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Abstract—Population growth and the high concentration of
vehicles on urban roads have negatively impacted urban mobility
and the global environment since the primary transportation
modes occupy a lot of space on the streets and are one of the main
polluting gas emitters. In this context of inefficient urban mobility
and unsustainability, the Intelligent Transportation Systems (ITS)
aims to solve or minimize urban traffic issues. ITS are also
widely used in applications focused on traffic safety, such as
vehicle recognition related to a traffic or law violation. For this
task, the fine-grained vehicle classification technique is mainly
used by computer vision and deep learning advances. However,
identifying vehicles by the model can be problematic because the
same vehicle can be easily misclassified when observed from dif-
ferent perspectives, with different colours, or by similar models.
Knowing these inherent issues from vehicle recognition tasks,
Deep Convolutional Neural Networks (DCNNs) are commonly
used due to their ability to extract features from images. In
that regard, the goal of this paper is to evaluate some state
of art DCNNs architectures, conducting experiments with three
different datasets to identify which architectures have the best
performance metrics in the refined car classification task within
ITS context.

I. INTRODUCTION

Due to the population exponential growth, the number of
vehicles on public roads has increased significantly, causing
issues such as intense traffic flow with heavy traffic jams,
high traffic infractions and vehicle theft rates, particularly in
developing countries such as Brazil, which had more than 18.5
millions traffic infractions and approximately 160 thousand
vehicle theft cases in 2020 [1]. Faced with these issues, vehicle
monitoring systems are required for a variety of purposes,
including traffic flow control, vehicle identification with traffic
infractions and even tracking stolen vehicles [2].

In this scenario, Intelligent Transportation Systems (ITS)
play an important role in transportation management, security,
and other issues, since there are applications that use various
computer vision techniques for a wide range of ITS-related
purposes, such as object detection and tracking, and image

classification. In this context, the fine-grained vehicle classi-
fication task appears to recognize a vehicle by its make and
model, and can be used in ITS that need to identify vehicles
for the main purpose of recovering associated traffic violations
and tracking stolen vehicles [3].

Furthermore, fine-grained vehicle classification is more
complex than traditional classification tasks because it requires
a deeper understanding of the vehicle domain to differentiate
objects that may be very similar in a macro view. In this way,
the main challenge of this task is to be able to distinguish
vehicles of different make and model that appear to be very
similar, as well as to be able to identify the same vehicle with
variations in views and colors [4].

Faced with these challenges, the issues inherent in the
fine-grained vehicle classification task have been extensively
studied and experimented in works like [5] [6] [7] [8], where
the authors explore approaches with DCNN architectures,
demonstrating state-of-the-art results even with the complexity
of the problem.

Given these fine-grained vehicle classification problems and
the widespread usage of DCNNs to solve this task, this paper
aims to analyze DCNN architectures, considering aspects
such as model generalization and computational performance,
being able to be deployed on edge devices for real-time road
monitoring in the ITS context, for example. Therefore, this
paper addresses a comparison between some DCNNs archi-
tectures, trained on three datasets, based on the generalization
evaluation from machine learning metrics (accuracy, precision
and recall) and computational performance through training
and image inference time.

The main contributions of this paper is the evaluation
and analysis of neural networks for car recognition task in
the ITS context using state-of-the-art DCNNs architectures,
comparing the results among the most used datasets for vehicle
classification in the literature [3] and introducing a more recent
dataset [8].



The next sections are organized as follows: in Section II,
the relevant related works are presented. Section III describes
the methodology in detail - more specifically: the datasets,
experimented DCNN architectures, data augmentation tech-
niques and evaluation metrics. The details of the experiments
are given in Section IV. The results and their respective
discussions are provided in Section V. Finally, conclusions
are discussed in Section VI.

II. RELATED WORKS

Due to inherent fine-grained vehicle classification difficul-
ties, this task has been widely addressed in the community
[5] [6] [7]. The main issue in this context is how two or
more vehicles may have high similarity, making it difficult
to distinguish even for the human brain. Current researches
are most concerned with developing technologies that can
differentiate vehicles by make and model [9], requiring a
vast knowledge of existing cars and the ability to identify
them from various perspectives. Particularly, several recent
studies focused on the fine-grained vehicle classification task
use DCNN as the main approach, owing to their ability to
extract features from images. Some of these more relevant
studies will be described below.

Accordingly, Hassan et al. [10] evaluated the perfor-
mance of recent DCNNs for vehicle make model recognition
(VMMR) using accuracy as the main metric. The research
implemented transfer learning to reduce the training time,
data augmentation techniques to improve the models’ gen-
eralization, and k-fold cross-validation to better validate the
data results. All these methods were applied to improve the
models’ accuracy, using the Cars-196 dataset for training and
the VMMR-db51 dataset for testing. The highest accuracy
achieved was 93.96% in Cars-196 and 70% in VMMR-db51,
using DenseNet201.

Sánchez et al. [3] evaluated state-of-the-art deep learning
models (ResNet-50 and InceptionV3) performing the fine-
grained vehicle classification task by exploring various training
techniques. They used 3 different datasets to create corre-
spondences between classes of CompCars, VMMR-db, and
Frontal-103 to mitigate biases. Only InceptionV3 results were
shown and they reached 78.47% for model classification.

Additionally, Ma et al. [5] proposed changes in the max
pooling layers, improving make-model car classification task,
and they compared this change to multiple CNN architectures
(DenseNet161, VGG16, and ResNet-152) using the Cars-
196 dataset, reaching an accuracy of 97.89% using ResNet-
161. Complementarily, Kuhn and Moreira [8] also include a
comparison of some CNNs (InceptionV3, ResNet-50, KNN
InceptionV3-S, KNN ResNet50-S), using a different dataset
made up of popular vehicles from Brazil (BRcars). They
reached 82% precision and 79% recall with Inception-V3.

In contrast, Najeeb et al. fine-tuned seven architectures
(AlexNet, SqueezeNet, ShuffleNet, GoogleNet, ResNet-18,
MobileNet-v2, and Inception-v3) to improve the accuracy
in classifying vehicles by make and model using their own
dataset (THS-10 Dataset), generated from the collection of

images with a camera installed on a bridge, capturing the
traffic of a road [7]. The dataset has 4,250 images and
10 classes and InceptionV3 achieved the highest accuracy
(97.4%) in this settup.

III. METHODOLOGY

Aiming to extend and converge the fine-grained vehicle clas-
sification studies and based on the works presented previously,
this research discusses which state-of-the-art DCNNs should
be more reliable and efficient in this task. The possibility of
implementing a comparative study using multiple architectures
was investigated [3] [10].

Firstly, the DCNNs architectures were selected. During the
training, a pipeline that applies an average grouping in the
spatial dimensions was implemented, transforming it into a
single vector [8]. It then proceeds to two fully connected
layers with 1024 and 512 channels respectively, followed by
a dropout layer to avoid overfitting with a drop rate of 0.5.
The final step is to apply a softmax function in the network
output. In short, the common structure is: CNN layers →
Global Average Pooling layer → Relu layer (1024) → Relu
layer (512) (Figure 1).

The following subsections describe the used DCNNs ar-
chitectures and discuss the datasets, data augmentation tech-
niques, and metrics used in this research.

A. Datasets

There is a large number of existing datasets to deal with
the vehicle classification task [11] [12]. Some datasets are
created to solve a particular case or scenario, being smaller
and providing poor generalization, while other datasets are
multipurpose, which have a lot of data but can bring a model
performance saturation and not work for challenging scenarios
[3]. This paper focused on two well-known datasets, Cars-
196 [13] and CompCars [14], and an alternative dataset called
BRCars [8].

Being the only dataset that does not have a validation set,
Cars-196 has 16,185 images divided among 196 car models.
The images were collected from Flickr, Google, and Bing.
Among the datasets that already have a defined validation set,
the CompCars is a dataset created with images taken from
the web and surveillance camera scenes that contains 136,727
images referring to 1,716 car models.

Finally, BRCars dataset is divided into two sets: BRCars-
196 and BRCars-427. For our experiments, BRCars-427 was
chosen since there it has more data and unbalanced classes,
containing 300,325 images referring to 427 car models. How-
ever, because the BRCars-427 contains 57,971 images at
cockpit perspective of the cars, which are irrelevant to the
context of this work, it was necessary to filter the data to
remove such images, resulting in 242,354 useful images.

B. DCNN Architectures

For the experiments conducted in this paper, four state-of-
the-art DCNNs architectures were chosen: VGG-16 [15] [12],
ResNet-152 [5] [10], DenseNet-169 and Inception-V3 [3] [8].
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Fig. 1. Representation diagram of the experiment developed considering each step proposed in the methodology.

The VGG network has become a popular choice because of
improvements in the CNNs’ performance [16]. This network
has 16 trainable layers and it is characterized by its simplicity,
using small-size convolution filters (3x3). ResNet [17] intro-
duced the concept of residual learning to train even deeper
CNNs. It has convolutional layers that receive the input and
propagate it to the output of that same layer. In this way, it
is possible to train an effective deep neural network through
residual blocks.

DCNNs such as Resnet, and DenseNet [18] also use the
outputs concatenation. The main difference between them is
the fact that the outputs in the last layer of each block are
concatenated instead summed, thus, the last layer of each
block is densely connected to all previous layers [19]. Many
works uses variations of DenseNet, such as DenseNet-121
[12], DenseNet-161 and DenseNet-201 [10].

Inception-V3 [20] was built based on the inception blocks
of the GoogleLeNet architecture, which is formed by a combi-
nation of filters with parallel paths that explore the image in a
variety of filter sizes, a fact that explains the model efficiency.
As in the VGG-16 architecture, the computational cost may be
lower compared to ResNet and DenseNet, as they have fewer
layers and parameters.

Table I presents structural details of each DCNN architec-
ture used in our experiments.

TABLE I
DCNN ARCHITECTURES DETAILS.

Architecture Year N°. layers Params
DenseNet-169 2017 169 15M
InceptionV3 2016 48 24.6M
ResNet-152 2015 152 61.2M

VGG16 2014 16 16M

C. Data Augmentation

To improve the models’ performance on training, data
augmentation techniques were employed, creating new trans-
formed images from the original ones and adding it on the
dataset [21] [22]. This procedure also reduces overfitting and

helps to deal with unbalanced classes issues. Examples of
successful implementations of data augmentation improving
the results can be seen in Harianto et al. [23] and Nani et al.
[24]. The strategy in this research was to apply the following
transformations to increase the amount of data for each batch
while maintaining the original images:

• Rescaling 1/255;
• Shear with a range of 0.15;
• Zoom transformations with a range of 0.2;
• Horizontal flip transformations with nearest fill mode;
• Height shift with a range of 0.2;
• Width shift with a range of 0.2;
• Rotations with a range of 30 degrees.
These techniques were applied due to fact that the neural

networks need to get a sense of possible scenarios that may
be encountered in traffic cameras, such as simulating cars in
opposite ways, different view angles, and distance from the
cars.

D. Evaluation Metrics
Typically, works that address the problem of fine-grained

vehicle classification use accuracy as the standard evaluation
metric [25]. However, accuracy can yield a superficial indi-
cation that the model can extract the desired characteristics
from the cars. There are tasks within vehicle recognition
that must not have a margin for false classification, such as
traffic violation cars detection or criminal suspect tracking.
The misclassification of cars in these contexts may lead to
innocent’s seizures and waste of resources chasing the wrong
individuals.

Considering these scenarios and in order to reduce the num-
ber of false positives, precision, recall, f1-score and accuracy
metrics were considered. Thus, using these metrics, it was
possible to index the best models for the execution of the task
based on an overview of the results.

IV. EXPERIMENTS

To conduct the experiments proposed in this paper, laptops
with NVIDIA GeForce RTX 3060, 16GB RAM, Intel proces-
sor i-Core i7-9750H and Windows 10 operating system were



utilized. Furthermore, CUDA 11.6, Python 3.8, Keras 2.6, and
Tensorflow 2.6 were the main technologies used. Once the
development environment was defined, the training of each
DCNN architecture-dataset combination was started from the
pre-trained ImageNet weights [26]. The script used to train the
models can be accessed on github 1. It is important to note
that the training was the only process running on the laptop.

The training process was performed with different setups of
image resolutions (input size) and batch sizes: (i) input size
of (224x244) and batch size of 16, 32, 64 and 128; (ii) input
size of (144x144) and batch size of 16, 32, 64 and 128; (iii)
input size of (128x128) and batch size of 32, 64 and 128.

Given the hardware limitation, the hyperparameters chosen
were input size of 128x128 and batch size of 32. These
values were applied to all datasets and networks to make
the experiments consistent. Additionally, a learning rate of
0.00001 with Adam Optimizer was applied for 100 epochs.

Regarding the datasets, BRCars-427 and CompCars are
already splitted into training, validation and testing sets [8]
[14], while Cars-196 does not have a validation set. Therefore,
to keep the experiments coherent, this dataset was divided into
training (80%) and validation (20%), resulting in 12,948 and
3,237 images respectively.

To control the training, two callbacks were employed; early
stopping to monitor the metrics and halt the training when it
stops improving [27], and Reduce Learning Rate on Plateau,
which changes the models’ learning rate when the metrics
stop improving [28]. Both callbacks consider validation loss
as a metric to be monitored and have the same delta value of
0.0001, which means when the validation loss does not reach
an improvement of at least this value, one of these callbacks
will be triggered in 30 and 10 epochs, respectively.

V. RESULTS AND DISCUSSION

The first analysis of the models derived from the
architecture-dataset combination was based on the observation
of evaluation metrics obtained for each of the twelve models
presented in Table II. The values are organized per dataset,
where the bold font represents the best performances and the
italic font represents the worst performances for each metric.
Given the metrics with similar values, the best performances
were from ResNet-152 and DenseNet-169.

Comparing the architectures and datasets, the best metrics
were found using BRCars-427. In addition, the results in
CompCars were lower and this is due to the higher number
of classes making the problem more complex, but still higher
than 70%. As stated, the robustness of deeper architectures
led to better results and this was confirmed in Cars-196. For
this dataset, the results are much lower than the other two,
but it was still possible to obtain regular metrics using deeper
networks even with fewer data.

1https://github.com/souzawes/fine-grained-cars-recognition-dcnn

TABLE II
EVALUATION METRICS ACHIEVED IN TEST SET. BEST AND worst RESULTS

FOR EACH DATASET

Dataset Architecture Accuracy Precision Recall F1

BRCars-427

ResNet-152 83.31 86.21 79.63 82.05
DenseNet-169 83.53 87.27 79.83 81.90
InceptionV3 81.18 85.22 73.05 79.05

VGG16 56.00 59.00 53.00 55.00

Compcars

ResNet-152 74.20 81.28 72.34 70.33
DenseNet-169 76.30 84.56 74.60 72.63
InceptionV3 66.16 80.09 64.36 59.56

VGG16 67.61 77.00 65.76 63.63

Cars-196

ResNet-152 55.17 67.09 55.28 50.91
DenseNet-169 60.41 74.84 60.31 52.52
InceptionV3 40.62 65.34 39.33 24.39

VGG16 44.63 64.96 44.26 33.70

According to Table III, the deeper architectures (ResNet-152
and DenseNet-169) require more time to complete training and
also had the longest inference times. The expressive difference
in training time is directly related to the architecture’s robust-
ness. In terms of inference time, the deeper CNN also obtained
worse results. However, the difference between them is very
small, about 32ms as in VGG16 (faster) and DenseNet-169
(slower).

TABLE III
DCNN ARCHITECTURES DETAILS FOR THIS EXPERIMENT USING THE

LARGEST DATASET (BRCARS-427)

Architecture Train time Inference time
ResNet-152 34h 75ms

DenseNet-169 28h 78ms
InceptionV3 17h 65ms

VGG16 13h 46ms

Figure 2 shows three samples from BRCars-427 dataset and
the respective top 3 predicted classes, as reached in Table
II values. The architectures ResNet-152, DenseNet-169 and
InceptionV3 had almost 100% of confidence in the correctly
predicted class, while VGG16 had the worst predictions.

Thereafter, the second analysis was the comparison of
the results with the related works presented in Table IV,
assuming that the best architectures in the present work are
ResNet-152 and DenseNet-169. In general terms, metrics with
values greater than 50% were obtained, even with hardware
limitations and consequently a decrease in hyperparameter
values (input size and batch size).

Compared to the networks ResNet-50 and InceptionV3 used
in [8], the best architectures in this paper had slightly higher
metrics on BRCars-427. They were trained for more than 75
epochs and achieved better metrics even with smaller input
and batch sizes.

The same thought applies to experiments with CompCars.
Metrics above 70% were obtained as in [3], despite hardware
limitations. Sánchez et al. [3] and Ma et al. [5] only con-
sidered images of cars captured in the frontal view and 431
classes. In contrast, the experiments performed in this paper
considered all 1,716 classes in all scenarios. This may explain
the difference of more than 20% accuracy compared with Ma



TABLE IV
WORKS COMPARISON. RESNET-152 AND DESNET-169 ACHIEVED THE BEST RESULTS.

Dataset Architecture Epochs Input size Batch size Accuracy Precision Recall F1

BRCars-427

ResNet-152 (present) 100 128x128 32 83.31 86.21 79.63 82.05
DenseNet-169 (present) 100 128x128 32 83.53 87.27 79.83 81.90

InceptionV3 [8] 25 256x256 64 - 82.00 79.00 79.00
Resnet-250 [8] 25 256x256 64 - 80.00 77.00 79.00

Compcars

ResNet-152 (present) 100 128x128 32 74.20 81.28 72.34 70.33
DenseNet-169 (present) 100 128x128 32 76.30 84.56 74.60 72.63
DenseNet161-CMP [5] 300 224x224 32 97.89 - - -
ResNet152-CMP [5] 300 224x224 32 97.01 - - -

VGG16-CMP [5] 300 224x224 32 97.80 - - -
InceptionV3 [3] 50 - - 78.47 - - -

Cars-196

ResNet-152 (present) 100 128x128 32 55.17 67.09 55.28 50.91
DenseNet-169 (present) 100 128x128 32 60.41 74.84 60.31 52.52

VGG16 [9] 100 224x224 32 89.67 - - -
DenseNet-161 [9] 100 224x224 32 93.37 - - -
ResNet152 [10] 100 - 32 93.96 - - -

DenseNet201 [10] 100 - 32 92.81 - - -

Fig. 2. Top 3 predicted classes for sample images from test set of BRCars-
427 using all trained models. The correct predictions are in green, while the
incorrect ones are in red.

et al. work, since in the images used the cars do not vary in
angle and position. In addition, they trained the networks for
300 epochs.

The analysis of metrics using Cars-196 was similar to using
CompCars. The authors obtained accuracies greater than 90%.
As mentioned in section III-A, Cars-196 does not have a
validation set and this could cause poor generalization and
overfitting. For this paper, the Cars-196 training set was split
80/20 for training and validation, as specified in Section IV.
This could be reflected in low metrics as the entire dataset has
few images. Another fact that may have led to high accuracies
in Hassan et al. work [10] is the usage of high-performance
machines.

VI. CONCLUSION

Technology development in the context of Intelligent Trans-
portation Systems is becoming increasingly important today.
Specifically, advances in computer vision, distributed comput-
ing, cloud computing and embedded systems have enabled the
deployment of devices capable of extracting information from
images captured in various locations throughout a city. One
of the most common ITS tasks is the vehicle characteristics
identification, known as fine-grained vehicle classification,
which can be applied in contexts ranging from parking man-
agement systems to urban safety applications such as tracking
criminals’ vehicles.

This study presented a comparison of performance among
multiples combinations of architectures-datasets to determine
which combination works better for the fine-grained vehicle
classification problem for car make and model recognition.
Based on the results presented throughout this paper, it
was possible to conclude that the deeper CNN architectures
(ResNet-152 and DenseNet-169) are the most recommended
for the task, as they achieved the best test results.

The experiments conducted in this paper also revealed
that among the used datasets the BRCars-427 produced the
most accurate models and produced good results even for the
InceptionV3, making it a lightweight option for implementing



the car classifier based on make and model. On the other hand,
the dataset Cars-196 presented the worst result mainly due to
its small amount of training and validation data, which does
not allow a model generalization and caused very low metrics
in the test set.

Based on the results obtained in this paper, it is possible
to conclude that ResNet-152 and DenseNet-169 are the most
suitable architectures among those tested for the fine-grained
vehicle classification task. For future works, it is planned
to analyze techniques that can improve training for small
datasets such as Cars-196, as well as the coverage of more
Convolutional Neural Networks such as other variants of
ResNets and DenseNets, Inception-v4 and EfficientNet.
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