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Abstract—With the advance in technology and social media
usage, first-person recording videos has become a common habit.
These videos are usually very long and tiring to watch, bringing
the need to speed up them. Despite recent progress of fast-
forward methods, they do not consider inserting background
music in the videos, which could make them more enjoyable. This
thesis1 presents a new method that creates accelerated videos and
includes the background music keeping the same emotion induced
by visual and acoustic modalities. Our approach is based on the
automatic recognition of emotions induced by music and video
contents and an optimization algorithm that maximizes the visual
quality of the output video and seeks to match the similarity of
the music and the video’s emotions. Quantitative results show that
our method achieves the best performance in matching emotion
similarity while maintaining the visual quality of the output video
compared with other literature methods. Visual results can be
seen through the link: https://youtu.be/9ykQa9zhcz8.

I. INTRODUCTION

In the last years, we have noticed a significant increase in the
volume of audio-visual data on the Internet due to the ease in
people’s access and usage of new digital technologies. Many
people started recording diverse first-person videos of their
daily activities, referred to as egocentric videos. These videos
are usually very long and tiring to watch, containing redundant
segments, consequently requiring post-edition. Therefore, a
great interest arose in the computer vision community in
reducing the length of these videos to make them more
pleasant to watch.

Several works in the literature aim to accelerate first-person
videos using different strategies and restrictions to make users’
experience more pleasant when watching these videos [1]–
[8], creating accelerated videos commonly called hyperlapse.
Creating a hyperlapse is a technique in time-lapse photography
that allows the creation of motion shots, where the goal is to
optimize the output number of frames and the visual smooth-
ness [5]. An important extension of the classic hyperlapse,
called semantic hyperlapse, includes semantic relevance for
each frame, giving lower speedup rates to the most relevant
frames in the output video [2], [3], [5]–[7], [9].

Despite the advances, these works did not give attention
to the background song that the user wants to insert in the
accelerated video. Both visual and sound streams play a
significant role in the video-watching experience. In this way,
we are interested in combining the song and video content,

1This work relates to an M.Sc. dissertation.

Fig. 1. Music-driven video acceleration. After computing emotion curves
in the valence-arousal plane, our method accelerates the video according to an
optimization algorithm that seeks the best matches between video and song.

which is not trivial since they are contents of different na-
tures. The challenge is to combine these contents considering
the emotions induced by both to produce a hyperlapse that
maintains the video and song’s emotional similarity over time.

We introduce in this thesis a novel problem called Musical
Hyperlapse, in which the goal is to accelerate the video
to the size of a song combining the emotions induced by
visual and acoustic contents continuously in time. To solve
this problem, we present a new multi-modal approach for
creating hyperlapse videos that match the emotion curves
produced from an input egocentric video and an input song. As
illustrated in Figure 1, our method seeks to find the best subset
of video frames that maximizes the similarity of the emotion
curves produced from the video and the song, maximizing the
video’s visual quality.

The contributions of this thesis can be summarized as fol-
lows: i) New models for automatic music and image emotion
recognition; ii) a novel optimization algorithm which creates a
hyperlapse combining the video and music emotion contents;
and iii) a new dataset which comprises diverse first-person
videos and songs with diverse features.

II. RELATED WORK

A. Hyperlapse

Over the past decade, hyperlapse methods have been pro-
posed to reduce the length of long egocentric videos. These
works’ evolution focuses on improving the quality of the
output video by keeping it as pleasant as possible.

https://youtu.be/9ykQa9zhcz8


One of the first fast-forwarding methods was presented
by Kopf et al. [10]. They used techniques based on image
rendering, such as projecting, stitching, and blending after
computing the optimal trajectory of the camera poses. One
major drawback of their method is its complexity and high
computational cost. Poleg et al. [11] presented a method to
create classical hyperlapse videos using a graph to model the
frame selection, in which the nodes represent the frames and
the edge weights represent the cost of including a pair of
frames sequentially in the output video. Joshi et al. [1] pre-
sented a real-time hyperlapse creation algorithm, which uses
feature tracking to recover the camera motion and compute
the optimal path with an algorithm inspired by dynamic
programming and Dynamic Time Warping (DTW) [12].

The main disadvantage of all these works is that they do
not consider the content in the video scene, which is an
essential element to ensure a good experience when watching
the accelerated video.

B. Semantic Hyperlapse

There are also approaches in the literature that considers
the visual semantics in the optimization process, referred to
as semantic hyperlapse. The objective is to accelerate the input
video, optimizing stability, speed-up rate, and semantics.

Okamoto et al. [13] proposed a method to summarize
egocentric moving videos, generating a walking route guid-
ance video. They analyze the video by detecting pedestrian
crosswalks and ego-motion classification, estimating impor-
tance scores for each video session based on the contents.
Ramos et al. [2] presented an adaptive frame sampling method
that balances the semantics and the traditional hyperlapse
objectives by using energy cost minimization. Their method
assigns relevance scores for each video frame and give lower
speedup rates to the most relevant frames. Silva et al. [14]
modeled the adaptive frame sampling as a weighted minimum
sparse reconstruction problem. They split the video using
frame-wise levels of relevance. Each segment is represented as
a dictionary from which the output video frames are sparsely
selected, reducing abrupt camera motions. Furlan et al. [7]
proposed considering both visual and acoustic content from
the input video. The original video’s soundtrack is segmented,
and the Psychoacoustic Annoyance (PA) is computed for
each segment. The PA values are used to guide the semantic
hyperlapse creation since they are used as semantic scores.

Despite the advancement of these works, they did not
consider the background music the user wants to insert in the
videos, which could make them more enjoyable. Our goal is to
create a hyperlapse with background music where visual and
acoustic signals induce similar emotions during exhibition.

C. Emotion Recognition

Significant progress has been made in the field of music
emotion recognition. In general, emotions are represented
using psychological models, such as Russells’s valence-arousal
plane [15] and the EmojiGrid [16], in which the x-axis is the
valence, and the y-axis is the arousal.

Some works focus on investigating musical features related
to induced emotions. Lu et al. [17] performed a thorough study
on mood models and features, concluding that music features
such as melody, pitch, rhythm, and timbre play a significant
role in human psychological functions. Panda et al. [18] re-
viewed the existing audio features and their relationships with
musical concepts to improve the classification performance.
The authors rely on clues like melodic lines, notes, intervals,
and scores to access higher-level musical concepts such as
harmony, melody, articulation, and texture.

Diverse works aim to predict emotions using machine
learning techniques. Yang et al. [19] formulated the musical
emotion recognition as a regression problem to predict the
emotion labels. They extract features and use two regressors
to predict the labels, one for valence and one for arousal.
Chowdhury et al. [20] proposed a VGG-style deep neural net-
work to obtain emotional contents from a music piece through
mid-level perceptual features, using the audio spectrogram as
input. However, these works focus on getting the emotion for
an entire song instead of creating continuous emotion curves.
Thammasan et al. [21] proposed a continuous music emotion
recognition approach based on brainwave signals. They predict
valence and arousal only on two levels (low and high).
Dong et al. [22] proposed a method for continuous music
emotion recognition using segments of 0.5 seconds. They
converted the regression problem into a weighted combination
of multiple binary classification problems. Their approach is
quite complex compared to other literature methods.

There has also been significant progress in image emotion
recognition in recent years. Some works seek to recognize
emotions in scenes and facial expressions [23]. In addition,
researchers created several datasets to classify image emotions,
such as GAPED [24] and MVSO [25]. There is a great
interest in automatically retrieving emotional content from
an image, which motivates the computer vision community.
Human annotations are used on several images to create the
datasets. Then, machine learning based on high-level or low-
level features is used to predict the emotions from any image.

Joshi et al. [26] and Zhao et al. [27] explored the use
of psychology and art-theory knowledge to determine which
emotions may be evoked by a picture. Jia et al. [28] demon-
strated the effectiveness of using high-level features, such as
social network data, than basic low-level features, such as
colors. Descriptive data also play an important role in several
solutions to recognizing the emotion induced by images. For
instance, Borth et al. [29] use pairs of adjectives and nouns to
classify each picture. They use each of the 24 emotions defined
in Plutchik’s theory [30] to derive search keywords and retrieve
images and videos from Flickr and Youtube. Mittal et al. [31]
takes a broader range of objects in the scene to sort the most
important ones regarding the induced emotion.

Despite the progress of emotion recognition, these works
did not apply the correlation of image and music in the
hyperlapse. Our work correlates visual and acoustic contents
considering emotions in the fast-forwarding process to create
an accelerated video combined with the music.



Fig. 2. Methodology Overview. In the first step, we extract features from each video frame and each song segment and classify them to obtain their induced
emotion. Using the classification results, we create continuous two-dimensional emotion curves in the valence-arousal plane. In the second step, we calculate
inter-frame and cross-modal cost matrices to create a three-dimensional dynamic cost matrix to compute an optimal path that aligns the emotion induced by
a song with the emotion induced by the frames while preserving the visual and temporal continuity.

III. METHODOLOGY

Our method accelerates a video to the size of a song by
maximizing the emotion curves similarity generated for each
one. Given a long egocentric video V = [v1, v2, . . . , vF ] with
F frames and a target song M = [m1,m2, . . . ,mS ] with S
segments, where S < F , our goal is to create a shorter
video V̂ = [v̂1, v̂2, . . . , v̂S ] in which the similarity between
the video emotion curve X ∈ RF×2 and the music emotion
curve Y ∈ RS×2 is maximized. We show in Fig. 2 an overview
of our methodology, divided into two main steps: i) Emotion
Curves Creation and ii) Optimal Path Selection. We detail the
methodology in the next sections.

A. Emotion Curves Creation

Our method creates two emotion curves in the first step,
one for the video stream and another for the audio stream.
The values in these curves reflect the induced emotion at
each instant in time. Based on image and audio feature
extraction, classifiers are used to estimate each emotion value,
as illustrated in Figure 2-left.

1) Video Emotion Curve: To create the video emotion
curve, we first feed an image emotion classifier
X ′ = ϕ(V ) with the frames of the video stream V .
The output of the ϕ classifier is a discrete two-
dimensional curve X ′ = [x′1, x

′
2, . . . , x

′
F ]

T ∈ {0, 1}F×2.
Then, we decompose the curve into separated values of
valence X ′

v = [x′v1, x
′
v2, . . . , x

′
vF ]

T ∈ {0, 1}F and arousal
X ′

a = [x′a1, x
′
a2, . . . , x

′
aF ]

T ∈ {0, 1}F . By this way, the
emotion labels of each video frame vi is represented with the
coordinates x′vi and x′ai in the valence-arousal plane. Each
frame is classified as inducing a positive valence if x′vi = 1
and negative valence otherwise, and classified as inducing a
high arousal if x′ai = 1 and low otherwise. To approximate the
function ϕ, we use a pretrained 2D-CNN (ResNet-50 [32]) as
a backbone network topped with a fully-connected network.

We perform a fine-tunning in the video emotion classifier
using the MVSO dataset [25]. The MVSO dataset comprises

about 7 million images and their respective concepts repre-
sented by adjective-noun pairs, such as crying-baby, colorful-
clouds, old-books, sad-dogs, and others. The dataset also
comprises labels associating each adjective-noun pair with a
distribution over the 24 emotion categories from Plutchik’s
Wheel of Emotions [30] (e.g., joy, anger, sadness). For each
image, we select the emotion with the highest score, convert it
to a point in the valence-arousal plane, and use its position as
a label, associating the image with the quadrant in which the
label is positioned. We perform the fine-tuning by randomly
splitting the converted set into training, validation, and test
sets in the proportion 70:15:15, using cross-entropy loss.

We convert the discrete video emotion curve into a contin-
uous emotion curve X = f(X ′) ∈ RF×2, represented as the
blue curve in the EmojiGrid in Fig. 2, where f : {0, 1} → R
is a smoothing function that applies a quadratic interpolation
to the sequential values. The curve is rescaled into a range of
[−1,+1], the range displayed on the EmojiGrid.

2) Music Emotion Curve: To create the music emotion
curve, we feed a music emotion classifier Y ′ = ψ(M)
with the segments of the audio stream M . The output
of the ψ classifier is a discrete two-dimensional curve
Y ′ = [y′1, y

′
2, . . . , y

′
S ]

T ∈ {c1, c2, . . . , cN}S×2, where
N is the number of discrete levels. We decompose
Y ′ as valence and arousal one-dimensional curves
Y ′
v = [y′v1, y

′
v2, . . . , y

′
vS ]

T ∈ {c1, c2, . . . , cN}S and
Y ′
a = [y′a1, y

′
a2, . . . , y

′
aS ]

T ∈ {c1, c2, . . . , cN}S . Thus, given a
song segment mk, k ∈ {1, . . . , S}, (y′vk, y

′
ak) is represented

as one of the N ×N points of a grid in the valence-arousal
plane, where higher y′vk values indicate a positive valence
and higher y′ak values indicate a higher arousal. The music
emotion classifier ψ is composed of a feature extractor topped
with two fully-connected networks, one for valence and
another for arousal. We use a sliding window of size α = 6
and stride of δ = 0.5 seconds over the audio stream to extract
the segment-wise features. Then, following Panda et al. [33],
we extract from each segment a d-dimensional feature vector



m̂k ∈ Rd dedicated to the song. We feed each m̂k to the
classifiers to obtain the discrete curves Y ′

v and Y ′
a.

We train the music emotion classifier using the DEAM
dataset [34]. This dataset comprises about 1,802 songs of
various styles, such as rock, classic, country, and others, with
durations between 45 and 400 seconds. For each song, some
raters (10 in most cases) annotated its valence and arousal
values in a range of [−1,+1] at each step of 0.5 seconds,
starting from the 15th second of the song. To define the song
segment label, we averaged the raters’ annotated valence and
arousal values after filtering all values distant by 0.5 standard
deviations from the mean. Then, to create the pairs of segments
and labels used in our training procedure, we discretize the
valence and arousal annotations provided in the DEAM dataset
into N classes. We used training, validation, and test splits in
the same proportion used in our image classifier.

We apply a linear interpolation in the valence and arousal
values, which have only 2 samples per second, to match the
video’s sampling rate of 30 frames per second. Then we
apply a smoothing function to create the continuous curve
Y = g(Y ′) ∈ RS×2, represented as the green curve in the
EmojiGrid in Fig. 2. Smoothing is performed to avoid abrupt
transitions in the emotion curve.

B. Optimal Path Selection

Once we have created the video and music emotion curves,
the next step is to find the subset of frames V̂ that maximizes
the similarity of the emotion curves and the video’s visual
quality. To attend to both objectives, we model the frame
sampling problem inspired by Joshi et al.’s formulation [1],
which considers only inter-frame transitions and visual modal-
ity. However, we extend their formulation also to include
audio-visual correlation.

We create an Inter-frame Similarity Cost Matrix
Ci ∈ RF×F to model the visual continuity term for the
optimization, aiming to avoid visual discontinuity. In this
matrix, each element is computed as

Ci(i, j) = 1− SSIM(vi, vj), (1)

where i, j ∈ {1, . . . , F} are indices of frames in the video and
SSIM(·, ·) is the structural similarity index [35]. High SSIM
value indicates high inter-frame similarities.

We also create a Speedup Cost Matrix Cs ∈ RF×F to avoid
skips too distant from the target speed-up rate given by

Cs(i, j) = min(((j − i)− ⌊Sp⋆⌋)2, cmin), (2)

where cmin is a threshold empirically set to 200 as in
Joshi et al. [1].

Finally, we create the Emotion Similarity Cost Matrix
Ce ∈ RF×S to determine the cost of skipping relevant frames
regarding the video and music emotion similarity, given by

Ce(i, k) =
1

d0

√
(xvi − yvk)2 + (xai − yak)2, (3)

where k ∈ {1, 2, . . . , S} is the song segment index, xvi and
xai are coordinates that represent the video frame in the

TABLE I
Audio-visual Dataset. LIST OF VIDEOS AND SONGS USED FOR

COMPARISON WITH BASELINES.

Video Name Duration
Berkeley1 (Self-acquisition) 17:41
Berkeley2 (Self-acquisition) 13:40
Bike3 [10] 13:10
CityWalk1 (YouTube) 10:00
MontOldCity1 (YouTube) 10:01
NatureWalk1 (YouTube) 9:50
StockHolm1 (YouTube) 24:59
Walking4 [2] 8:43

Song Name Duration
In The End (Linkin Park) 3:38
Little Talks (Of Monsters And Men) 4:23
My Immortal (Evanescence) 4:32
Onward to Freedom (Trailerhead) 2:58
Last To Know (Three Days Grace) 3:28

valence-arousal plane, and yvk and yak are coordinates rep-
resenting the song segment. d0 is the distance between the
points (+1,+1) and (−1,−1) in the valence-arousal plane,
used as a normalization factor.

We normalize all the cost matrices Ci, Cs, and Ce to
[0, 1] and use them to create the 3D Dynamic Cost Matrix
D ∈ RF×F×S , where each entry D(i, j, k) represents the
minimal cost of the path that ends at the frame vj and song
segment k. We also create a traceback matrix T ∈ RF×F×S

that stores in T (i, j, k) the index of the frame that precedes vj
in the path, given the song segment k. We populate D and T
by setting the first song segment slice as D(i, j, 0) = Cs(i, j)
and the following slices recursively as

D(i, j, k) = λiCi(i, j) + λsCs(i, j) + λeCe(j, k)

+
w

min
h=1

(D(i− h, i, k − 1)),
(4)

where λe, λs and λi are the weights associated with each cost
term and w is the maximum skip between adjacent frames in
the path. We also concurrently populate the traceback matrix
as T (i, j, k) = argmin1≤h≤wD(i− h, i, k − 1).

Finally, we trace back the optimal path, starting from
position k = F , and selecting, at each step, the index stored
in T (i, j, k−1) while k >= 0. The sorted order of the frames
selected during this step is the final set that composes the hy-
perlapse video. We add the input audio stream to the composed
hyperlapse video to generate the Musical Hyperlapse video.

IV. EXPERIMENTS

A. Implementation Details

We used a fully-connected network with 4 layers of 1,000
neurons in the image and music emotion classifiers. In the
image emotion classifier, the classification layer comprises
4 neurons representing each valence-arousal quadrant. In the
music emotion classifiers, the classification layer comprises 8
neurons, corresponding to the number of discretization levels.
We used the essentia Python library to extract d = 48 music
features used in the music classifiers. For the optimal path
selection algorithm, we set the cost terms’ weights empirically
to λe = 1.00, λi = 0.01, and λs = 0.01.



B. Experimental Setup

We created a dataset comprising 8 first-person videos with
diverse contents, such as cities, buildings, parks, people,
cars, nature, animals, and others; and 5 songs with various
styles and emotions. We present the list of videos and songs
used in the experiments and their sources in Table I. We
resampled all the videos to 640× 480. We compare our
methods against two hyperlapse baselines: the Microsoft Hy-
perlapse (MSH) [1], and the extended version of the Sparse
Adaptive Sampling (SASv2) [36]. For both competitors, we
used the default values for all parameters.

We measure the similarity of the video and music emotion
curves with the Emotion Similarity metric, defined as

Esim =
1

S

S∑
k=1

(
1− 1

d0

√
(x̂′vk − yvk)2 + (x̂′ak − yak)2

)
,

(5)
where x̂′vk and x̂′ak are the valence and arousal values of the
accelerated video V̂ , and ŷ′vk and ŷ′ak are the valence and
arousal values of the song M .

We defined the Speed-up Ratio metric to measure the
ratio between the desired and obtained speed-ups, calculated
as Spr = max(Sp⋆, Ŝp)/min(Sp⋆, Ŝp), where Sp⋆ is the
desired speed-up and Ŝp = F̂ /S is the obtained speed-up.
We also measure the similarity between the input and output
videos, using the Fréchet Inception Distance (FID) [37] to
assess how much useful content is preserved. The lower the
FID value, the more similar the input and output videos. We
also compute the instability of the frame transitions in the
output video, using the Video Shaking Ratio [9].

In our experiments, we run each method for the eight videos,
each with the five songs presented in Table I, and present the
average values of the five songs for each metric.

C. Ablation Study

We perform an ablation study evaluating the use of two
other simple curve alignment algorithms:

• Greedy Approach: This method greedily selects the
next video frame with the maximum similarity for every
song segment until it reaches the last segment. Given the
emotion curves X and Y , for each yk, k ∈ {1, 2, . . . , S}
the method seeks the next frame, vl, to store in the path by
computing l = argminl+w

i=l xi, where l stores the frame
index of the last selected frame, initially set to l = 1.

• Dynamic Time Warping (DTW): An adaptation of
the original DTW algorithm, used to measure and align
similarities between two temporal [12]. Since the orig-
inal DTW may repeat frames, which is not allowed in
hyperlapses, we added a constraint in the algorithm that
forces it to never repeat frames. We feed the algorithm
with the X and Y curves, and the output is the sequence
of selected frames.

We show in Table II the ablation study results. Our optimal
path selection algorithm achieved the best results across all
metrics. The greedy approach maximizes the emotional sim-
ilarities locally, leading to a significant error in the achieved

TABLE II
Ablation study. COMPARISON BETWEEN THE DIFFERENT OPTIMIZATION

METHODS FOR FRAME SAMPLING (BEST IN BOLD).

Video
Emotion Sim. ↑ Speedup Ratio ↓ FID-Score ↓

Greedy DTW Ours Greedy DTW Ours Greedy DTW Ours

Berkeley1 0.74 0.74 0.77 1.23 1.03 1.00 22.06 22.14 3.30
Berkeley2 0.72 0.73 0.77 1.17 1.02 1.00 26.75 27.86 5.40
Bike3 0.72 0.72 0.76 1.16 1.02 1.00 16.75 18.10 5.04
CityWalk1 0.70 0.70 0.71 1.09 1.02 1.00 12.64 13.01 1.75
MontOldCity1 0.74 0.75 0.77 1.08 1.04 1.00 15.47 15.58 3.10
NatureWalk1 0.71 0.71 0.73 1.08 1.03 1.00 15.57 15.55 2.73
StockHolm1 0.71 0.71 0.73 1.36 1.01 1.00 37.58 36.07 4.21
Walking4 0.73 0.73 0.76 1.08 1.02 1.00 14.40 15.32 2.74

Mean 0.72 0.72 0.75 1.16 1.02 1.00 20.15 20.45 3.53

speedup, which might remove important frames from the
original video, resulting in a high FID. The DTW seeks to find
the best alignment globally, which creates many gaps between
segments reducing the representability of the accelerated video
regarding the original one. Although DTW tries to match
the curves, the need to prevent it from repeating frames
makes it obtain emotion similarities close to those obtained
by the greedy approach. Our method manages to maximize
the emotion similarities without repeating frames, reaching the
optimal speedup ratio by taking the exact number of frames
required by the song and maintaining a balance between frame
transitions by using the speedup and inter-frame similarity cost
matrices, guaranteeing a lower FID.

D. Results

Table III presents the results for the comparison with the
baselines. Our approach presents the best Emotion Similarity
and Speed-up Ratio values while it is on par with the other
methods in the Shaking Ratio. We accredit these results to
our optimization algorithm that seeks to create a path visually
stable, temporally continuous, and with high-quality emotion
matching. Because our approach samples exact S frames from
the input video, it also presents the best Speed-up Ratio
values in all cases. MSH, on the flip side, gives the worst
values. The reason is that it favors optimizing the stability
of the frame transitions over achieving the target speed-up
rate. Although MSH generally presents the best Shaking Ratio
values, since the MSH algorithm neglects the video content
and only optimizes the frame transition, their FID-Score values
are worse than the other approaches by a significant margin.
Also, the MSH algorithm includes image warping in its path
smoothing and rendering step. This step may crop the image
borders, therefore, increasing the FID-Score. Compared to the
MSH, our method presents FID-Score values closer to the
SASv2 method, which is, by design, a content-based approach.
Regarding the trained classifiers, the test accuracy obtained
with the image classifier was 71% in the MVSO dataset, while
for the audio classifiers, it was 92% in the DEAM dataset.

Figure 3 shows the qualitative results for the Emotion
Similarity of the musical hyperlapse video generated from
‘Bike3’ with the song ‘In The End’. On top, we illustrate
the distribution of emotion over the output video in the
valence-arousal plane. Higher similarities in emotion curves
depicted below the plane produce higher intensities in the



TABLE III
Comparison with baselines. COMPARISON OF OUR METHOD AND TWO LITERATURE BASELINES.

Video
Emotion Similarity ↑ Speedup Ratio ↓ FID-Score ↓ Shaking Ratio ↓
MSH SASv2 Ours MSH SASv2 Ours MSH SASv2 Ours MSH SASv2 Ours

Berkeley1 0.73 0.72 0.79 1.19 1.01 1.00 28.90 4.30 6.82 0.02 0.02 0.02
Berkeley2 0.72 0.71 0.77 1.25 1.01 1.00 34.03 3.74 7.44 0.02 0.02 0.02
Bike3 0.71 0.71 0.77 1.02 1.01 1.00 28.31 3.02 6.21 0.03 0.05 0.05
CityWalk1 0.72 0.70 0.72 1.57 1.00 1.00 32.52 1.09 2.55 0.02 0.02 0.03
MontOldCity1 0.74 0.73 0.77 1.31 1.02 1.00 41.09 2.09 4.46 0.01 0.01 0.01
NatureWalk1 0.72 0.71 0.74 1.47 1.03 1.00 48.43 7.28 3.63 0.01 0.01 0.01
StockHolm1 0.71 0.70 0.74 1.13 1.16 1.00 23.99 7.66 5.13 0.02 0.01 0.02
Walking4 0.73 0.73 0.77 1.12 1.00 1.00 37.62 1.40 3.34 0.02 0.03 0.03

Mean 0.72 0.71 0.76 1.26 1.03 1.00 34.36 3.82 4.95 0.02 0.02 0.02

Fig. 3. Qualitative comparison with baselines. Each column represents the results of a method. At the top is the EmojiGrid with the emotion similarities
in the regions achieved by video and music emotion curves. The greater the red intensity, the greater the similarity. At the bottom, the separate curves of
valence and arousal throughout the video (blue) and song (green), and the similarity curve (red).

plane location. The blue curve represents the video, and the
green one the song. The red curve represents the curves’
similarity at the bottom. Our method presents a distribution
with higher intensities in the valence-arousal plane, indicating
a higher matching in the induced emotion for the hyperlapse
video. MSH and SASv2, on the other hand, have a sparse
concentration of correct matching.

V. CONCLUSION

We introduced in this thesis the novel task of creating a
Musical Hyperlapse, in which we accelerate first-person videos
aligning the emotions induced by visual and acoustic signals.
Our method reduces an input egocentric video to the size of
a song seeking to align the feelings induced by both over
time. We also presented a new multimodal dataset comprising
diverse first-person videos and songs of various styles. Our
method achieved superior performance in terms of video
representation, required speed-up, and emotional alignment for

different videos and songs. The results showed the possibility
of creating a hyperlapse combining media of distinct nature
based on their affective semantics.

For future work, it is possible to improve the emotion
recognition models, performing regressions instead of classi-
fications, and using a shared embedding space to measure the
similarities between image and audio data. We can also reduce
the complexity of the optimal path algorithm and perform the
experiments with more videos and songs.
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