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Abstract—The Filtered Backprojection (FBP) algorithm for
Computed Tomography (CT) reconstruction can be mapped
entire in an Artificial Neural Network (ANN), with the back-
projection (BP) operation simulated analytically in a layer and
the Ram-Lak filter simulated as a convolutional layer. Thus, this
work adapt the BP layer for DBT reconstruction, making possible
the use of FBP simulated as a ANN to reconstruct DBT images.
For evaluation, Structural Similarity Index Measure (SSIM) and
Peak Signal-to-Noise Ratio (PSNR) metrics were calculated to
measure the improvement of the images made by the ANN,
regarding a dataset containing 100 virtual breast phantoms to
perform the experiments. We shown that making the Ram-Lak
layer trainable, the reconstructed image can be improved in terms
of noise reduction. And, considering an additional post-filtering
step performed by Denoising Convolutional Neural Network
(DnCNN), it shown comparable and superior results than a state-
of-the-art DBT reconstruction method, averaging 37.644 dB and
0.869 values of PSNR and SSIM, respectively. Finally, this study
enables additional proposals of ANN with Deep Learning models
for DBT reconstruction and denoising.

I. INTRODUCTION

Digital Breast Tomosynthesis (DBT) is a radiographic imag-
ing technique, with acquisition of projections at limited angles
using a reduced dose of radiation. It aims to reconstruct tomo-
graphic slices from the inside of the breast, enabling the early
diagnosis of possible lesions and, consequently, increasing
the probability of a patient’s cure. However, due to the fact
that DBT uses low doses of radiation, the generated image
contains more noise than digital mammography. Although the
quality of the exam is directly related to the dose used, it is
expected that the radiation dose used in the exam will be as
low as possible, but still with sufficient quality so that the
diagnosis can be made, according to the As principle. Low As
Reasonably Achievable (ALARA). One of the important steps
to pursue the ALARA principle is tomographic reconstruction,
which consists of a software that generates the slices inside
the breast from a set of acquired 2D DBT projections. On the
other hand, Machine Learning techniques, especially neural
networks with deep learning, which have recently considerably
evolved the state of the art in several Computer Vision and
Image Processing problems, have adequate characteristics to
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be applied also in the reconstruction stage. Thus, this work
investigated a basic architecture of artificial neural network
with deep learning that is capable of reconstructing DBT im-
ages, especially focused on noise reduction. Still, considering
an additional filtering step using the Denoising Convolutional
Neural Networks (DnCNN) method after the reconstruction,
the proposed method was superior to a state-of-the-art DBT
reconstruction approach in terms of SSIM (Structural Simi-
larity Index Measure) and PSNR (Peak Signal-to-Noise Ratio)
using data from virtual DBT specimens, reaching values of
37.644 db in PSNR and 0.869 in SSIM.

II. RELATED WORKS

In this section the methods for DBT Reconstruction will
be introduced. Basically, there are three categories of methods
based on machine learning for tomographic reconstruction [1]:
a) Learned Iterative Scheme (LIS); b) Learned Regularizer
(LR) and; c) Learned Denoiser (LD).

The LIS approach is the basic tomographic reconstruc-
tion scheme, they are methods simulating backprojection and
forward projection processes. The LD approach comprise
methods focused on denoising problem of tomographic data,
applying some approach in some step of reconstruction process
(projection or reconstructed image). Therefore, this approach
uses a conventional reconstruction algorithm, like FPB, acting
like a pre- or post- processing to improve the final image.
Finally, the methods in LR approach aims to learn a regu-
larization term from a set of tomographic data, using some
reconstructing equation.

The work of Ref. 2 is in LIS approach, because this imple-
ments the FBP algorithm in an ANN architecture using fan-
beam CT projections. The main idea is to increase the inter-
pretability and facilitate combine others layers (like denoising
layers) and/or approaches to improve the final image quality.
Thus, this implementation has no trainable parameters. An
extension for cone-beam was published. The authors proposed
another layer to move their method from fan-beam CT to cone-
beam CT 3. In this extension, the method uses 2D projections
as input data, a layer for Parker weights [4] to correct 2D
projections, and, finally, a layer for 2D cosine weighting.



The work made by Ref. 5 fall in the LIS approach, because
the proposed method uses Convolutional Neural Network
(CNN) and Reinforcement Learning (RL) to find the best
parameters of reconstructions made by the Total Variation
(TV) method, using fan-beam computed tomography. The
TV uses several parameters that can result in non-optimal
results if manually chosen. However, using this approach, this
method overpass this manually limitation using a ANN to
automatically choose the TV parameter.

In the LR approach, Ref. 6 uses a Convolutional Neural
Network (CNN) with Residual Learning [7] and deconvolution
[8] as a regularization function, avoiding the need to manually
select one. Unlike most approaches that uses Machine Learn-
ing in tomographic image reconstruction, Ref. [6] do not use a
dataset containing tomographic images to train its architecture,
but the COCO [9] dataset, containing approximately 80,000
images of photographic objects, such as animals, people, cars,
etc. However, the use of this dataset is justified because the
architecture proposed by Ref. [6] aims to eliminate the noise
present in the images, preserving the characteristic structures
of tomographic images. Their experiments revealed that the
resulting ANN reduces noise, blur and preserve the structures
of tomographic images.

The authors of 10 propose a LR approach that simulates
the Fields of Experts (FoE) [11] regularization function as an
ANN. They replaced the main terms of the FoE equation with
an ANN that uses convolutional layers. They used an iterative
approach to reconstruction, such that, in each iteration, the
reconstruction of the previous stage is added to the estimated
reconstruction of the current stage, making the proposed
ANN categorized by the authors as a recurrent CNN. In
their tests, using CT images, the proposed approach obtained
better results compared to traditional methods of tomographic
reconstruction.

In turn, for the LD approach, it can be cited the work of
Ref. [12] that proposes to use Adversarial Neural Networks
(GAN) [13] to simulate our perception of good CT images,
which was determined using Wasserstein distance and percep-
tual similarity, defining a loss function. The authors argue that
other Deep Learning-based filtering approaches that use the
Mean Squared Error (MSE) cost function improve the image
in terms of PSNR, but can hide important structural details.

III. METHODOLOGY

This section describes the operator written by Ref. 3 (Sec-
tion III-A) and the modifications made by this work to propose
the new operator to reconstruct DBT images (Section III-B).

A. Fundamental step: modeling backprojection as an ANN
layer

As described by Ref. [14], analytical reconstruction of CT
images using parallel beam can be described as

f(x, y) =

∫ π

0

p(u, θ) ∗ h(u)|u=x∗cos(θ)+y∗sin(θ)dθ, (1)

where f(x, y) is a voxel in the reconstructed image, p(u, θ) is
the projection value detected at the position u in an acquisition
angle θ, ∗ is the operator of convolution and h(u) is the
discrete Ramp Filter [14]. In this way, a set of projections
p(.) can be reconstructed into a volumetric image f(.).

However, it is possible to use an optimization method
to perform the reconstruction of tomographic projections,
resulting in an iterative method, in which the solution of the
problem (i.e., the reconstructed image) is provided by finding
the minimum point of a given function L(f). This function
can be defined by a subtraction of the reconstructed image
projections from the original projections acquired from the
imaged body, and may be written as [3]

L(f) =
1

2
||Af − p||22, (2)

where A ∈ RM∗P is the forward projection transform (Radon
Transform) [15], f ∈ RN denotes the expected reconstruction,
M is the number of pixels in the projection (size detector), P
is the number of projections and N is the number of voxels
in the reconstructed image.

Is possible to follow the inverse direction of gradient of
Equation 2, in relation to the variable f , and find the desired
reconstruction, mathematically defined by [3]

∂L(f)

∂f
= 0, (3)

whose tomographic reconstruction problem can be obtained by
the solution of the system in Equation 2, leads to the following
equation to obtain f [3]

f = AT (AAT )−1p. (4)

Alternatively, the reconstruction of tomographic images can
be written according to the following operators. Since the A
operator represents the Radon Transform, the reconstruction
can be written by [3]

f = ATbpCp, (5)

where ATbp is the back projection operator, and C is a convolu-
tion operator to filter the projections p with the discrete ramp
filter h(u). So, it can be observed that ATbpC corresponds to
the term (AAT )−1 of Equation 4 [3].

Following the definition presented by [3], a completely
connected layer of any ANN can be represented by the
following equation [3]

xi+1 =Wxi, (6)

where xi+1 is the layer output, xi the layer input and W is
an array containing the layer weights adjusted in the training
step. In the case of CT image reconstruction, the ATbp operator
could be mapped to a fully connected layer. Thus, the W
array would have N ∗M ∗ P parameters, which could make
its implementation unfeasible due to the high memory cost
[3].



However, Ref. 3 implemented a specific layer for this
operator as the analytical backprojection. Although this is
a Fully Connected Layer, this has no trainable parameters,
making its implementation feasible. This new layer aims to
equate the value of W with the computation of ATbp.

Furthermore, the Ref. 3 also proposed other layers to act
joint with the backprojection to simulate the entire FBP
method. This layers are before the backprojection layer and
adapts the method for the cone-beam input data, in addition to
perform filtering or other operations directly in the projection
domain. So the error that will be passed back can be written
as [3]

el−1 =WT el, (7)

el−1 = (ATpb)
T el = Apbel, (8)

where e1−1 is the error fetched from the backprojection layer
and el is the error resulting from the underlying layer. This
allows the feedfoward and backfoward step to be calculated
efficiently.

B. ANN-DL model to DBT from CT

Just as done by Ref. 3, is possible use the Equation 5
and add more operator to deal with the two-dimensional
CBCT projections. Then, the reconstruction of cone-beam CT
(CBCT) can be written as [3],

f = ATcbC2DWred2DWcos2Dp, (9)

where ATcb is the backprojection operator for CBCT projec-
tions, C2D is a convolution layer that simulates the discrete
ramp filter for two-dimensional projections, Wred2D is a layer
that implements Parker [4] weighting to handle redundant
projections, Wcos2D is a two-dimensional cosine weighting of
the projection data p, also implemented as a layer. The Figure
1 illustrates the ANN architecture given by Equation 9.

In this sense, it is possible to use the same concepts to
enable DBT images to be reconstructed as well. Starting from
Equation 5, it is possible to reach the operator equation that
describes the reconstruction of DBT images as

f = ATdbtC2DWred2DWcos2Dp, (10)

where ATdbt is the backprojection operator for DBT projections.
Figure 1 illustrates an ANN architecture given by Equation 10.

The difference in the ATcb and ATdbt operator is how pro-
jection pixels are summed to result the voxel of the final
reconstructed image. While the former considers the projec-
tions acquired through a cone beam ray, the latter considers
a truncated cone beam ray, as well as the specific geometry
of the DBT system. To avoid negative values in the final
reconstructed image, the ReLU activation function was added
at the end of the architecture.

Implementation of FBP for DBT normally not use the
Parker weights [16], [17], but it was decided to keep the
operator Wred2D in Equation 10 as a trainable layer initialized

as Parker weights to verify in the experiments if the training
step can adapt the initial values for a layer more suitable to
DBT reconstruction.

However, the basic proposed ANN architecture for DBT
reconstruction do not consider the operator Wred2D , being
described by the following equation

f = ATdbtC2DWcos2Dp, (11)

in which is visually presented in Figure 2.
It is important to emphasize that the ANN architectures

implemented from Equations 10 and 11 have only one layer
with adjustable parameters, the Wred2D layer, initialized with
Parker weights, and C2D layer, initialized with ramp filter,
respectively. These parameters will be modified by the training
step to achieve better results in noise reduction of the final
reconstruction.

Lastly, in the next Section, experiments will be carried out to
verify the efficiency of these architectures in noise reduction.

IV. EXPERIMENTS AND RESULTS

Following the 2 ANN-DL architectures presented in last
section (Parker and Ram-Lak Architecture), this section will
evaluate the ability to reduce noise in DBT images. In sub-
section IV-A, the dataset is described. In Subsection IV-B, the
experimental evaluation is detailed. In the Subsection IV-C,
the results are presented.

A. Dataset

To evaluate this work, we used a software named OpenVCT
to generate 100 simulated phantoms. This software allows the
generation of virtual phantoms very similar to real breast im-
ages, including internal injuries, structures, mechanical com-
pression, and specifics details of the DBT scanners geometry.
For the evaluation phase, this work used the Hologic geometry,
that is, for each phantom, 15 projections were made by a
hypothetical radiation source that moved within an angular
range of −7.5 to +7.5 above the breast. The distance from
detector to radiation source is 700mm. In order to compare
the capability of model to remove noise from images, the
OpenVCT can generate noisy and noise-free projections from
a virtual phantom. In case of noisy DBT projections, a Poisson
noise model was simulated.

Therefore, for each of these 100 phantoms, noisy and noisy
free version of the projections are available. Each volume must
contain 64 slices with dimensions 2048×1792 voxels and 1mm
of thickness.

B. Experimental Setup

The dataset composed of the 100 virtual phantons were
divided into three subsets: (i) a training set, containing 79
samples; (ii) a validation set, containing 1 sample and; (iii)
a test set, containing 20 samples. Then, the proposed ANN-
DL architectures were trained using the training set and the
validation set, the latter for early stop. Each sample in the
dataset is composed of (a) a set of noisy projections of the
phantom and (b) expected DBT volume, i. e., DBT slices



Fig. 1: This architecture can use the layer AT
cb or AT

dbt (gray blocks). If the former layer is used, the final architecture represents the Equation
9, proposed by Ref. 3 for CBCT. If the latter layer is used, the final architecture represents the Equation 10, proposed by this work.

Fig. 2: ANN architecture for DBT reconstruction without using Ram-Lak weights. Adapted from Ref. 3.

reconstructed from noise-free projections, which is obtained
from FBP method. The architectures proposed in Section III
would be able to map noisy reconstructions to their noiseless
versions.

For proposal evaluation, the trained networks received as
input a set of noisy projections of a certain phantom in the
test set, generating the volume. This volume was compared
with the volume reconstructed by FBP from correspondent
noise-free projections of that phantom in terms of quantitative
and visual evaluation. For quantitative evaluate were calculated
the Peak Signal-to-Noise Ratio (PSNR) [18] and Structural
Similarity Index Measure (SSIM) [18]. It is important to
inform that the figures in visual analysis were submitted to a
linear adjustment for better viewing, but the SSIM and PSNR
measures were calculated without this adjustment.

In addition, the results of the proposed methods were
compared with: (a) FBP reconstruction; b) a combination
of ANN-DL with DnCNN [19] for denoising slices; c)
FBP reconstruction from filtered projections using Non Local
Means (NLM) applied on Anscombe Domain [20]; d) FBP
reconstruction from filtered projections using Block Matching
and 3D Collaborative Filtering (BM3D) [20], state-of-the-art
method for a complete DBT reconstruction process.

For running the experiments, a machine equipped with a
12GB Tesla K80 GPU, 6 GPUs and 54GB of memory was
used. However, due to the high computational cost, only the
center slice (32th slice) was used in the experiments.

Finally, the proposal was implemented by using the Ten-
sorflow framework [21] and adapting to DBT the source code
available for CT [3].

C. Results

Following the experimental methodology detailed in Sec-
tion IV-A and IV-B, results were generated to evaluate the
Parker Architecture (Equation 10), detailed in Section IV-C1,
and Ram-Lak Architecture (Equation 11), detailed in Sec-
tion IV-C2. Section IV-C3 analyzes and compares the in-
fluence of the proposed architectures when applying a post-
reconstruction and pre-reconstruction denoising method.

1) Parker Architecture: According to Equation 10, in this
architecture, the only trainable layer is Wred2D (Figure 1). The
training was carried out with the learning rate (LA) LA = 1,
using the training set and the validation set (to early stop).
The training time was approximately 12 hours.

After the training, the samples of the test set were submitted
to the trained Parker Architecture and the values of SSIM and
PSNR were calculated, whose mean and standard deviation
are shown in Table I, in the row Parker Architecture. The row
FBP shows the results for the FBP reconstruction method. The
values were calculated on segments of 300× 550px extracted
from interior of breasts, to prevent the black background
interfering with the results.

Evaluating the Table I, it is possible to notice the worsens
in the PSNR and SSIM values, which can be confirmed
by visually evaluating a sample of the test set as displayed
in Figure 3a. In this Figure, it is observed that there are
predominance of artifacts (vertical lines) in the right half of
the sample. This shows that the Wred2D layer was not able to
learn the parameters needed to properly reconstruct the DBT
projections. That can makes sense, since the Parker weights
were developed for image reconstructions with projections
acquired over a wide angular range. In this way, the results
show that changes in Parker weights in the training stage were
not able to result in a suitable reconstruction.



(a) Noisy segment (b) Phantom filtered by Ram-Lak Architecture +
L1.

(c) Phantom filtered by Ram-Lak Architecture +
L2.

Fig. 3: Reconstructions using Parker [4] weighting.

However, it is also possible to note that the use of the origi-
nal Parker [4] weighting causes an incorrect reconstruction of
the DBT images as displayed in Figure 3b. It can be noted
a incorrect light distribution in the phantom, in comparison
with the reconstruction made without the Parker Weighting as
displayed in Figure 3c.

SSIM PSNR
FBP 0.396 ± 0.021 26.931 ± 0.18

Parker
Architecture 0.202 ± 0.009 21.162 ± 0.273

Ram-Lak
Architecture + L1 0.456 ± 0.0155 28.054 ± 0.131

Ram-Lak
Architecture + L2 0.446 ± 0.0184 27.827 ± 0.186

TABLE I: Experimental results for reconstruction methods.
2) Ram-Lak Architecture: According to Equation 10, in this

neural architecture, only the C2D layer is trainable (Figure
2). The training step was carried out with the learning rate
LA = 1 ∗ 10−9. The training time was approximately 1 hour.

After the training step, the samples of the test set were
submitted to the Ram-Lak Architecture and the values of SSIM
and PSNR were calculated, which are displayed in Table I.
The FBP row shows the results for the FBP reconstruction
method, the Ram-Lak Architecture + L1 row shows the results
of the trained architecture using the L1 cost function, and
the Ram-Lak Architecture + L2 row shows the results of the
trained architecture using the L2 cost function. The values
were calculated on segments of 300 × 550px extracted from
interior of breasts, to prevent the black background interfering
with the results.

When analyzing the Table I, it can be noted that Ram-
Lak Architecture + L1 presented a better result than FBP
and Ram-Lak Architecture + L2. For a qualitative evaluation,
Figure 4a shows a noisy segment from a test set phantom
reconstructed by the FBP method, Figure 4b shows the same
segment reconstructed by Ram-Lak Architecture + L1, Figure
4c shows the segment reconstructed by Ram-Lak Architecture
+ L2 and Figure 4 shows the ideal segment (no noise). It
is possible to observe that Ram-Lak architecture achieved a
improvement in term of noise, but still far from the ideal result.

3) Denoising: In the previous Subsection, it can be seen
that Ram-Lak Architecture + L1 presented better results than
the traditional FBP reconstruction. However, the result was
still inferior to the ideal image. In this way, this Section eval-
uate if the image reconstructed via Ram-Lak Architecture + L1

shows improvement when filtered by a denoising approach in
comparison to the same image reconstructed by the FBP and
filtered by the same denoising method.

SSIM PSNR
BM3D+FBP 0.396 ± 0.021 37.102 ± 0.334
NLM+FBP 0.636 ± 0.009 31.91 ± 0.160

FBP+DnCNN 0.864 ± 0.010 37.412 ± 0.623
Ram-Lak

Architecture + L1 + DnCNN 0.869 ± 0.010 37.644 ± 0.521

TABLE II: Experimental results for denoising methods.

The chosen denoising method was Denoising Convolutional
Neural Networks (DnCNN) [19], which uses convolutional
layers to map an image on its initial noisy state to a final
state without noise. The method was trained separately, after
the image reconstruction, as post-denoising method, as seen
in Figure 5. For DnCNN training, the simulated dataset was
divided into a training set, containing 80 samples, and a test
set, containing 20 samples. Due to computational costs, a
region of interest (RoI) of 180 × 180px from the inside of
the breast was used for training and testing.

The Block Matching and 3D Collaborative Filtering
(BM3D) [22] and Nonlocal Means (NLM) [23] denoising
methods were used for comparison to DnCNN. They were
applied to the 15 projections before reconstruction via FBP,
namely BM3D+FBP and NLM+FBP here, respectively. The
Anscombe transform was performed before applying the
method, and its inverse was applied after denoising, as done
by Ref. [24] and illustrated in Figure 6. The use of Anscombe
transform is necessary to stabilize the Poisson noise of the
projections, such that projections in Anscombe Domain are
approximately corrupted by a Gaussian noise, with mean 0
and unitary variance [25].

In Table II, we find the mean and standard deviation of the
SSIM and FBP values for the 180×180px segments extracted
from the samples in the test set. The rows BM3D+FBP and
NLM+FBP show the result for pre-denoising using, respec-
tively, the BM3D and NLM denoise algorithms. The rows
FBP+DnCNN and Ram-Lak Architecture + L1 + DnCNN
show the results for post-denoising using, respectively, the
DnCNN applied after reconstruction via FBP and the DnCNN
applied after reconstruction via Ram-Lak Architecture + L1.

In Table II is shown that the Ram-Lak Architecture + L1

+ DnCNN overpass the BM3D+FBP and NLM+FBP in terms
of both SSIM and PSNR. In comparison with FBP+DnCNN,
it achieved a little improvement.

For visual inspection, Figure 7 shows reconstruction results
of an image segment of a phantom in the test set: (a)
noisy (FBP result), (b) BM3D+FBP result, (c) NLM+FBP,
(d) FBP+DnCNN, (e) Ram-Lak architecture + DnCNN, (f)
ideal, noise-free segment. It can be observed that denois-



(a) Noisy segment (b) Phantom filtered by Ram-Lak Ar-
chitecture + L1.

(c) Phantom filtered by Ram-Lak Ar-
chitecture + L2.

(d) Ideal phantom

Fig. 4: Comparison of a phantom from test set with a highlighted segment.

Fig. 5: DBT reconstruction followed by a denoiser.

Fig. 6: Anscombe Transformation scheme for filtering in projections.

ing performed by BM3D+FBP reduced the noise and pre-
served the details, while the denoising by the NLM+FBP
still achieved a high noise level. In turn, denoising performed
by FBP+DnCNN reduced the significantly noise more than
BM3D+FBP, but can be observed that some details were
blurred in comparison with BM3D+FBP, even though the
values of SSIM and PSNR were better (Table II). It is also
observed that the denoising performed after the reconstruction
by the Ram-Lak Architecture + L1 + DnCNN presents an
increase in noise reduction in comparison with FBP+DnCNN.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, two artificial neural network models were
developed and evaluated for DBT reconstruction problem. The
first model named, Parker Architecture (Section IV-C1), were
not able to improve the image of DBT, unlike what happens
with CT images [3]. The second model, named Ram-Lak
Architecture (Section IV-C2), achieved the best results in the
experiments in terms of PSNR and SSIM.

This enabled the additional analysis present in Section
IV-C3, which compares several additional filtering approaches.
In that Section, it was seen that the use of Ram-Lak Ar-
chitecture achieve the best results when used together with
a denoising approach (DnCNN applied on reconstructed im-
ages), being quantitatively superior to a state-of-the-art DBT
reconstruction approach (FBP reconstruction from filtered pro-
jections by BM3D) [20], mainly in terms of PSNR. However,
the Ram-Lak Architecture achieved subtle inferior results
when qualitatively analyzed. It may have been caused by the
ANN-DL hyperparameters and the limited dataset used. So,

additional experiments for a further evaluation of the ANN
hyperparameters can be explored in a future work.

Finally, possible extensions of this paper includes also: a)
use DBT clinical data for evaluation; b) analysis of Parker and
Ram-Lak trainable layers before and after training; c) join and
evaluation of Ram-Lak architecture with DnCNN in a only
one ANN-DL for DBT reconstruction; d) comparison with
other traditional and machine learning DBT reconstruction
methods; e) use of a bigger dataset; f) add a filtering step in a
pre-reconstruction stage of Ram-Lak architecture + DnCNN,
performing a double denoising [20] in DBT.
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