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Abstract—Smart robots in factories highly depend on Com-
puter Vision (CV) tasks, e.g. object detection and recognition,
to perceive their surroundings and react accordingly. These CV
tasks can be performed after training deep learning (DL) models
on large annotated datasets. In an industrial setting, acquiring
and annotating such datasets is challenging because it is time-
consuming, prone to human error, and limited by several privacy
and security regulations. In this study, we propose a synthetic
industrial dataset for object detection purposes created using
NVIDIA Omniverse. The dataset consists of 8 industrial assets
in 32 scenarios and 200,000 photo-realistic rendered images that
are annotated with accurate bounding boxes. For evaluation
purposes, multiple object detectors were trained with synthetic
data to infer on real images captured inside a factory. Accuracy
values higher than 50% and up to 100% were reported for most
of the considered assets.

I. INTRODUCTION

Nowadays, smart robots in factories perform repetitive and
well-defined tasks while human workers supervise the whole
pipeline and guarantee a flexible industrial process [1]. To
successfully accomplish these tasks, Computer Vision (CV)
allows these robots to perceive and semantically understand
their surroundings, e.g. locating and identifying specific ob-
jects in a scene [2].

Early on, CV tasks were achievable by a 2-step process:
(i) applying a hand-crafted feature extraction algorithm [3]
followed by (ii) training a traditional machine learning model
on the extracted features [4]. Throughout the last two decades,
Deep Learning (DL) techniques surpassed the traditional 2-
step process in terms of accuracy and inference time [5].

Although these DL models learn to extract relevant features
from input images in an end-to-end manner, training them
requires capturing, storing and annotating large amounts of
images in comparison to traditional ML approaches [6].
Moreover, the acquisition of large image datasets, mainly in
industrial settings (e.g., factories) is becoming more challeng-
ing and critical [7] due to the following reasons:

• Excessive human effort is needed for manual image
capture, image preprocessing (e.g. cropping, filtering
out noisy images) and image annotation (e.g. bounding
boxes and pixel-wise segmentation).

• As stated by Ayle et al. [8], these tasks and more
specifically image annotation, are highly prone to human
error and subjectivity: “For instance, target objects might
be wrongly labeled when a human annotator is biased
to label one side of the target object, when it comes to
overlapped and close objects or to similar but different
scale assets”.

• Capturing images inside factories can be difficult due
to limited access for security (e.g. innovation and high

Fig. 1. Assets: (a) Cabinet (b) Stillage (c) KLT (Kleinladungsträger) Box
(d) Jack (e) Pallet (f) Fire Extinguisher (g) Smart Transport Robot STR (e)
Dolly

security areas), privacy [9] (e.g. human workers along
the assembly lines) or safety reasons (e.g. painting or
assembly lines, etc).

Synthetic image generation [10] can address the above
challenges while acquiring a large image dataset with the
desirable properties, e.g., multi-modality captures1 for various
scene conditions. Using a renderer such as Blender, Unreal,
Unity or NVIDIA Omniverse, it is feasible to control each
aspect that affects the image: lighting, camera position, assets
distribution and animation, noise, etc. Additionally, renderers
automatically generate various accurate annotations based on
the selected modalities [11]. However, one main challenge
arises with synthetic image generation: the “reality gap”, i.e.
the difference between real and synthetic images [12], [13].
The goal is to minimize this reality gap as it plays a major
role when training a DL model on synthetic images and using
it to infer on real ones.

Several synthetic datasets were proposed such as SYN-
THIA [14] for rural environments and autonomous driving,
NVIDIA’s FAT [15] and SIDOD [16] for detecting household
assets included in the Yale-CMU-Berkeley (YCB) household
asset lists [17], etc. On the other hand, these datasets are not
designed for industrial applications.

In our work, we generate a synthetic industrial dataset
for object detection in a production environment. We use
NVIDIA Omniverse to render our images using the latest
NVIDIA RTX GPUs for extensive light bounce calculations,
hence more photorealistic renderings. Following the Uni-
versal Scene Description (USD) pipeline [18], all scenes

1Imaging modality refers to the method in which an image is cap-
tured/generated. Each modal presents a different type of information e.g.
bounding box image, depth, segmentation, etc.



are constructed in collaboration with different 3D experts.
Our dataset contains 200,000 synthetic images captured and
annotated with 8 assets (see Figure 1) and more than 1 million
bounding boxes in 32 different scenarios. Furthermore, to
assess the usability of our synthetically generated dataset,
we first trained several DL-based single-class object detection
models by randomly selecting 3000 synthetic images per asset
for the training set. We then evaluated the DL models by
inferring over 300 real images captured in different industrial
settings. As a result, we achieve accuracies over 50% and up
to 100% for certain assets. To the best of our knowledge,
we are the first to generate, evaluate and publish a large
synthetic dataset with 200,000 images with 8 assets and 32
scenarios dedicated to the industrial field. The remainder of
this paper is organized as follows. In Section II, we discuss
some of the largest online datasets. The acquisition process
is detailed in Section III, while in Section IV, we present our
generated dataset composition. In Section V, we evaluate the
dataset to test its usability in several CV object detection and
recognition applications. We discuss possible future work in
Section VI.

II. RELATED WORK

In this section, we compare the latest real and synthetic
image datasets: Sections II-A and II-C are highlighting pop-
ular image datasets used in multiple fields. Sections II-B and
II-D are dedicated to specific industrial CV use cases.

A. Popular CV Real Image Datasets

CIFAR-100 [19] and MS COCO [20] are prominent CV
datasets. They cover more than 90 asset classes of daily life
facilities, various fauna and flora, and transportation means.
Despite their big size, they do not focus on industrial settings
making them unsuitable for industrial-specific applications.
Still, they are advantageous in transfer learning to share
common feature knowledge, and to enable industrial object
detection tasks with smaller datasets. ImageNet [7] is another
popular image database following the WordNet2 hierarchy
with over 100,000 synsets3, and an average of 1,000 images
per synset. Altogether, it provides tens of millions of well-
sorted images. As stated by Beyer et al. [21], the dataset is not
scalable anymore since it was human-annotated over the years
resulting in different class labels for the same object class. In
addition, a single label is assigned to each image instead of
multiple labels. Furthermore, ImageNet does not comply with
the recent data privacy and security policies [22] such as not
revealing human faces. To fix all glitches, ImageNet creators
are reproducing the dataset by running multiple scripts e.g.
obscuring existing information. This reproduction requires
more supervision and quality control to maintain the overall
usability and efficiency of the previous dataset version [23]–
[25].

B. Industrial Real Image Datasets

Apostolopoulos et al. [26] employed 6 different industrial
datasets to test their proposed modified version of the Virtual
Geometry Group (MVVGG19) network for classification
[27]. They focused on detecting defective casting [28], metal
sheet surfaces [29], magnetic tiles [30], and solar module cells
[31]. Additionally, two datasets focus on detecting concrete

2Lexical database of semantic relations between words.
3Group of semantically equivalent data elements.

bridge decks, walls and pavements [32], and 28 industrial 3D
objects with different surface, symmetry, complexity, flatness,
details, compactness and size, arranged in 800 scenes e.g.
cylinder, star, box, engine cover, car rim, etc [33]. However,
these datasets are non-generic since they consider specific
industrial use cases. Furthermore, they contain fewer images
than our dataset and have either low resolution or grayscale
images. In contrast, Luo et al. proposed a general benchmark
image dataset for industrial tool (ITD) [34] to detect different
shaped tools that are easily found in every industry. Mechan-
ical engineers hand-labeled 11,000 images in 8 categories.
Still, some of the categories are widely general e.g. the
protection tools category contains safety goggles, weld eye
protectors, and glove objects. Despite the different scenario
scenes, ITD focused on small size assets found on a tool
shelf or a workshop table only. According to the authors,
the dataset is a subject for future enhancement since the
mean average precisions vary between 64.37% and 78.20%.
In another study, Mayershofer et al. considered logistics-
specific objects such as pallets, small load loaders, stillages,
pallet trucks, and forklifts. The Logistics Objects in Context
(LOCO) dataset [35] contains 39,101 images where 5,593
are annotated with 151,428 bounding boxes. Out of these
151,428 bounding boxes, 120,000 refer to only one object
class, the pallet. Furthermore, many neural network models
are employed to pixelate employees’ faces and guarantee
their privacy. Even though different physical locations are
considered, they remain practically similar as they all consist
of warehouses with high pallet density. In addition, using
multiple hardware and recording methods resulted in some
blurry images that are subject of extra data cleaning and
additional image post-processing.

C. Popular Synthetic Image Datasets

The SYNTHIA dataset [14] contains over 213,400 syn-
thetic images (1280×980 px) in a Unity virtual metropolis,
comprising both random snapshots and video sequences.
9400 multi-viewpoints are used and there are 13 frequent
object classes in driving scenarios while changing seasons,
weather, and lighting conditions. Frames feature semantic
segmentation annotations at the pixel level as well as depth
images. The authors have found that the segmentation result
substantially improves when SYNTHIA is combined with
real image data [14]. However, bounding box annotations
are not included, making SYNTHIA not out of the box
useable for object detection use cases, and only dedicated
for outdoor, cityscape and driving scenarios. SIDOD [16]
comprises 144,000 pairs of stereo images, combining 18
camera views from 3 photorealistic virtual scenarios with
up to 10 out of 21 randomly selected household items from
the YCB 77 daily life model set [17]. SIDOD images are
generated using the NVIDIA Deep Learning Data Synthesizer
(NDDS), which is built on top of the Unreal Engine. It
renderes images with a higher frame rate then many others,
including various features such as: depth, stereo, 3D pose, full
rotation, occlusion, extreme lighting, segmentation, bounding
box coordinates, and flying distractors. It is intended for ob-
ject detection, pose estimation, and tracking applications use
cases. Compared to its predecessor (i.e., the Falling Things4

dataset [15]), SIDOD’s main scene assets and distractors are

4Falling Things (FAT) dataset is a synthetic household image dataset with
21 YCB assets dedicated for 3D object detection and pose estimation.



randomized at each frame instead of capturing a random
YCB asset during its falling animation in a static virtual
environment/background. However, SIDOD only considers
assets found in households such as a bowl and a tomato soup
can, making it unsuitable for industrial settings.

D. Industrial Synthetic Image Datasets

In addition to its real captured image dataset, T-LESS
[36] contains 10,000 3D synthetic images for 6D pose
estimation of textureless 30 rigid objects from 20 different
scenes. Each object is represented by two 3D models: the
first one is created using CAD and the second one is semi-
automatically reconstructed from RGB-D images using fast
fusion [37], a volumetric 3D reconstruction system. T-LESS
synthetic images vary from simple to complex scenes with
multiple instances and a high amount of occlusions and
clutter. Despite the benefits of photogrammetry [38] and 3D
scanning in providing highly realistic meshes, the whole
scene is exported as one single mesh without annotations.
As a solution, each asset component must be scanned
independently and merged to re-construct the product.
Otherwise, time-consuming post-processing is needed.
Mayershofer et al. [39] suggested a scalable automated
pipeline for synthetic image generation using Blender. The
pipeline has 3 main phases: first, a background is composed
of many random 3D objects and a background image to fill
the void gap between the objects. Second, target objects
and object-alike distractors are randomly placed within the
camera view. Finally, lighting and camera are randomly
set up. As a result, automatic annotation, segmentation,
and depth images are exported. The authors evaluated their
pipeline by detecting differently sized KLT boxes in real
images. They demonstrated that real image-based detectors
outperform their proposed synthetic image-based detectors.
Last but not least, the generation pipeline highly depends
on full randomization, hence additional work is needed to
minimize the domain gap between synthetic and real images.

III. DATA ACQUISITION APPROACH

A realistic rendering of a synthetic scene depends on
three attributes: geometry, material, and lighting. The lighting
affects the material which is assigned to the 3D model.
In addition, the quality of the image highly depends on
the assets’ quality and scene complexity. As a solution, we
use NVIDIA Omniverse as it satisfies the aforementioned
conditions.

A. Universal Scene Description

Our synthetic image dataset generation is inspired by Pixar
Animation Studios’ core graphics and rendering pipeline
[18]. A cinematic rendering is possible using the Universal
Scene Description (USD) framework. Each team working on
a specific area is only responsible for delivering, updating,
maintaining, and exchanging their complex assets or mate-
rials. These assets are then assembled to construct a parent
scene similar to the real environment.

B. 3D Mesh Modeling

USD is an open-source standard with wide industry adop-
tion. It is supported by companies such as Autodesk, Apple,
Blender, NVIDIA, etc. In parallel, NVIDIA Omniverse also
enables live collaborations between different applications e.g.

Fig. 2. Scenes content generation based on real industrial scenarios (a) real
captures (b) synthetic replication in NVIDIA Omniverse

3DsMax, Unreal, etc., that supports exporting in the USD
format. Therefore, as an advantage, it is not necessary to
re-model existing 3D assets e.g. whole factories, machines
and robots that have already been modeled in one of the
aforementioned digital content creation (DCC) software. Yet,
for the missing asset models, a 3D modeling team captured
industrial assets from different points of view and re-modeled
them using Blender.

C. Material Design

Inspired by the real asset surfaces and textures, the 3D
modeling team optimized manual photorealistic parametric
(or procedural) materials using Substance 3D Suite. As a
definition, a material layer on top of an industrial mesh allows
the user to identify what the object is made of. Compared to
the traditional UV unwrap materials, a parametric material
is better - like vector graphics are better than a raster image
- because, it ensures flexibility, modularity and reusability
while recording the procedural creation process instead of
saving the final texture file [40]. We distinguish between two
types of materials:

1) Fully procedural material: it does not require a lot of
resources, e.g. its file size is usually limited to only a
few kilobytes and it generates an 8K resolution image.
Only a few parameters are required: color, roughness,
metallicity, patterns, and surface relief.

2) Scan-based material: It provides the highest accuracy
and realism, yet less creative flexibility is possible and
more resources are needed because texture maps are
captured by material scanners.

Furthermore, our 3D modeling team adopted the Image
to Material AI tools provided by Substance Alchemist to
generate real-life inspired materials.

D. Lighting and Rendering

For a higher image fidelity, we use path-tracing [41] in-
stead of more simple global illumination algorithms because
factories are lit by many fluorescent tube lights and there
is much indirect lighting due to normally bright walls. This
diffuse lighting contributes a lot to the typical appearance
of (real) images captured in factories or warehouses. More
computation power (e.g. GPUs) is needed for more complex
scenes. As Omniverse supports multi-GPU systems we have
used two 24 GB RTX 3090 GPUs.



Fig. 3. Synthetic images of different industrial scenarios

E. Scene Content Generation

We add assets to our synthetically generated scenes by em-
ulating their setup and usage within a factory or warehouse.
Some scenes contain either a single asset (see Figure 3. 1-
4) or several ones (see. Figure 3. 5-8). Each asset might
also have either one instance (see Figure 3. a1, b2, c2,
b3, c3, a4) or multiple ones (see Figure 3. b1, c1, d1) in
a scene. Additional assets (e.g., electrical boxes, industrial
racks, whiteboards, office desks, etc.) were added to the sur-
roundings to ensure the scene’s randomness while capturing
images from different angles. Please refer to Section IV for
additional details.

F. Data Cleaning

One of the main advantages of synthetic image generation
is the ability to automatically acquire accurate annotations.
On the other hand, these annotations are sometimes over-
accurate to the pixel level where each image pixel is anno-
tated. As a result, small bounding boxes for far or mostly
hidden objects are generated. We noticed that these cases
might negatively affect the training accuracy of the object
detection models. Therefore, we cleaned our dataset by
removing the labels of barely visible assets and preserving
the clearly distinguishable ones: we removed bounding boxes
whose sizes are below a certain threshold.
Furthermore, generating thousands of synthetic images, es-
pecially in a small random space, might lead to similarities.
Hence, we implemented an algorithm that (i) hashes each
image into an 8x8 monochrome thumbnail, (ii) measures
the similarity between two hashes based on the Manhattan
distance and (iii) removes the images whose distance is below
a predefined threshold.

IV. DATASET STATISTICS

The dataset contains 200,000 images, automatically cap-
tured in 32 different scenes as presented in Figure 3. The first
16 scenes contain single asset scenarios, with a possibility of
having multiple instances per image. The rest of the scenes
are associated with real-alike factory representations with
multiple assets and multiple instances. For each image the
camera position and rotation are randomized. We render the
images in 720p resolution. In addition, we apply transforma-
tion domain randomization e.g. x and y axis position and z
axis rotation for some of the annotated assets.

Overall, our 200,000 synthetically generated images have
1,315,642 instances where each image contains on average
2 assets and 7 instances. As seen in Figure 4.a, the most
common assets are pallets (21.25%), dollies (19.50%), and
KLT boxes (16.01%) since they act as containers or holders
in a factory. Numerous KLT boxes can be found in a single
scene, due to their small size and use, hence the high number
of instances in Figure 4.b. As for the other assets (e.g., STR
in Figure 3.a7), each one is available in around 8.65% of
the complete dataset. In other words, the industrial assets are
not distributed in an equal manner due to their different sizes
and usage. Furthermore, 45.12% of the dataset consists of

TABLE I
PERCENTAGE OF DIFFERENT ASSET OCCURRENCE IN A SINGLE CAPTURE

Occurrence 1 2 3 4
Percentage 45.12% 14.72% 23.14% 10.72%
Occurrence 5 6 7 8
Percentage 4.25% 0.43% 0.53% 1.08%

single asset captures. However, it is possible to have multiple
instances of the same asset in the same image (see Table
I). Yet, less than 6.29% of the images include more than 5
assets.

Fig. 4. Dataset (a) object and (b) instance statistics

V. EVALUATION RESULTS

As mentioned before, we synthetically generated our
dataset to train DL models and perform object detection tasks
on real images. In the following section, we consider single-
class object detection models.

A. Training & Test sets

For each asset i.e., for each object detection model, we
randomly selected 3000 images from our synthetic dataset as
training set. For the test set, we captured 300 real images
in a factory and annotated them manually. These manually
annotated bounding boxes are considered the ground-truth
(GT) labels throughout our evaluation.



B. Architectures & Implementation details

We evaluate transfer learning based on the following ar-
chitectures for object detection tasks: FRCNN Resnet-50,
FRCNN Resnet-101 [42], [43], SSD Inception and SSD
Mobilenet [44]. All pre-trained models’ weights are based
on COCO [45]. We conducted our experiments5 on Tesla
V100-SMX2-16GB GPUs.

C. Evaluation metric

The IoU is a widely used metric for object detection
tasks. It is calculated by dividing the overlapped area by
its union between the GT and the predicted bounding-box.
An IoU threshold value determines if a prediction is TP or
FP. For instance, if IoU(GT,Pred) > IoUthreshold then the
prediction is considered a TP, otherwise it is a FP [8]. In
the following, we consider an IoUthreshold value of 0.5 and
report the Average Precision (AP) metric, i.e. AP@0.5.

D. Evaluation of the DL models on real industrial images

As mentioned before, we evaluate the DL models by infer-
ring over real images captured inside a factory. We achieve
an accuracy of 100% for the jack and the fire extinguisher
using the FRCNN Resnet-101 architecture (see Table II). We
noticed that FRCNN Resnet-50 is the best to detect stillages,
STRs, dollies and pallets with AP@0.5 of 69.90%, 89.93%,
and 48.60%, 46.98% respectively.

As for the other assets, we reached lower accuracy when
trying to detect a cabinet (36.39%) or a KLT box (22.17%).
As seen in Figure 2, these assets are not characterized by
a unique texture, shape, dimension or location and they are
usually either stacked or sided next to each other in factories.
Our dataset maintains the same 3D model in all images
in contrary to the evaluation datasets that include a larger
shape variation of our 8 assets. Therefore, the DL models
did not perform well when a group of cabinets, or a pack of
KLT boxes were homogeneously grouped without any clear
separation.

TABLE II
DIFFERENT AP@0.5 OBJECT DETECTION MODELS

Asset FRCNN SSD
Resnet-50 Resnet-101 Inception Mobilenet

Cabinet 18.84% 36.39% 33.85% 13.25%
Stillage 69.90% 68.55% 44.14% 31.86%
KLT Box 21.1% 22.17% 14.05% 2.19%
Jack 100.00% 100.00% 77.78% 58.31%
Pallet 36.87% 46.98% 24.69% 17.37%
Fire Ext. 80.65% 100.00% 50.00% 71.78%
STR 89.83% 86.25% 75.13% 42.72%
Dolly 48.60% 30.83% 31.31% 23.06%

VI. CONCLUSIONS

In this paper, we presented a dataset with 200,000 synthetic
industrial images for 8 commonly available assets in 32
different industrial scenarios. The dataset is divided into
single and multiple asset scenarios. Camera and main target
position randomizations are used to increase image diversity.
Furthermore, the computational power of NVIDIA RTX
GPUs enabled the use of path tracing to improve the render
fidelity. Afterward, we assessed our synthetically generated
dataset by training DL models for object detection purposes
and inferring on real captured industrial images. whereas

5For training purposes, we implemented the publicly available code on:
https://github.com/BMW-InnovationLab/BMW-TensorFlow-Training-GUI

FRCNN Resnet-50 has successfully detected stillages, STRs,
and dollies with over 50% accuracy. Cabinets, pallets and
boxes are considered complex and hard-to-detect assets as
they can be stacked or placed next to each other. Never-
theless, recognition accuracies are promising and subject for
future improvements. For complete access, please contact the
authors.

Future works may study the potential effects of do-
main randomization more carefully to further generalize
the dataset, for instance randomizing the camera imaging
sensor parameters, light spectral power, assets’ textures and
materials, assets’ shape variations, as well as light interaction
with different industrial translucent materials, etc. To support
this amount of variations, an automated pipeline is required.
Additionally, employing generative networks might decrease
the reality gap [12], [13] between real and synthetic images
in terms of image content and image quality. Furthermore,
comparing our models to real-based trained models could
explore this gap even further. Last but not least, increasing
the size of the real test dataset is necessary when considering
additional object classes.
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