
Recursive filtering 2D Tikhonov regularization
Hermes H. Ferreira

Instituto de Informática – UFRGS
Porto Alegre, Brazil

hermes.ferreira@inf.ufrgs.br

Eduardo S. L. Gastal
Instituto de Informática – UFRGS

Porto Alegre, Brazil
eslgastal@inf.ufrgs.br

Abstract—In this work we describe an implementation of the
2D Tikhonov regularization filter which scales linearly with the
input signal’s size. We propose a novel algorithm to decompose
the filter’s 2D kernel as a sum of axis-aligned Gaussians. Our
algorithm uses symmetries of the kernel to provide a fast compu-
tation of the Gaussian decomposition in the frequency domain,
where the 2D Tikhonov kernel has a closed-form expression. The
convolution with each Gaussian is then computed using linear-
time separable recursive filtering. This way, a fast solution to the
2D Tikhonov regularization problem is obtained.

I. INTRODUCTION

The Tikhonov regularization method arises in many differ-
ent contexts. It was developed by Tikhonov and Arsenin [17]
for solving ill-posed problems, and was also discovered inde-
pendently by Hoerl and Kennard [10], who introduced it as
Ridge regression in the context of statistics. The method is par-
ticularly useful for solving inverse problems, even non-linear
ones. Such problems arise, for example, in Geophysics [9],
Economics [6], Image Processing [1], and Tomography [18].

A regularized problem is usually stated as argminx∥Ax −
b∥2 + ∥Γx∥2, which means solving Ax ≈ b with a regulariza-
tion term Γx. In the work of Romano et al. [16], the problem
is split in two steps, where one of the steps is applying a
denoising engine h(y) to an intermediate solution y. In our
context h(y) = argminx∥x−y∥2+∥Γx∥2, which we will refer
to as Tikhonov filter or regularization (Fig. 1). This particular
formulation is also used by Nielsen et al. [15], who describe
the relationship between the 1D Tikhonov problem (i.e., where
x is the sampling of a function from R to R) and recursive
filtering, when Γ is a scaled 1D derivative operator.

In this work we develop a fast linear-time algorithm (O(N)
in the input size N) for applying the denoising engine h(y)
when Γ is a first-order, scaled, 2D derivative operator (Eq. 1).
This 2D formulation is a considerably more intricate problem
to solve than the 1D case studied by Nielsen et al. [15],
since the associated Fourier transform (Eq. 3) is not a ratio of
polynomials in the Z-transform domain (and thus cannot be
directly implemented as a single recursive filter). Furthermore,
the frequency representation in Eq. 3 does not have a closed-
form inverse (spatial representation).

Our idea is to decompose the 2D Tikhonov filter’s kernel
as a sum of axis-aligned 2D Gaussian functions, which we
refer to as Gaussian decomposition. In this way, the filter can
be approximated by a combination of Gaussian blurs, which
can be implemented in O(N) time with the recursive-filtering

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Fig. 1: Top left: original image. Top right: image filtered with
the 2D Tikhonov kernel (parameters λx = 10 and λy = 20).
Bottom left: geophysical inversion without regularization. Bot-
tom right: inversion with Tikhonov regularization [2], [3].

methods of Deriche [5] or Young and Vliet [19]. Gaussians
are used as the building blocks of the decomposition due to
their perfect separability (i.e., G(x, y) = G(x)G(y)). This
allows us to use symmetries of the Tikhonov filter to propose
a novel and fast (< 1 ms) optimization scheme to compute
the 2D Gaussian decomposition directly in the frequency
domain, where the kernel has a closed-form expression (Eq. 3),
and using 1D curve fitting. This optimization scheme is the
main contribution of our work (Section III). We discuss the
precision of the method and provide the execution times of our
implementation (Section V), available at https://github.com/
hermes-hf/Recursive-filtering-2D-Tikhonov-regularization .

II. BACKGROUND AND RELATED WORKS

Given an input g, the Tikhonov regularized solution f is a
function that is close to g but is also smooth [15]:

E(f) =
1

2

∑
x,y

(f(x, y)− g(x, y))
2
+ (1)

λx

(
f(x, y)− f(x− 1, y)

)2

+ λy

(
f(x, y)− f(x, y − 1)

)2

.

The functional E(f) has smaller energy when f is close to g
in the ℓ2 norm and has a smooth derivative (this smoothness

https://github.com/hermes-hf/Recursive-filtering-2D-Tikhonov-regularization
https://github.com/hermes-hf/Recursive-filtering-2D-Tikhonov-regularization

is controlled by the λx and λy parameters). The minimum
of this functional is the regularized solution f such that

d
df(x,y)E(f) = 0. Differentiating Eq. 1 in f(x, y) and equating
to zero gives

f(x, y)
[
1 + 2λx + 2λy

]
− λxf(x− 1, y)− λxf(x+ 1, y)

− λyf(x, y + 1)− λyf(x, y − 1) = g(x, y). (2)

Let the support of the input g(x, y) be x, y ∈ {1, 2, ...,M},
then the total size of the input is N = M2. f can be computed
by solving the above linear system in the variables f(x, y).
Directly solving the system by Gaussian elimination has a
complexity of O(N3). For periodic boundary conditions, a
better solution is to use the Fast Fourier Transform (FFT) to
compute the filter in the frequency domain, with complexity
O(N logN): f̂(ω, ξ) = K̂(ω, ξ) ĝ(ω, ξ) where □̂ denotes the
Discrete-time Fourier Transform (DTFT) of □ and

K̂(ω, ξ) =
1

1 + 2λx(1− cos(ω)) + 2λy(1− cos(ξ))
, (3)

such implementation has been first considered by B. R.
Hunt [11]. The regularized solution can be computed in O(N)
time with Multigrid methods [12], but these have higher
overhead and memory requirements (Section V-A).

In the work of Nielsen et al. [15], 1D Tikhonov reg-
ularization is implemented with recursive filters in O(N).
However, their approach does not extend to the 2D case
since the 2D kernel is not a ratio of polynomials in the Z
domain (Eq. 3). Deriche and Abramatic [4] show that it is
possible to approximate a 2D kernel as a sum of separable
1D recursive filters. Their work, however, is intended to be
much more general, and so does not exploit the symmetries of
the Tikhonov regularization. As a consequence, their method
requires much more expensive SVD decomposition steps, with
a computational complexity that scales in proportion to the
Tikhonov filter’s parameters (stronger regularization requires
larger kernels and thus larger SVDs, taking hundreds to
thousands of milliseconds). Our decomposition is computed in
the frequency domain and its computation time is independent
of the filter’s parameters (λx and λy in Eq. 1), taking less than
1 millisecond to compute.

In a different approach, Farbman et al. [7] approximate
given kernels by a sequence of convolutions with small
separable kernels, in a multiscale scheme similar to a wavelet
transform. Their method is fast and obtains O(N) performance
when filtering. However, finding the coefficients of the mul-
tiscale scheme for a given kernel requires a time-consuming
non-linear optimization, which must be recomputed every time
the filter’s parameters change. Our Gaussian decomposition
also must be recomputed for different filtering parameters, but
it is practically instantaneous.

III. OUR GAUSSIAN DECOMPOSITION METHOD

Let K(x, y) be the impulse response of the Tikhonov filter
for a particular set of regularization parameters λx and λy , as
illustrated in Fig. 2. K(x, y) is given by the inverse DTFT

−35 0 35
0

0.002

x

K(x, 0)

0.0×100

5.0×10 4

1.0×10 3

1.5×10 3

Fig. 2: K(x, 0) and heatmap of K(x, y). λx = 600, λy = 300.

of K̂(ω, ξ) (Eq. 3). To solve the regularization problem we
propose to approximate the kernel as a sum of ng Gaussian
functions Gs(x) =

1√
2πs2

e−x2/(2s2) in the form:

K(x, y) =

ng∑
i=1

αi Gσi(x)Gγi(y). (4)

Tikhonov filtering with K is then substituted by convolutions
with Gaussians, which are efficiently computed by recursive
filtering (Section IV). In other words, the regularization prob-
lem can be solved in O(N), where N is the size of the input.

As discussed in the following sections, to compute the
Gaussian decomposition we solve instead for

K(x, 0) = α0 δ(x) +

ng∑
i=1

αi Gσi
(x), (5)

where δ(x) is the unit impulse. We then use symmetries of
the kernel (Section III-A) to obtain

K(x, y) = α0 δ(x, y)

+

ng∑
i=1

αi

√
2π(σiλy/λx)2 Gσi(x)Gσiλy/λx

(y). (6)

The unknown Gaussian amplitudes {αi} and standard devia-
tions {σi} of this simplified decomposition can be obtained
extremely fast with our Algorithm 1 (Section III-B), by
successively fitting Gaussian terms to K̂(ω, ξ) in the frequency
domain (recall that the Fourier transform of a Gaussian is also
a Gaussian). The amplitudes αi can then be further improved
by solving a small linear system (Section III-C).

A. Elliptical Symmetry

We show that one can compute the kernel K(x, 0) at y = 0,
and apply an elliptical rotation to approximate its exact value
K(x, y) at any given y value. The DTFT K̂ (Eq. 3) can be
written as a function of the variables l and θ:{

l(ω, ξ) = λx cos(ω) + λy cos(ξ),

θ(ω, ξ) = tan−1
(
ξ / ω

)
.

(7)

This is similar to a polar coordinate system. With this change
of variables we have the following symmetry equation, which
states the invariance of K̂ with respect to θ:

dK̂

dθ
=

∂K̂

∂ω

∂ω

∂θ
+

∂K̂

∂ξ

∂ξ

∂θ
= 0. (8)

0 0.5 1 1.5 2 2.5 π
0

ω

J(ω)

J̃0

J̃1

J̃2

J̃3

J̃4

(a)

0 a1 p1 b1 = π
0

α1

J(0)

ω

J − J̃0

J̃1

(b)

Fig. 3: (a) Approximation in the frequency domain. Succes-
sively improving the solution by adding more Gaussian terms
(λx = 80, λy = 30, and up to ng = 4 Gaussians). (b) Fitting
a Gaussian term α0 + α1Ĝσ1

(ω) such that the derivative at
the intersection point p1 coincides with J ′(p1).

Replacing the appropriate expressions for ∂ω
∂θ and ∂ξ

∂θ in
Eq. 8, and then applying the inverse DTFT, one obtains the
symmetry equation in the spatial domain (see Appendix C in
the supplementary material for further details):

λx y
(
K(x+ 1, y)−K(x− 1, y)

)
−λy x

(
K(x, y + 1)−K(x, y − 1)

)
= 0.

Noticing that the central differences approximate the spatial
derivatives of K: 2 (∂K/∂x) ≈ K(x + 1, y) − K(x − 1, y)
and 2 (∂K/∂y) ≈ K(x, y + 1)−K(x, y − 1), one obtains:

λx y
∂K

∂x
− λy x

∂K

∂y
= 0.

This expression is in fact d
dφK(x, y) = 0 in the elliptical

coordinate system r(x, y) =
√
x2/λx + y2/λy,

φ(x, y) = tan−1 (y / x) .

With this, we are able to approximate K(x, y) by rotating
K(x, 0) in this coordinate system. That is:

K(x, y) ≈ K
(√

λx r(x, y), 0
)
.

Applying this rotation to the 1D Gaussian decomposition in
Eq. 5 yields Eq. 6. Thus, with a Gaussian decomposition for
only the x variable, one can obtain a decomposition for the
whole x-y range.

B. Fast Gaussian Decomposition
In this section we describe a method to obtain a Gaussian

decomposition for K(x, 0) very quickly. Our method consists
of fitting Gaussian functions in the frequency domain.

The DTFT of K(x, 0) is given by

J(ω) = 1
/√

(1 + 2λx + 2λy − 2λx cos(w))2 − 4λ2
y.

Thus, we are interested in solving

α0 +

ng∑
i=1

αiĜσi
(ω) = J(ω) (9)

for ω ∈ [−π, π]. Since all functions used are even, we only
need to work with ω ∈ [0, π]. Using Theorem 1 (Appendix A),
explicit formulas for both sides of Eq. 9 are available (since
the spatial domain is discrete, one must consider the aliasing
effect in frequency space). We add a constant term α0 to cover
the case when the optimal standard deviation of a Gaussian
term is close to zero, which would produce large numerical
error (recall that the deviation in the frequency domain is the
inverse of the deviation in the spatial domain for a Gaussian
function). The term α0 in the frequency domain corresponds
to scaling the signal by α0 in the spatial domain.

We propose a novel algorithm to find the αi and σi values
that solve Eq. 9, which is summarized in Algorithm 1. The
function J(ω) is approximated for decreasing ω. The idea is to
fit Gaussian terms starting with the largest (frequency-space)
deviation to the smallest one (Fig. 3a). We expect that the
Gaussians with smaller deviation should not interfere with the
terms with larger deviation, due to the rapid decay in ω for
Gaussian functions. We first fit the term of deviation∞, which
means defining the constant amplitude term α0. It is set as
α0 = J(π), which is the smallest value attained by J(ω).

Next, we proceed by computing initial values for the
amplitudes α1, . . . , αng . Experimentally, we observed that
uniformly spaced values work well. Thus, we select amplitudes
such that αi = i α1 (for i ≥ 1) and α0 + · · ·+ αng g = J(0).

The next step is to find the deviations σ1, . . . , σng
. This

is done in an iterative fashion: we find the best σ1 for the
partial fit J̃1(ω, σ1) = α0+α1Ĝσ1(ω), then we fix σ1 and find
the best σ2 for the partial fit J̃2(ω, σ2) = α0 + α1Ĝσ1

(ω) +
α2Ĝσ2

(ω), and so on up to σng
.

At the j-th step, the best deviation σj will be the one which
makes the partial fit J̃j(ω, σj) match J(ω) in value and in
derivative at some point pj , that is, J̃j(pj , σj) = J(pj) and
J̃ ′
j(pj , σj) = J ′(pj). The point pj ∈ [0, π] is the frequency

location where the graph of J̃j will be tangent to J (see
Fig. 3b for an illustration of p1 and J̃1). Observe that any
intersection point p (where simply J̃j(p, σ) = J(p)) will
uniquely determine σ, since there will be only one possible
choice of σ which will make J̃j(p, σ) = J(p) at p (this occurs
because the Gaussian Ĝσ(ω) is monotonous decreasing in σ).
In other words, for a fixed intersection point p, the associated
σ is given implicitly as the solution to J̃j(p, σ) = J(p).
Thus, to find σj , we proceed by selecting a candidate point q,
computing the value of σq associated with q by solving
J̃j(q, σ

q) = J(q), and then checking whether the derivatives’
matching error Dj(q) = J̃ ′

j(q, σ
q) − J ′(q) is within some

error tolerance: |Dj(q)| < ε1. If yes, then we found the j-th
deviation σj = σq with associated pj = q. Otherwise, this
candidate is rejected and we select a new candidate point q to
repeat the process. In our implementation ε1 = 10−7.

To avoid a brute-force search of candidate points across the
whole domain [0, π], we use a binary search scheme. For the
j-th step, the first candidate point q will be the midpoint of the
interval [aj , bj] (described below). If this candidate is rejected
(because |Dj(q)| ≥ ε1), and if Dj(q) is negative, we repeat the
binary search with the lower half of the interval (i.e., [aj , q]).

If Dj(q) is positive, we select the upper half (i.e., [q, bj]).
This procedure is repeated until a candidate point is accepted
withing the error tolerance, or for a maximum of T binary
search iterations (in our implementation, T = 10).

Extra care must be taken when choosing the upper interval,
as we expect the new Gaussian term to interfere more with the
previously fitted terms. Thus, to avoid any significant interfer-
ence, we only choose the upper interval if J(q)− J̃j−1(q) is
larger than some threshold ε2 (5·10−4 in our implementation),
which means there is still room to fit a Gaussian term without
exceeding the value of J(ω) at ω = q. Finally, for the initial
search interval [aj , bj], we choose aj to be the point where
the constant function αj (the largest value the j-th Gaussian
term can attain) intersects J(q)− J̃j−1(q) (the residual of the
fit from the previous, (j − 1)-th step). Furthermore, the upper
limit bj = pj−1 is initialized as the intersection point chosen
in the previous step, and b1 = π (Fig. 3b).

Our method works best when λx ≥ λy , if this is not the
case, we swap those values before applying the algorithm and
swap them back after running the algorithm. This is equivalent
to computing the Gaussian decomposition for K(0, y) instead
of K(x, 0) (followed by the appropriate elliptical rotation).

C. Optimizing the Amplitudes

After solving for the deviations, the Gaussian amplitudes
can be further improved by solving a 1D linear least squares
problem in Eq. 9. We fix the previously obtained {σi} values
and solve for the amplitude variables {αi}. This is done
by discretizing the equation using 100 linearly spaced ω
values in [0, π]. Furthermore, we used a large weight (103)
associated with the linear equation at ω = 0, to enforce a
proper representation of the zero frequency value J(0) (thus
preserving the area under the Tikhonov kernel). The resulting
optimization matrix might be ill-conditioned when two or
more σ values are similar. To get around this, we used the
lsmr iterative solver from Julia’s IterativeSolvers.jl
package. This gives a very lightweight optimization scheme
with complexity O(ng) on the number of Gaussians.

IV. IMPLEMENTATION DETAILS

We implemented Algorithm 1 in the Julia programming
language using the parameters T = 10 (max iterations per
Gaussian), ε1 = 10−7 (error tolerance in the derivative of J̃)
and ε2 = 5 · 10−4 (error tolerance in the value of J̃). The
function inverses F−1(αi) and H−1(F (p)) can be computed
through a binary search since both F and H are decreasing.
Note that the running time of Algorithm 1 is independent of
the filtered signal size. Its complexity is O(ng) where ng is the
number of Gaussian functions in the decomposition, usually
ng ∈ {4, 5, 6}. Since we have explicit formulas for G and F ,
the derivatives can be computed with automatic differentiation.

Given a Tikhonov kernel K(x, y) with parameters λx and
λy , we compute its Gaussian decomposition using Algorithm 1
and Eq. 6. We then compute the convolution of the input
signal with each Gaussian by recursive filtering, followed by
summing the results, to generate the final output. We perform

Algorithm 1: Gaussian decomposition of J(ω)

input: DTFT J(ω), number of Gaussian terms ng ∈ N
output: (α1, ..., αng), (σ1, ..., σng) ∈ Rng and α0 ≥ 0
p0 ← π; α0 ← J(π)
for j = 1, 2..., ng do
αj ← (J(0)− α0) j /(

∑ng

k=1 k)

F (ω) := J(ω)− α0 −
∑j−1

k=1 αkĜσk
(ω) //J − J̃j−1

aj ← F−1(αj); bj ← pj−1

for t = 1, 2, ..., T do
q ← (aj + bj)/2
H(s) := Ĝs(q)
σ ← H−1(F (q))
Dj = αjĜ

′
σ(q)− F ′(q) //J̃ ′

j(q, σ)− J ′(q)

if Dj < −ε1 then
bj ← q

else if Dj > ε1 and F (q) ≥ ε2 then
aj ← q

else
break

end if
end for
σj ← σ; pj ← q

end for
Optimize (α1, . . . , αng

) by linear solve (Section III-C)

recursive filtering using Deriche’s method [5]. Another option
would be the method of Young and Vliet [19], but it is less
precise when the deviation of a Gaussian term is small, which
occurs often when approximating the peak of the Tikhonov
kernel K. We wrote a Julia implementation of the Deriche
filter which was used for interactive analysis, and a C++
implementation which was optimized to reduce execution
time.

The Z-Transform of Deriche’s 1D Gaussian filter is

(η3z
−3 + η2z

−2 + η1z
−1 + η0 + η1z + η2z

2 + η3z
3)

· (1 + d1z + d2z
2 + d3z

3 + d4z
4)−1

· (1 + d1z
−1 + d2z

−2 + d3z
−3 + d4z

−4)−1 ;

(10)

where the values of the constants depend on the Gaussian’s σ
and are displayed in Appendix B (supplementary material). To
perform 2D Gaussian filtering we need to filter both columns
and rows in sequence. For the column filter we first apply the
block filter block(y) =

∑3
i=−3 ηi in(y + i) , followed by the

causal (forward) filter

fwd(y) = block(y)−
4∑

i=1

di fwd(y − i) ,

and finally the anticausal (backward) filter

out(y) = bwd(y) = fwd(y)−
4∑

i=1

di bwd(y + i) .

For the row filter, we choose to apply the block filter after the
forward and backward filters, as this allows us to use a single

Fig. 4: Comparison between the FFT filtered image (left) and
our method (right), with λx = 100 and λy = 40.

buffer for the whole 2D filter. Note that the column filter and
the row filter will generally have different σ parameters (the
Gaussians are axis-aligned but not necessarily isotropic). As
originally described by Deriche [5], the Gaussian filter could
be implemented with forward and backward passes in parallel
(out = fwd + bwd). However, we chose an implementation in
series (out = bwd◦ fwd) for better performance, as it requires
no separate memory buffers for both passes, and thus makes
a better use of the CPU’s cache. The boundary conditions for
the filter can be selected according to each application, in a
variety of ways as described by Nehab and Maximo [14]. We
use zero extension in our experiments.

V. RESULTS

Our method obtains good numerical accuracy. We use
the FFT-filtered result as the ground truth for our compar-
ison (Fig. 4). As a note, using the FFT to filter a signal
implies a periodic boundary condition, which is commonly not
adequate for most Tikhonov regularized problems. To compute
the ground truth results, we pad the images with zeros before
executing the FFT to minimize the effect of the periodicity.

Table I displays the numerical accuracy of the resulting
Tikhonov filter using our Gaussian decomposition. Note that
increasing the number of Gaussians from ng = 5 to ng = 6
does not improve accuracy, since our Algorithm 1 is not
guaranteed to find a global optimum.

If more precision is desired (at the cost of computation
time), it is possible to apply a non-linear least squares op-
timizer in the spatial domain to simultaneously solve for
amplitudes and deviations of the Gaussians. In this case, the
model function (with optimization variables Ai, Bi and Ci) is

K(x, y) = A2
0 δ(x, y) +

ng∑
i=1

A2
i e

− x2

2 C2
i −

y2

2 B2
i .

This function is used since it is best to use unnormalized
Gaussian terms and squared variables so that the problem be-
comes convex (and easier to optimize). In practice, instead of
optimizing with respect to K(x, y), we apply the optimization
with K(x, 0) and K(0, y), reducing the dimensionality of the
problem. The function K(x, 0) can be computed using the
IFFT on J(ω), K(0, y) can be computed similarly. The IFFTs
are computed in O(1) since we always use a fixed number
of 200 samples, and the non-linear optimizer runs in O(ng)
since we use a fixed number of 20 iterations in the non-linear
solver. As initial conditions for the solver we use the outputs
of Algorithm 1 (but without the linear optimization on αi).

Metric ng = 4 ng = 5 ng = 6

↓ avg. ℓ1 0.99% ± 0.35% 0.50% ± 0.32% 1.23% ± 0.40%
↓ max ℓ1 2.30% 1.45% 1.74%

↓ avg. ℓ2 1.05% ± 0.34% 0.57%± 0.33% 1.27% ± 0.38%
↓ max ℓ2 2.32% 1.64% 1.76%

↑ avg. PSNR 47.1dB ± 3.1dB 53.2dB ± 4.1dB 45.6dB ± 3.4dB
↑ min PSNR 38.1dB 42.0dB 40.6dB

TABLE I: Average error and PSNR over 10 images from the
Kodak dataset, over all pairs of λx and λy in {10, 20, ..., 100}.
FFT-filtered result used as ground truth for comparison, while
varying the number ng of Gaussian terms used in the approx-
imation. Smaller ↓ ℓ1/ℓ2 and larger ↑ PSNR is better.

This non-linear optimization only shows improvements with
ng ≥ 6 Gaussian terms. For ng = 6, relative errors decrease
to 0.24% ± 0.12% (avg. ℓ1) and 0.27% ± 0.12% (avg. ℓ2),
and the average PSNR increases to 59.3dB±3.8dB. This non-
linear optimization process takes 110 milliseconds to compute,
compared to less than 0.4 ms for our Algorithm 1.

When both λx and λy are smaller than 5, the accuracy of
the Gaussian decomposition decreases, even when using the
non-linear optimization (around 33dB PSNR). In this case,
the kernel K(x, y) is not sufficiently elliptically symmetrical.
However, small values of λ are not very useful as the regular-
ization will be nearly non-existent.

A. Computational Performance

We compare the filtering execution time of our method
against the FFT, implemented with the C++ FFTW library.
This library is highly optimized and extremely fast, since it
contains several hard-coded transforms of small sizes, even
though the FFT is O(N logN). Our recursive fultering method
is O(N) and implemented in C++. Multigrid methods also
run in O(N), however, they are slower in practice than
their complexity suggests, and also require larger amounts
of memory. We use the C++ Multigrid implementation of
Kazhdan and Hoppe [12] in our experiments. All tests were
done with a single thread on an Intel i5 2.90 GHz processor.

Fig. 5 summarizes the execution times. The FFTW library
has different “planning” options: Estimate (fastest), Measure
(slower), and Patient (very slow). Each option has a trade-off
between planning time and the FFT execution time. The plan-
ning time is how much it takes for the FFTW to determine the
optimal sequence of steps to apply the FFT for the particular
CPU where the code is being executed. The advantage is that
plans can be reused for inputs of the same size. In Fig. 5
we display the execution times with and without the planning
times for the FFTW.

Our implementation is faster than the Estimate option for
images larger than 2048 × 2048 and always faster than the
Measure option when accounting for the planning time (which
takes more than 500 ms even for small 1024×1024 inputs). If
the planning time is not included, our implementation is faster
than the Measure option for inputs of size larger than or equal

10242 20482 40962 81922 163842

size (pixels)

15 ms
30 ms
60 ms

120 ms
250 ms
500 ms

1 s
2 s
4 s
8 s

16 s
32 s

1 min
2 min

Ours
FFTW Measure w/ Plan
FFTW Estimate w/ Plan
FFTW Measure
FFTW Estimate
Multigrid

Fig. 5: Filtering execution time (lower is better). Comparison
between our method with 5 Gaussian terms using the Deriche
filter, different FFTW options, and Multigrid. We sampled 10
executions of each algorithm for each size of image and chose
the minimum time. Note the O(N) scaling of our method vs
O(N logN) for the FFT in this log–log plot.

to 16384×16384. Note that the state-of-the-art FFTW library
has been very carefully tuned to generate optimal code for each
machine. Our particular implementation of the Deriche filter is
intended as a proof of concept. With more work, faster imple-
mentations can be achieved. We also note that the FFT is lim-
ited to periodic boundary conditions, and other types of input
extension must be performed by padding the signal, thus in-
creasing memory and computation time (especially for strong
regularizations which require large values of λx and λy , result-
ing in larger kernels and larger padding requirements). Finally,
our method is one order of magnitude faster than Multigrid.

VI. CONCLUSION AND FUTURE WORK

We provided an insight into the symmetries of the 2D
Tikhonov kernel, and how we can exploit them to obtain a
Gaussian decomposition. We described a novel algorithm to
compute this decomposition extremely fast and discussed the
precision of the method. We also compared the execution times
of our implementation with other methods, mainly the FFTW.

We obtained a precise method by only using 1D information
of the 2D kernel. The complete regularization problem can
then be solved in O(N), faster than existing Multigrid methods
and faster than the FFT for large inputs. Although we only
used a single-threaded CPU implementation, the recursive
filter has many steps which can be executed in parallel (in
particular, each row/column can be filtered independently).
Performance can also be improved by using GPU implemen-
tations of recursive filters as proposed by Nehab et al. [13].

Our method can be used jointly with edge-aware filters such
as the first-order recursive implementation of the Gaussian
filter provided by Gastal and Oliveira [8]. This is useful when
it is desirable to use non-homogeneous weights for the filter.
It is then possible to avoid excessive smoothing along sharp
edges on the data while retaining the O(N) complexity. This
is not possible with the FFT.

For future work we plan to investigate how these ideas
can be adapted to higher-dimensional Tikhonov regulariza-
tion, and plan to give an analytical description of how non-
homogeneous regularization relates to our implementation. We
also plan to obtain an efficient solution for the continuous
version of the Tikhonov regularization filter with our method.

Acknowledgements. This work was partially supported
by CNPq-Brazil (436932/2018-0), Petrobras (2017/00752-3),
FAPERGS (22/2551-0000619-1) and financed in part by “Co-
ordenação de Aperfeiçoamento de Pessoal de Nível Superior”
- Brasil (CAPES) - Finance Code 001

REFERENCES

[1] A. Bouhamidi and K. Jbilou, “Sylvester tikhonov-regularization methods
in image restoration,” Journal of Computational and Applied Mathemat-
ics, vol. 206, no. 1, pp. 86–98, 2007.

[2] B. R. Carvalho and P. T. L. Menezes, “Marlim R3D: a realistic model
for CSEM simulations-phase I: model building,” Brazilian Journal of
Geology, vol. 47, pp. 633–644, 2017.

[3] J. L. Correa and P. T. L. Menezes, “Marlim R3D: A realistic model for
controlled-source electromagnetic simulations-Phase 2: The controlled-
source electromagnetic data set,” Geophysics, vol. 84, no. 5, 2019.

[4] R. Deriche and J. Abramatic, “Design of 2-D recursive filters using
singular value decomposition techniques,” in IEEE International Conf.
on Acoustics, Speech, and Signal Processing, pp. 03–05.

[5] R. Deriche, “Recursively implementing the gaussian and its derivatives,”
in Proc. Secound Int. Conf. On Image Processing, 1992, pp. 263–267.

[6] H. Egger and H. Engl, “Tikhonov regularization applied to the inverse
problem of option pricing: Convergence analysis and rates,” Inverse
Problems, vol. 21, 2005.

[7] Z. Farbman, R. Fattal, and D. Lischinski, “Convolution pyramids,” ACM
Trans. Graph., vol. 30, p. 175, 12 2011.

[8] E. S. L. Gastal and M. M. Oliveira, “High-order recursive filtering
of non-uniformly sampled signals for image and video processing,”
Computer Graphics Forum, vol. 34, no. 2, 2015.

[9] A. Gholami and H. R. Siahkoohi, “Regularization of linear and non-
linear geophysical ill-posed problems with joint sparsity constraints,”
Geophysical Journal International, vol. 180, no. 2, pp. 871–882, 2010.

[10] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation
for nonorthogonal problems,” Technometrics, vol. 12, no. 1, 1970.

[11] B. R. Hunt, “The application of constrained least squares estimation to
image restoration by digital computer,” IEEE Transactions on Comput-
ers, vol. C-22, no. 9, pp. 805–812, 1973.

[12] M. Kazhdan and H. Hoppe, “Streaming Multigrid for Gradient-Domain
Operations on Large images,” ACM Trans. Graphics, vol. 27(3), 2008.

[13] D. Nehab, A. Maximo, R. Lima, and H. Hoppe, “GPU-efficient recursive
filtering and summed-area tables,” ACM TOG, vol. 30, no. 6, 2011.

[14] D. Nehab and A. Maximo, “Parallel recursive filtering of infinite input
extensions,” ACM Trans. Graph., vol. 35, no. 6, 2016.

[15] M. Nielsen, L. Florack, and R. Deriche, “Regularization, scale space,
and edge detectors,” Journ. of Math. Imaging and Vision, vol. 7, 1997.

[16] Y. Romano, M. Elad, and P. Milanfar, “The little engine that could:
Regularization by denoising (red),” SIAM J. on Imaging Sciences, 2016.

[17] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-posed problems.
W.H. Winston, 1977.

[18] M. Vauhkonen, D. Vadász, P. Karjalainen, E. Somersalo, and J. Kaipio,
“Tikhonov regularization and prior information in electrical impedance
tomography,” IEEE Trans. on Medical Imaging, vol. 17, 1998.

[19] I. Young and L. Van Vliet, “Recursive implementation of the gaussian
filter,” Signal Processing, vol. 44, pp. 139–151, 06 1995.

APPENDIX A

Theorem 1. The DTFT of a Gaussian Gσ is approximately
Ĝσ(ω) ≈

∑τ
k=−τ exp(−

(ω−2πk)2

2 σ2). For σ ≥ 0.4, using
τ = 2 gives an ℓ∞ error of 5.68·10−9. Gaussians with σ < 0.4
in space can be treated as constant functions in frequency.

See the supplementary material for a detailed proof.

	Introduction
	Background and Related Works
	Our Gaussian Decomposition Method
	Elliptical Symmetry
	Fast Gaussian Decomposition
	Optimizing the Amplitudes

	Implementation Details
	Results
	Computational Performance

	Conclusion and future work
	References
	Appendix A

