of learned f l functions, we calculate the
accuracy of each of these functions concerning the validation
set. The average accuracy estimates how much the model can
predict using the learned activation function. We use Welch’s
t-test [34] to compare how much one result obtained with the
average accuracy is better than another. The null hypothesis
of Welch’s t-test is that the averages are statistically equal.

B. Initial foundations for building heuristics

At each iteration l, 1 ≤ l ≤ k, promoted by Stratified k-Fold
Cross Validation, we must choose a subset of functions

Gl = {gt, 1 ≤ t ≤ ml,ml < n} ⊂ {fi, 1 ≤ i ≤ n}. (2)

Note that if Gl were equal in each iteration, the activation
function chosen by the technique would be

f =

m∑
i=1

xigi, gi ∈ G1 = . . . = Gk, (3)

where xi would be the learned coefficients. This would prevent
us from having distinct linear combinations in the iterations



performed. However, this does not happen. We define a
threshold from a P function to work around the problem.

Definition 1 (P function). Let k be the number of partitions
applied to the data using the Stratified k-Fold Cross Validation
technique. For 1 ≤ l ≤ k consider collection of subsets

Gl = {gt, 1 ≤ t ≤ ml,ml ≤ n} ⊂ {fi, 1 ≤ i ≤ n}, (4)

and let vimax = max{v ∈ {1, . . . , k}, fi ∈
⋂v

j=1 Glj}. Then
the P function is defined as:

P : {fi, 1 ≤ i ≤ n} → ℜ, P (fi) =
1

k
vimax. (5)

Definition 2 (Intersection threshold). If we construct a subset

G = {gt, 1 ≤ t ≤ m,m ≤ n} ⊂ {fi, 1 ≤ i ≤ n} (6)

from the collection of subsets

Gl = {gt, 1 ≤ t ≤ ml,ml ≤ n} ⊂ {fi, 1 ≤ i ≤ n}, (7)

with intersection threshold p ∈ [0, 1], and 1 ≤ l ≤ k, it means
P (fi) ≥ p ∀fi ∈ G.

The matrices B and C will be used in the LCAC and
MUCE techniques, respectively, for choosing the activation
functions that will compose the linear combination of the
function proposed by the technique. For that, consider

B = [bij ]k×n, (8)

matrix of the activation function coefficients learned, where
each row l of the matrix was learned in the l − th iteration
using the Stratified k-Fold Cross Validation. In order to apply
the MUCE technique, it is essential to normalize the columns
of matrix B, which we will explain in Section III-B2. In turn,
matrix C is constructed from matrix B by normalizing its
columns using the Softmax function:

C = [cij ]k×n, where cij =
ebij∑k
p=1 e

bpj
and bij ∈ B. (9)

1) Linear Combination Approximator by Coefficients
(LCAC): The LCAC heuristics consists of choosing the co-
efficients of the linear combination of activation functions
that are closest to zero to then eliminate them and keep
their complement. For this, consider the matrix B given by
Equation 8. Let D be the matrix obtained by normalizing the
lines of B using the Softmax function. Consider

Dl = {dlj ∈ D, 1 ≤ j ≤ n}, 1 ≤ l ≤ k. (10)

We choose a elimination threshold T such that for each
Dl, we must eliminate the activation functions correspond-
ing to the dlj1 , . . . , dljm ∈ Dl coefficients, which satisfy the
dlj1 + . . .+ dljm ≤ T inequality. Thus, we will obtain the set
Gl given by Equation 2 for each iteration l, 1 ≤ l ≤ k. With
the sets G1, . . . , Gk, we will choose an intersection threshold p
according to Definition 2 to decide which activation functions
will be part of the function proposed by this technique.

It is worth noting that the smaller the value of the T
elimination threshold, the closer to zero the coefficients of
the activation functions that will be eliminated.

The idea behind LCAC is that functions with very low
coefficients contribute less to the sum of the linear combination
and therefore can be removed. Of course, this is not always
true, as even if the coefficient is very low, the activation
function can have very high values, compensating for the low
coefficient. However, if the activation functions were bounded,
|fi| ≤ Mi ∈ ℜ+, such as the sigmoid function, we would have
that guarantee. But this would limit the technique, removing
important functions like ReLU.

2) Major and Uniform Coefficient Extractor (MUCE): The
MUCE heuristic chooses activation functions fi, 1 ≤ i ≤ n,
which have higher coefficients and less variation about k
interactions done in training using Stratified k-Fold Cross
Validation. This implies that the columns of matrix C (see
Equation 9) that have coefficients corresponding to these
functions will have larger, more uniform values.

The process performed by this method is similar to the
one described in Section III-B1, with the difference that
we use matrix C to find the subsets of activation functions
G1, . . . , Gk. According to the elimination threshold T and the
intersection threshold p (see Definition 2), activation functions
that have a large variation in their coefficients over the k
iterations will be discarded. A fundamental factor for this is
that the columns of C are normalized. To evidence this fact,
consider an activation function fi. Suppose that over the k
iterations, its learned coefficients have m values close to zero
with m < k. This implies that the i-th column of C has m
values close to zero. As matrix C has columns normalized by
the Softmax function, it implies that the sum of its columns
equals 1. Furthermore, as the sum of the columns always gives
the same value, the closer the m coefficients are to zero, the
greater the sum of the remaining k −m coefficients, which
increases the variation of this column between the smallest
and largest values. Let T be an elimination threshold. Then,
for every row

Cl = {clj ∈ C, 1 ≤ j ≤ n}, 1 ≤ l ≤ k (11)

that has clt1 , . . . , cltu ∈ Cl, we eliminate the elements that
satisfy the inequality

clt1 + . . .+ cltu ≤ T . (12)

If the m coefficients are small enough, we can guarantee that
each of these m coefficients is part of the Inequality 12 con-
cerning their respective rows of matrix C. Thus, we will elim-

inate the m coefficients, which means that fi ∈
m⋂
j=1

Gj , that is,

P (fi) =
m

k
(see Definition 1). Let p be an intersection thresh-

old (see Definition 2). Then
m

k
= P (fi) ≥ p, with p ∈ [0, 1].

We conclude that the greater the value of p, the greater
the value of m. Finally, note that we assumed that the m
coefficients are small enough that each one forms part of the



Inequality 12 in its corresponding row of the C matrix. How-
ever, the smaller the m coefficients, the major the difference
between the m coefficients and the remaining k−m elements.
Suppose none of the m coefficients are small enough to be part
of Inequality 12. It implies that the difference between the m
coefficients and the remaining k − m coefficients is smaller

and thus more uniform, making P (fi) =
0

k
= 0. This way, we

guarantee that fi is part of the linear combination proposed by
the technique. One last observation is that we always remove
the coefficients closest to zero, leaving the largest ones.

IV. DATASETS, ARCHITECTURES AND ACTIVATION
FUNCTIONS

Our analysis was based on 6 well-known datasets and 4
simple but robust architectures. Also, we used 34 activation
functions, which provided a wide range of situations.

A. Datasets

The datasets we used in the experiment were: The CIFAR-
100 [35] dataset contains 100 classes with 60000 32× 32 color
images, with 600 images per class. There are 500 training
images and 100 test images per class. The CIFAR-10 [35]
dataset contains ten classes with 60000 32× 32 color images,
with 6000 images per class. There are 5000 training images
and 1000 test images per class. The SVHN [36] dataset
contains 10 classes with 630420 32× 32 color images. There
are 73257 training images, 26032 test images, and 531131
additional images. SVHN is obtained from house numbers in
Google Street View images. The MNIST [37] dataset contains
10 classes with 70000 28× 28 grayscale images. There are
60000 training images and 10000 test images. MNIST is a
set of handwritten images of numbers from zero to nine.
The Kuzushiji-49 [38] (KMNIST) dataset contains 49 classes
with 270912 28× 28 grayscale images, where the amount per
class is non-proportional. The division between training and
testing is 6/7 for training and 1/7 for testing for each class. The
Fashion-MNIST [39] dataset contains 10 classes with 70000
28× 28 grayscale images. There are 60000 training images
and 10000 test images.

It is worth mentioning that the CIFAR-10 and CIFAR-100
datasets, being similar, their classes are disjoint. These datasets
are the most challenging, and the CIFAR-100 has greater
difficulty performing the training. This happens because the
amount of images per class is smaller. With the MNIST
dataset, architectures achieve greater accuracy.

B. Architectures

Looking for variety in network architectures, we took
the simplest, most used, and mobile-oriented ones: ResNet-
18 [40] is one of the simplest in the ResNets family. ResNet-
50 [40] is of medium depth compared to ResNet family net-
works. It is a popular network. ShuffleNetV2 [41] is a low-cost
architecture with a good training speed. MobileNetV3 [42] is
a low-cost computing network, more mobile-oriented.

C. Activation functions

In this work, we seek to include a variety of activation
functions. We chose to choose fixed activation functions as
we wanted to avoid having to train more parameters. We take
25 fixed activation functions fixed implemented by PyTorch,
what are the functions ReLU [43], Hardtanh [44], Hard-
Swish [42], ReLU6 [45], ELU [19], SELU [20], CELU [22],
Leaky ReLU [46], PReLU [17], RReLU [43], Sigmoid,
Log Sigmoid [47], Hardshrink, Tanhshrink, Softsign [48],
Softplus [49], Softmin [50], Softmax [51], Softshrink, Log-
Softmax, Tanh [52], Sigmoid, Hardsigmoid [53], Gelu [54],
SiLU [11] and Mish [55]. We also added 9 more fixed acti-
vation functions what are Bipolar Sigmoid [56], dSiLU [43],
Flatten-T Swish [13], Elliott [16], LiSHT [15], ReSech [57],
sSigmoid [58], ELiSH [59] and HardELish [59]. It is worth
noting that some activation functions are similar, but we avoid
removing them to prevent bias.

V. EXPERIMENTAL ANALYSIS

We implemented the LCAC and MUCE heuristics using
Python 3.7.13, PyTorch 1.12.0+cu113, PyTorch Lightning
1.7.1, TorchMetrics 0.9.3, and Lmdb 0.99. We used ten Google
Colab accounts, with each account running two experiments.
It took us around 60 days to carry out all the experiments,
including the hyperparameter’s sweep.

A. General settings

In our experiment, the test subsets were not used. We split
the training part of the datasets using the Stratified k-Fold
Cross Validation with k = 10. We described in Section III-A
how we obtained the accuracies of each activation function
proposed by the techniques and how we compare how one ac-
tivation function is statistically better or equivalent. In Welch’s
t-test, if the p-value is less than 0.05, the null hypothesis
that the results are equivalent is rejected. The intersection
threshold p (see Definition 2) used in the LCAC and MUCE
heuristics was set to p = 0.9. The elimination threshold T
(see Subsection III-B1) for LCAC was set to T = 0.1. For
MUCE, we set the elimination threshold T = 0.7, except
mobile architecture using the CIFAR-100 dataset, for which
we use T = 0.999 due to vanishing or exploding gradients.

There were a few cases in which the networks suffered of
exploding or vanishing gradients. So we had to discard some
learning rate values, which reached reasonable accuracy rates
at the beginning of the training, but which did not manage
to reach the end. Another important observation is that the
results could be better by choosing p and T thresholds for
each combination of architecture and dataset. However, due to
a lack of computational power, we chose the same thresholds
for all cases, except for the ones cited below.

B. Training details

The supplementary material presents the intervals used to
perform hyperparameter sweep. The choice of the interval
for sweeping the learning rate was empirical by observing
the behavior of each network architecture. After choosing



each range, a scan of all possibilities was performed using
as stopping criterion Hyperband [60] with miniter = 3 and
η = 3. The supplementary material also presents the final set
of hyperparameter values used in our experiments. We fixed
the batch size for the data at 50 due to a lack of memory when
using the activation function formed by the combination of
the 34 activation functions available. The dataset was divided
into k−1/k for training and 1/k for validation. A scheduler
strategy updated the learning rate by reducing it by 0.1 when
the validation accuracy has stopped improving by five epochs.
We used early stopping as stopping to monitor the validation
accuracy and interrupted training in case it did not increase
after ten epochs. We saved the last model.

C. Results

We performed three analyses to compare the efficiency of
the activation function obtained by the heuristics LCAC and
MUCE concerning the activation function obtained by the
linear combination of the 34 activation functions (C34). In
the first half of Table I, we see the analysis of comparing
C34, LCAC, and MUCE with the original activation function
and seeing how much C34, LCAC, and MUCE are better or
equivalent. This table highlighted in bold when the technique
was better or when there was a tie Let’s observe in this case
that a tie favors the original activation function because it is
less costly in terms of memory usage and processing time.
So, in the comparison of the original function with C34, the
original was better or equivalent 12 times, and C34 was better
12 times, which gives 50% each. Performing the same analysis
with the original, LCAC, and MUCE, we find that in both
cases, the original was better or equivalent in 37.5% of the
cases, while LCAC and MUCE were better in 62.5%.

In the second half of Table I, the comparison between C34,
LCAC, and MUCE takes place. The tie favors LCAC and
MUCE as they consume less memory and processing time.
Analyzing C34 and LCAC, C34 outperformed in 37.5% of
the cases, while LCAC was better or equivalent in 62.5% of
the cases. Now, comparing C34 and MUCE, C34 had better
performance in 12.5% of the cases, while MUCE was superior
or equivalent in 87.5% of the cases.

We set the same limit for the number of functions in
the linear combination due to computational costs, but it
is possible to achieve better results by adjusting this limit
for each network and dataset. It is important to highlight
that MobileNet encountered issues of gradient explosion and
vanishing in some cases, affecting the choice of the learning
rate. By excluding this network from the analysis, the MUCE
heuristic was better or equivalent in all cases.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we broach the technique of learned activation
functions, and more specifically, activation functions con-
structed by the linear combination of other functions, where
the network learns the coefficients of this combination. We
approach the problem of reducing the number of activation
functions using the LCAC and MUCE heuristics. In this

TABLE I
ACCURACIES OF CNNS USING THE ORIGINAL, C34, LCAC, AND MUCE
ACTIVATION FUNCTION. BOLD HIGHLIGHTS BETTER RESULTS OR A TIE.

CNN/Dataset ResNet-18 ResNet-50 ShuffleNet MobileNet

– Orig C34 Orig C34 Orig C34 Orig C34

Mnist .993 .994 .989 .994 .990 .992 .992 .992
KMnist .990 .993 .990 .989 .985 .988 .988 .987

FashionMnist .928 .925 .926 .926 .916 .919 .921 .879
SVHN .929 .931 .930 .926 .881 .911 .690 .917

CIFAR-100 .443 .438 .413 .455 .356 .400 .305 .399
CIFAR-10 .747 .777 .778 .767 .618 .734 .657 .736

– Orig LCAC Orig LCAC Orig LCAC Orig LCAC

Mnist .993 .994 .989 .994 .990 .992 .992 .992
KMnist .990 .993 .990 .992 .985 .987 .988 .956

FashionMnist .928 .927 .926 .922 .916 .917 .921 .920
SVHN .929 .915 .930 .936 .881 .902 .690 .839

CIFAR-100 .443 .455 .413 .447 .356 .391 .305 .379
CIFAR-10 .747 .776 .778 .753 .618 .706 .657 .745

– Orig MUCE Orig MUCE Orig MUCE Orig MUCE

Mnist .993 .994 .989 .993 .990 .992 .992 .981
KMnist .990 .992 .990 .992 .985 .989 .988 .988

FashionMnist .928 .928 .926 .927 .916 .918 .921 .924
SVHN .929 .934 .930 .929 .881 .912 .690 .918

CIFAR-100 .443 .475 .413 .464 .356 .411 .305 .312
CIFAR-10 .747 .787 .778 .779 .618 .740 .657 .726

– C34 LCAC C34 LCAC C34 LCAC C34 LCAC

Mnist .994 .994 .994 .994 .992 .992 .992 .992
KMnist .993 .993 .989 .992 .988 .987 .987 .956

FashionMnist .925 .927 .926 .922 .919 .917 .879 .920
SVHN .931 .915 .926 .936 .911 .902 .917 .839

CIFAR-100 .438 .455 .455 .447 .400 .391 .399 .379
CIFAR-10 .777 .776 .767 .753 .734 .706 .736 .745

– C34 MUCE C34 MUCE C34 MUCE C34 MUCE

Mnist .994 .994 .994 .993 .992 .992 .992 .981
KMnist .993 .992 .989 .992 .988 .989 .987 .988

FashionMnist .925 .928 .926 .927 .919 .918 .879 .924
SVHN .931 .934 .926 .929 .911 .912 .917 .918

CIFAR-100 .438 .475 .455 .464 .400 .411 .399 .312
CIFAR-10 .777 .787 .767 .779 .734 .740 .736 .726

paper, we use 34 activation functions and name the activation
function resulting from combining these functions C34. This
work was directed to classification problems. The LCAC and
MUCE techniques had better results compared to C34, in
particular the MUCE heuristics, which in 87.5% of the cases
was better or equivalent to C34.

The advantages of the proposed heuristics are the reduction
of the number of activation functions, resulting in a statistically
better or equivalent resulting function. Additionally, it is a
simple implementation where the choice of the number of
activation functions is a hyperparameter. The disadvantage of
our heuristic is that it requires the use of stratified k-fold cross-
validation, which can lead to longer execution times depending
on the value of k and the size of the dataset.

Due to our lack of computing power, we do not test for
larger datasets like ImageNet. Also, we only implemented
linear combinations, but we might consider seeing its behavior
with other ensemble structures. We would also like to analyze
the behavior of the proposed heuristics in other scenarios, such
as image detection, recognition, and segmentation.
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