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Abstract—Neural networks have achieved high degrees of accu-
racy in classification tasks. However, when an out-of-distribution
(OOD) sample (i.e., entries from unknown classes) is submitted
to the classification process, the result is the association of the
sample to one or more of the trained classes with different
degrees of confidence. If any of these confidence values are
more significant than the user-defined threshold, the network will
mislabel the sample, affecting the model credibility. The definition
of the acceptance threshold itself is a sensitive issue in the face of
the classifier’s overconfidence. This paper presents the Generic
Coupled OOD Detector (GCOOD), a novel Convolutional Neural
Network (CNN) tailored to detect whether an entry submitted to
a trained classification model is an OOD sample for that model.
From the analysis of the Softmax output of any classifier, our
approach can indicate whether the resulting classification should
be considered or not as a sample of some of the trained classes. To
train our CNN, we had to develop a novel training strategy based
on Voronoi diagrams of the location of representative entries in
the latent space of the classification model and graph coloring.
We evaluated our approach using ResNet, VGG, DenseNet, and
SqueezeNet classifiers with images from the CIFAR-10 dataset.

I. INTRODUCTION

The classification problem is the task of assigning data
samples to categories or classes. For a supervised classifica-
tion model to learn to predict outcomes accurately, it needs
representative training examples for each of the target classes
and be able to adapt whether the statistical properties of
the classes change over time. Otherwise, when the classes
change in unforeseen ways, samples drift from the distribution
learned, or samples are from an unknown class, a. k. a. out-of-
distribution (OOD) samples, the model may produce incorrect
outcomes with high degrees of confidence. Identifying whether
a classification model can classify a data entry correctly can
reduce type I errors, indicate the need to retrain the model
or support continuous adjustment of the learned distributions.
In this work, we are interested in identifying OOD samples
rather than concept or data drift.

The identification of samples from unknown classes is
related to the anomaly detection problem since anomaly refers
to something that is out of expectation [1]. In data streams,
the interest in recognizing samples from unknown classes is
due to the need for a continuous update of the predictive
model as new data is presented [2]. In this context, changes
can either characterize concept drift or concept evolution. The
latter occurs when a new class needs to be learned. Techniques

that work with data streams are usually also interested in per-
forming continuous adjustment of the classification model [3].
For this, the hypothesis of a new class requires an expressive
set of samples that corroborate its existence.

The OOD detection problem has been addressed using the
analysis of data produced during the classification process.
More specifically, in models based on neural networks, metrics
concerning data produced by hidden layers [4], [5] and the
gradient [6] were proposed to identify input entries related
to unknown classes. The drawback of those approaches is be
tailored to the classification method on which they were built.

We present a single-sample OOD detection approach that,
after trained, can be applied to virtually any classifica-
tion method that produces class probability distributions
for the given samples. Our Generic Coupled OOD De-
tector (GCOOD) consists of a Convolutional Neural Net-
work (CNN) that receives as input only the Softmax output
of any classifier and accurately indicates whether such classi-
fication result is related to a sample of some of the modeled
classes. We also propose a novel training strategy for OOD
detectors based on coloring Voronoi diagrams modeling the
relative location of representative class entries in the latent
space. We evaluated our approach with experiments on image
classification, using ResNet [7], VGG [8], DenseNet [9], and
SqueezeNet [10] classifiers and the CIFAR-10 dataset [11].

The main contributions of this work are: (i) a new CNN-
based OOD sample detection model; and (ii) a new method-
ology for training OOD detection approaches.

The remaining part of this paper is organized as follows. In
the next section (Section II) we deal with the foundations of
our work providing a succinct outline of the state of the art
and our motivation. After that, in Section III, we describe our
proposed GCOOD method in detail. Subsequently, in Section
V we analyze GCOOD from an experimental point of view.
Finally, Section VI puts forward our conclusive remarks about
the work and outlines lines of future work.

II. RELATED WORK

Various papers deal with OOD detection in the Machine
Learning (ML) and Pattern Recognition (PR) areas. Much of
them proposing scores to measure abnormal samples. Oberdiek
et al. [6] proposed gradient metrics to measure the uncertainty
of CNNs and related large metric values to OOD samples.
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Fig. 1. Schematic representation of GCOOD. It is a sequential neural network consisting mainly of convolutional (Layerl) and fully connected (FCl) layers.

Lee et al. [4] presented metrics that can be applied to any
pre-trained classifier to detect OOD samples and adversarial
attacks. Hendrycks et al. [12] proposed an unsupervised metric
based on Area Under the Receiver Operating Characteristic
(AUROC) curve. Also, Sastry and Oore [5] used Gram ma-
trices to represent the intermediary layers of a classifier CNN
to catch possible clues of a new class. All those methods rely
on data produced by hidden layers of the network.

The detection of minor variations in in-distribution samples
is a more complex problem, referred to as novelty detection.
Novelties are closely related to in-distribution data, especially
to unknown information during training [13]. Sabokrou et
al. [14] and Pidhorskyi et al. [15] proposed adversarial autoen-
coder architectures for outlier detection, where the autoencoder
improves the discriminator performance by enhancing inlier
results and deviating the outliers. Akshaya and Kala [16]
proposed a sided CNN as a new class detector. Their approach
is similar to our OOD detector, but it does not use the Softmax
output of classification models as input. Instead, it only uses
the probability estimated for the most likely class to judge the
sample. The quality of the method proposed by Akshaya and
Kala is not evaluated in their work. Our OOD detector uses
the entire Softmax output of a pre-trained classification model
to predict the need for a new class for the given sample.

Concept Drift detection is a problem related to OOD detec-
tion. There is a concept drift when a domain has adapted over
time, causing initially noisy data to become valid data [17]–
[20]. Although our work does not directly deal with possible
domain changes this is a future direction of exploration.

Another related concept is underspecification [21] which is
a challenge for the credibility of ML applications. This is a
cornerstone and severe problem that has often been left aside
in ML practice. ML models often exhibit an unexpected poor
behavior when deployed in real-world domains even after a
properly designed and curated optimization (training) phase.
This ambiguity can lead to instability and poor model behavior
in practice and is a distinct failure mode from previously
identified issues arising from the structural mismatch between
training and deployment scenarios. This phenomenon is severe
in many key application domains (see [21] for a list of known
cases). One way to cope with underspecification is to enhance

predictive models with the capacity to express what degree
they correctly model or not different parts of the input domain.
In that regard, the GCOOD proposal addresses that issue by
coupling a predictive model with an OOD detector.

III. GCOOD: THE PROPOSED OOD DETECTOR

Our proposal consists of a generic OOD detector coupled
with any classification model that produces Softmax-based
vectors of class probabilities. At inference time, GCOOD can
tell whether the class probability distribution produced by the
classifier for a given input data entry suggests the need for a
new (not previously seen) class.

From the architectural point of view, GCOOD is a binary
multi-layer perceptron neural network implemented using con-
volutional layers and fully connected layers. Its prime goal is
to identify input samples that should be classified as OOD
entries. Our network expects as input a 1-dimensional array
X = (x1, x2, · · · , xK) of size K consisting of the probabil-
ities xi of a data entry to be classified as the i-th class
considered by some classification model. Therefore, xi ∈ [0, 1]
for all i ∈ {1, 2, · · · ,K}, and

∑K
i=1 xi = 1. As illustrated in

Fig. 1, our network has one pre-processing layer (Sort),
N convolutional layers (Layerl), M fully connected lay-
ers (FCl), and one output layer (Out). The values of N and M
may vary according to the size of X . In our experiments, they
are obtained by hyperparameter tuning. Refer to Section V
for details. The output of our network is a tuple Y = (y1, y2),
where y1 > y2 indicates that X came from an OOD sample.

The pre-processing layer sorts the xi entries in X ascend-
ing, producing the array X ′ = (x′1, x

′
2, · · · , x′K), such that

x′i ≤ x′i+1. This operation is necessary to reduce the variability
in the input data. Each Layerl applies a 1-dimensional
convolution over the input signal of the layer, with kernels
of size 1, stride of 1, bias, and no padding to keep input
and output with the same size, followed by batch normal-
ization with momentum 0.1, and ReLU activation function.
Although we have implemented Layerl as convolutional
layers, these layers behave like fully connected layers that
receive C(l)

in input channels and produce C(l)
out output channels.

Here, l is the index of the l-th layer. Thus, C(1)
in = 1 and

C
(l)
in = C

(l−1)
out , for l > 1. To guarantee the fully-connected



Stage I

Estimating the Latent 
Space Organization

• Perform PCA of the
latent space

• Compute the Voronoi diagram 
of the class locations

• Perform cell coloring of the 
Voronoi regions

Stage II

Training “Incomplete” 
Classification Models

• Use Voronoi cell colors to 
create subsets of 
known/unknown classes

• Train one instance of the 
classification model over each 
subset of known classes

Stage III

Supervised
OOD Detector Training

• Use annotated Softmax
vectors as input for training

• Train the OOD detector

Dataset

Fig. 2. Overview of the proposed training strategy for OOD sample detectors. Refer to Section IV for details.

behavior, the number of output channels of the convolution
operation performed by the l-th layer is set to KC

(l)
out , and

we use grouped convolutions with C
(l)
in groups. For sake of

simplicity, in our experiments we have used the same number
of output channels for all simulated fully connected layers,
i.e., C(l)

out = Cout for all l ∈ {1, 2, · · · , N}, and have found Cout
by hyperparameter tuning. The reasoning behind simulating
fully connected layers instead of using standard convolutions
is that unlike images, where the local analysis promoted by
convolutions helps to identify texture patterns, the analysis of a
probability vector requires global inspection of the distribution
of probabilities. Furthermore, ML frameworks do not usually
implement modules for dense layers that produce outputs with
a different number of channels than input.

After applying all the Layerl layers, the resulting features’
vector of size K and KC

(N)
out channels is flattened into a

vector with K2C
(N)
out elements and one channel, which is

processed in turn by a sequence of FCl layers. Each FCl layer
applies a linear transformation to the incoming data, keeping
the number of features equal to the layer’s input, followed
by batch normalization with momentum 0.1. During training,
FCl also applies dropout with probability p. Finally, the
Out layer applies a linear transformation followed by batch
normalization and the Logistic Sigmoid function, producing
the resulting tuple Y . All linear transformations include bias.

IV. THE PROPOSED TRAINING METHODOLOGY

A common practice described in the literature is to train a
classification model using some dataset (e.g., CIFAR-10) and
verify the OOD detector’s ability to identify whether inputs of
different classes from other datasets (e.g., MNIST) as OOD
samples. This methodology is usually applied in both the
training and test stages of the OOD detector model. However,
this practice has three main issues:

1) Using very different datasets (e.g., CIFAR-10 and
MNIST) can lead to a biased quality assessment, favor-
ing the evaluated OOD detector. In real world, unknown
class entries might not be as different as expected.

2) Using datasets having entries similar in nature but with
different classes (e.g., CIFAR-10 and CIFAR-100) can
lead to choosing classes from the second dataset that are
supposed to be OOD but in practice may have overlap-
ping semantics with classes from the first one. Such an
overlap would also lead to bias in the assessment.

3) Using a single dataset with the naive separation of some
classes to serve as OOD data can lead to problems
similar to those pointed out in previous items.

Our strategy for choosing from a dataset which classes will
be used to train the classification model and which ones will be
the source of OOD samples while training the OOD detector
prevents the three aforementioned issues. Fig. 2 illustrates the
main stages of the proposed methodology. In the first stage
(Section IV-A), we take a dataset (e.g., CIFAR-10). Then, we
train the classification model (e.g., ResNet-152) considering all
the classes. The intrinsic organization of latent space of the
trained classification model serves as a reference to choose
which classes can be considered OOD without jeopardizing
their semantic separation from other classes. Such an approach
solves issues (2) and (3). By using one dataset, we naturally
solve issue (1). In the second stage (Section IV-B), we train
different instances of the classification model, considering for
each of them a subset of classes that were securely kept in
the dataset and using the removed classes as a source of OOD
samples. By training more than one classifier instance, we
mitigate the bias of choosing a single subset of OOD classes
and a single classification model. In the last stage of the
proposed methodology (Section IV-C), we compute probability
vectors by applying the trained classification model instances
on dataset entries from their known and unknown classes. We
use this new annotated dataset of OOD and non-OOD samples
to train and test our OOD detector.

A. Estimating the Organization of the Latent Space

The concept of latent space becomes popular with Gen-
erative Adversarial Networks (GANs) and Variational Auto
Encoders (VAEs), where the features produced by the final
layers of the encoding network can be treated as elements in
a vector space and be subjected to vector algebra. But this
concept predates the popularity of CNNs. The organization of
a feature space by conceptual proximity plays a key role in
designing classification models in ML and PR.

In the first stage of our training methodology, the aim is to
infer the general organization of the latent space of a classifi-
cation model trained on a dataset D composed of data entries
labeled as one of the L classes in the set C = {c1, c2, · · · , cL}.
When the classification model is based on neural networks,
the feature vectors produced by the feature extraction layers
preceding the layers responsible for classification characterize
points in the learned latent space. We assume that the classi-
fication model to be considered was designed and trained to



map dataset entries labeled as the same class to close points
in the latent space. Also, we assume that the cluster of points
associated with the same class has little or no overlap with
other clusters. Although it is difficult to guarantee these two
premises, by experience, we have observed that the use of
representative points for classes in a well-trained latent space
is enough to infer the general relation of classes in this space.

While performing data preparation, we split the dataset D
into training, validation, and test subsets, keeping the propor-
tion of elements from each class in the subsets. After training
a classification model on the training subset, we map all data
entries in the training subset to the latent space and apply
dimensionality reduction by the Principal Components Analy-
sis (PCA) of the feature vectors translated by the mean vector
F̄ . As discussed later in this section, project the translated
feature vectors to the first T principal components (i.e., the
dimensions that maximize the variance of the projected data)
is key to infer the relative semantics of classes.

We calculate the representative point R̄ci of class ci as the
mean point of all the data entries labeled as ci mapped to the
T -dimensional space. Finally, the Voronoi diagram of points
R̄c1 , R̄c2 , · · · , R̄cL provides the notion of semantic proximity
for classes associated with neighboring Voronoi cells.

In the next stage of our training methodology, we will train
instances of the classification model to be aware of a subset of
classes from C. These subsets are created by removing from C
the classes that do not compromise the general topology of the
semantic organization of the latent space. The naive removal
of classes may lead to bias in the training and test of the OOD
sample detector. For example, if the dataset entries of many
neighboring classes are removed to become OOD samples,
then the “hole” created in the latent space semantics can make
the OOD detector model learn only an extreme class separation
case (i.e., it may be like getting OOD samples from MNIST
to check against a classification model trained on CIFAR-10).
We apply vertex coloring on the Voronoi diagram to identify
subsets of classes that will not compromise large semantic
regions of the latent space if removed along with classes
associated with the same color. Recall that, in its simplest
form, vertex coloring labels the vertices of a graph (i.e., the
seeds R̄ci of the Voronoi cells) such that no two adjacent
vertices are of the same color. Therefore, by removing all
classes labeled with the same color, there is a guarantee that
we will not remove neighboring classes simultaneously.

For K > 1, the coloring process can produce 2 to K colors.
The 2-color case happens when all classes are aligned, causing
their Voronoi cells to have up to 2 neighbors each. The K-color
case may occur when the number of dimensions T is greater
than or equal to K − 1. In this case, the neighborhood graph of
the points R̄ci may define a (K − 1)-simplex (i.e, a complete
neighborhood graph) that expands a (K − 1)-dimensional
space. We want to minimize the number of colors without
compromising the semantic organization of classes in the T -
dimensional space. So, the dimensionality of this space must
be restricted to 1 < T < K, observing in the PCA the amount
of information preserved by the first T principal components.

B. Training “Incomplete” Classification Model Instances

The vertex coloring process partitions the set of classes, C.
It guarantees that the classes in the same partition are not
semantic neighbors in latent space. Also, the coloring process
allows creating a mapping function f : A 7→ P , such that a
colour a from the set of colorsA maps to a subset of classes Pi

from the set of partitions P , where
⋃
Pi∈P = C, Pi ∩ Pj = ∅

for all i 6= j, and Pi 6= ∅ for all i.
In this stage of the training methodology, we use data from

the training subset of dataset entries assumed in Section IV-A
to train instances of the classification model so that each
instance is aware of the existence of only one subset K of
classes. This known subset K is given as one of the non-empty
subsets in the power set P (Si) of one of the Si partitions in
S. In other words, there will be instances of classifiers that
will know all but one of the classes. Other trained models
will not be aware of two of the classes, and so on, where the
number and which classes are unknown is determined by the
partitioning given by coloring.

For example, if C = {car, cat, chair, dog, horse} and the
vertex coloring produces A = {red, green, blue, yellow}
and S = {{car, chair}, {cat}, {dog}, {horse}}, mapping
red 7→ {car, chair}, green 7→ {cat}, blue 7→ {dog},
and yellow 7→ {horse}, then we train six instances of the
classification model. Each of the instances will be aware of one
of the following subsets K of classes: {car, cat, chair, dog},
{car, cat, chair, horse}, {car, cat, dog, horse}, {car, chair,
dog, horse}, {cat, chair, dog, horse}, and {cat, dog, horse}.
In the next stage of our training methodology, the subset
U = K \ C of classes is taken as source of OOD samples for
the model trained on the dataset entries with labels from K.

C. Training the OOD Detector

In this stage of the proposed methodology, we use classifica-
tion results produced by the models trained in the second stage
as a source of annotated data for training, validation, and test
of the OOD detector model. One must be aware that splitting
the dataset D into training, validation, and testing subsets
during the first stage of the process, and using the subset
of training data to fit the classification models considered in
Sections IV-A and IV-B, places some restrictions on which
data samples we can use at the present stage. We can only rely
on the output vectors produced by the classification models for
data entries not seen by them during their training. Therefore,
the data that we can use is restricted to the probability vectors
resulting from processing the test subset of D, as these data
entries were not used to train the classification models in any
of the previous stages. From now on, we will refer to the
former set of test data entries as set D′.

During the new data preparation step, for each classification
model instance trained in the previous stages, we process the
elements in D′ and label the resulting probability vectors as
from an OOD sample if the element’s class is unknown by
the classifier or from a non-OOD sample otherwise. With the
labeled vectors in hand, we split the new dataset into training,
validation, and test subsets, keeping the proportion of OOD



and non-OOD elements in each subset. But, to avoid bias, we
have to ensure that the colors of the classes of the samples used
to produce the training vectors are different from those whose
samples produce the validation and test subsets. Then, using
the new dataset, we proceed with the training process designed
for the specific OOD detector considered. In Section V, we
present the experimental analysis of the GCOOD, including its
training processes considering data produced by ResNet-152
models on the CIFAR-10 dataset.

Even with a balanced dataset D, and hence a balanced
dataset D′, it is noteworthy that the data in the new dataset is
imbalanced. We have much more class probability vectors X
labeled as from OOD samples than from non-OOD samples.
Thus, it is important to adopt an objective function that
mitigates imbalance, regardless of the OOD detection model
being trained. In the case of GCOOD, we have using the
Binary Cross Entropy between the target Z = (z1, z2) and the
output Y = (y1, y2) of our network, and add weights w1 and
w2 to positive examples of each label:

`c(Y,Z) = wczc log(yc) + (1− zc) log(1− yc), (1)

where c = 1 and c = 2 denote the OOD and non-OOD labels.

V. EXPERIMENTAL ANALYSIS

We have implemented the GCOOD detector using
PyTorch 1.7.1. The experiments were performed inside
Docker containers, in an Intel Xeon E5-2698 v4 CPU
with 2.2Ghz, 512GB of RAM, and 8 GPUs NVIDIA Tesla
P100-SXM2 with 16Gb of memory each. Despite the num-
ber of available GPUs, we have set the visible to one.
Our implementation and trained models are available at
https://github.com/Prograf-UFF/GCOOD.

The experiments considered image classification by ResNet-
152 [7], VGG-16 [8], DenseNet-201 [9], and SqueezeNet-
v1.0 [10] models, and images from the CIFAR-10 dataset [11].
We trained one GCOOD model using the class probability
vectors produced by instances of the ResNet-152. We evalu-
ated the performance of our OOD detector by analyzing True
Positive Rate (TPR), True Negative Rate (TNR), F1-score,
and AUROC curve produced while identifying OOD samples
in classification results from the four image classification
architectures considered. We compared our results with a
Support Vector Machine (SVM) classifier using Radial Basis
Function kernel with C = 1 and γ = 0.1, degree of 3, balanced
class weights, and using the shrinking heuristic, probability
estimates, and a one-vs-rest decision function.

A. Training Procedure

We have trained our GCOOD model using the training
methodology described in Section IV. The instances of image
classifiers were pre-trained on the ImageNet [22] dataset and
fine-tuned to classes from the CIFAR-10 dataset. This dataset
includes 10 classes, with 6K samples each, subdivided into
subsets of 5K images for training and 1K images for testing.
To increase the robustness of the image classification models,
we have combined two data augmentation strategies on the

TABLE I
ACCURACY OF THE IMAGE CLASSIFICATION MODELS.

Model U ResNet VGG DenseNet SqueezeNet

M1 {airplane} 0.859 0.897 0.856 0.808
M2 {airplane, deer} 0.872 0.902 0.861 0.827
M3 {automobile} 0.853 0.890 0.850 0.808
M4 {bird} 0.870 0.905 0.871 0.826
M5 {cat} 0.889 0.924 0.880 0.850
M6 {cat, horse} 0.887 0.927 0.890 0.857
M7 {cat, horse, ship} 0.892 0.935 0.884 0.858
M8 {cat, ship} 0.887 0.919 0.892 0.850
M9 {deer} 0.864 0.892 0.867 0.829
M10 {dog} 0.870 0.911 0.880 0.836
M11 {frog} 0.854 0.895 0.850 0.811
M12 {horse} 0.851 0.890 0.854 0.810
M13 {horse, ship} 0.852 0.896 0.862 0.810
M14 {ship} 0.851 0.891 0.850 0.808
M15 {truck} 0.853 0.888 0.858 0.818

Mall {} 0.853 – – –

original training set of the CIFAR-10 dataset. First, we aug-
mented the collection by creating nine new images per sample,
considering all the 34 random transformations implemented
by the Albumentation tool [23]. Next, we produced other 10K
fake images per class using a Deep Convolutional Generative
Adversarial Network (DCGAN) [24], ending up with 60K
images per class in place of the 5K images from the original
training set of the CIFAR-10. Finally, we split the augmented
set into the actual training and validation subsets used to fit
the image classification models. These balanced subsets have
48K and 12K images per class, respectively. It is important to
emphasize that the test subset contains 1K images per class,
and we kept it as defined by the CIFAR-10 dataset.

After training one instance of the ResNet-152 using all
classes in the CIFAR-10 dataset, we proceed with the di-
mensionality reduction of the latent space, calculation of the
Voronoi diagram, and vertex coloring (see Section IV-A). In
Section V-B, we will discuss details on the hyperparameter
tuning of the classification models. In ResNet-152, the latent
space with 2,048 dimensions corresponds to the output of the
2D adaptive average pooling operation that precedes the fully
connected layer at the end of the network.

We have used the PCA and Voronoi implementations avail-
able on the Scikit-learn tool [25] and the greedy graph coloring
algorithm implemented by the NetworkX package [26]. In
the PCA, we took the first T = 7 principal components,
preserving 84% of the data while performing dimensional-
ity reduction. Although setting T < 7 would lead to more
chances of producing colors with more associated classes, we
observed that too much information was lost by projecting the
data to T = 6 dimensions, compromising the actual semantic
organization of classes in the low-dimensional space. We have
used the largest-first strategy in graph coloring because, in our
experiments, it maximizes the number of classes assigned to a
single color. For ResNet-152 and T = 7, the mapping between
colors and classes was: clr1 7→ {dog}, clr2 7→ {bird},
clr3 7→ {frog}, clr4 7→ {truck}, clr5 7→ {airplane, deer},
clr6 7→ {automobile}, and clr7 7→ {cat, horse, ship}.



Using the color-class mapping, in the second stage we
trained 15 “incomplete” classification model instances (Sec-
tion IV-B). Therefore, we have 15 ResNet models that are not
aware of some subset U of classes, and one model aware of
all classes, as presented by the first three columns of Table I.

In addition to the 15 “incomplete” ResNet-152 models, we
also trained 15 models for each of the VGG-16, DenseNet-
201, SqueezeNet-v1.0 networks, considering the absence of
the classes indicated in the U column of Table I. These models
will be used later to test the GCOOD model.

While training the image classification models, we mon-
itored the mean Cross-Entropy loss and accuracy on the
training and validation images along 50 epochs. We took the
models with the best performance obtained before the net-
works stopped learning. Table I shows the final test accuracies
calculated on the subset of test images.

Following the third stage of our training methodology
(Section IV-C), we took the 1K image samples in the test
subset of the CIFAR-10 and processed those images with the
15 incomplete ResNet models trained in the second stage to
produce 15K probability vectors labeled as from ODD or non-
ODD samples. Then, we set the input size of our GCOOD
network to K = 10 and completed the vectors produced by the
image classifiers with zeros whenever necessary For instance,
M2, M6, M8, and M16 produce vectors of size 8.

Randomly, we have split the annotated probability vectors
into training (60%), validation (20%), and test (20%) subsets,
respecting that image samples used to produce training data
never share classes with the same color as the classes used to
create validation and test data. In this case, we roughly put 2/3
of image classes in the training subset and 1/3 in the validation
and test subsets by random. For the experiment disscussed in
Section V-C, we also produced one test subset using each of
the other three classification network considered, i.e,, VGG-
16, DenseNet-201, and SqueezeNet-v1.0. These subsets result
from the classification of the same images that generated the
entries in the test subset obtained from ResNet.

To compensate for class imbalance, we calculated the
weights of the loss function (1) as w1 = n2/n1 = 5.875
and w2 = 1/w1 = 0.1702, where n1 and n2 are the number
of OOD and non-OOD examples in the training set.

Before training, all weights of the GCOOD model were
randomly initialized from a Normal distribution of mean 0.0
and standard deviation 0.02. During 150 epochs, we monitored
the mean Binary Cross-Entropy loss (1) and F1-score on the
training and validation subsets (Fig. 3). We took the model
with the best performance before the network stopped learning.
The final TPR, TNR, F1-score, and ROC curve were calculated
on the test data produced by the image classification models.

B. Hyperparameters Tuning

We have applied a Bayesian approach [27] for tuning, using
Hyperband [28] with s = 2 and η = 3 as stopping criteria, and
a maximum of 100 and 300 runs for, respectively, image clas-
sification and GCOOD models. The implementations of [27]
and [28] are available in the Weights & Biases toolset [29].

(a) Loss graph (b) F1-Score graph

Fig. 3. The loss and F1-score of the GCOOD model during training.

The hyperparameters considered for image classification
models were batch size in {16, 32, · · · , 512}, learning rate
ranging from 10−5 to 10−2, and choose between the Adam or
SGD optimizers. Once the parameter sweep was finished, we
found that a batch size of 256, a learning rate of 0.0003, and
the Adam optimizer performs better on the ResNet-152 aware
of all classes. Then, we set those hyperparameters values to all
other image classification models trained in our experiment.

For the GCOOD model, we first performed some hyper-
parameter sweeps, then fixed three hyperparameters values
based on observations and run a new tuning on the reduced
search space. We have set the batch size to 15,800 as it
brought the best compromise between convergence time and
loss oscillation. The number of fully connected layers was
set to M = 1 after we have observed that the sweeps usually
converge to at most two layers of that kind. Also, we exper-
imented with changing the number of output channels of the
fully connected layers simulated by the convolutional layers
manually in a progressive way, starting from Cout = 1. We
got better results by setting Cout = 5. Among the remaining
hyperparameter, we had the number of convolutional layers
N ∈ {1, 2, · · · , 6}, the learning rate ranging from 10−7 to
10−2, dropout probability p ∈ [0.0, 0.3], and choose between
the Adam and SGD optimizers. The tuning procedure pointed
out N = 6, learning rate of 0.004012, p = 0.2757, and the
SGD optimizer with momentum of 0.9.

C. OOD Detection Results

Fig. 4 shows the confusion matrices and ROC curves
obtained by applying the GCOOD and SVM models over
test sets produced by the networks ResNet-152 (a-b), VGG-
16 (c-d), DenseNet-201 (e-f), and SqueezeNet-v1.0 (g-h).
TPR, TRN, F1-Score, and AUROC curve values are pre-
sented in Table II. Recall from Table I that the accuracies of
ResNet-152, VGG-16, and DenseNet-201 are slightly higher
than those of SqueezeNet-v1.0. While the accuracy obtained
varies from 0.850 to 0.935 in the first three architectures, for
the SqueezeNet models the accuracies range from 0.808 to
0.858. Using an image classifier of lower quality, such as
SqueezeNet-v1.0, was purposeful to verify the influence of
this quality on the detection capacity of the GCOOD model.

As can be seen from the main diagonal of the confusion
matrices in Figs. 4 (a) and (c), the TPR and TNR (values



(a) Results of the GCOOD model on data from ResNet-152 (b) Results of the SVM model on data from ResNet-152

(c) Results of the GCOOD model on data from VGG-16 (d) Results of the SVM model on data from VGG-16

(e) Results of the GCOOD model on data from DenseNet-201 (f) Results of the SVM model on data from DenseNet-201

(g) Results of the GCOOD model on data from SqueezeNet-v1.0 (h) Results of the SVM model on data from SqueezeNet-v1.0

Fig. 4. The confusion matrices and the ROC curves of the OOD detection results of the GCOOD (left) and SVM (right) models on test classification data
produced by all the image classification networks considered in this study.

in parentheses) of the GCOOD model are higher than the off-
diagonal ratios, related to the proportion of type I and II errors
(note the intensities of the blue color). In Fig. 4 (e), in the first
line of the confusion matrix, we observe that there were more
errors (False Negative, FN: 566) than successes (True Positive,
TP: 434). In Fig. 4 (g), our approach had a higher TPR (0.74)
than on data coming from other networks (0.43 to 0.65). But at
the same time, it had more False Positives (FP: 2,884, against
1,270 to 1,648). We believe that the highest amount of FP is
related to the predictive capacity of SqueezeNet-v1.0, which
mistakenly generates more confident probability vectors for
certain classes even when the sample is OOD.

When performing the experiments, we observed that small
changes in training loss could cause significant changes in F1-
Score. The cause of this could be that the neighborhood that
separates the OOD and non-OOD labels is very narrow, and

this led us to think about using SVM, which has good behavior
for problems like this. However, as shown in Fig. 4 (right), the
SVM confusion matrices concentrate predictions in the OOD
label, increasing both the TPR and the FP Rate significantly,
which is the opposite of the expectation. The ROC curves in
Fig. 4 also indicate the classification deficiency of the SVM
model, as it is close to the diagonal, i.e, AUROC close to 0.5.

A difficulty found in our experiments was related to unbal-
ance data, as we have much fewer ODD samples. To solve
this problem, we chose a loss function that allows the use of
different weights for each class to obtain balance. We observe
that, according to the given weight, the model can improve
the detection of one label and make the detection of the other
worse in the same proportion. So we chose values of w1 and
w2 that best maximized both classes. This fact can be seen in
the GCOOD’s TNR and TPR (Table II). Although TNRs are



TABLE II
PERFORMANCE OF OOD DETECTORS TRAINED ON DATA PRODUCED BY

RESNET-152 AND APPLIED ON DATA FROM FOUR NETWORKS.

OOD
Detector

Source of
Samples

Metric

TPR TNR F1 AUROC

GCOOD

ResNet 0.6450 0.7765 0.4020 0.7829
VGG 0.6400 0.7645 0.3893 0.7760

DenseNet 0.4340 0.8185 0.3210 0.7360
SqueezeNet 0.7440 0.5880 0.3215 0.7061

SVM

ResNet 0.7970 0.1898 0.2134 0.4869
VGG 0.8350 0.1657 0.2176 0.5066

DenseNet 0.8210 0.1800 0.2172 0.5084
SqueezeNet 0.7340 0.2778 0.2162 0.5041

a little higher, they are values close to TPR. By changing the
weights empirically, it was possible to find TNR of 0.92, but
with TPR of 0.0. In addition to the weights, another empirical
observation concerning obtaining better TNR and TPR rates
was the increase of the batch size. A more significant variation
in the F1-Score was observed with larger batches. But when
the model weights are batch normalized, the variation tends
to decrease, and these rates’ values improve.

VI. CONCLUSIONS AND FUTURE WORK

We presented the GCOOD, a single-sample OOD detection
approach to be coupled with any trained discriminative classi-
fier. The GCOOD is a CNN, whose input is a Softmax vector
of class probabilities produced by some standard classification
model. Our detector indicates whether the sample data related
to the vector input is an OOD sample for the already learned
class distributions. Most of the existing OOD detectors rely
on metric values computed by intermediate processing steps
of a given classification model. Although GCOOD is trained
on classification vectors produced by instances of a given
discriminative classifier, it is important to note that GCOOD
only uses the output of these models. It is not related to any
intermediate stages of the classifiers, as are other solutions.
As such, one can apply a trained GCOOD instance to the
classification results of other classification models, too.

We also presented a new training methodology for OOD
detectors based on the spatial analysis of the latent space. We
performed dimensionality reduction and vertex (cell) coloring
of the Voronoi diagram calculated from representative points
of the classes in latent space. Voronoi cell neighboring gives
the semantic relation learned by the classification model for
the classes. Thus, we used the graph color to select which
classes can be removed from the dataset without jeopardizing
the training and testing of the OOD sample detector.

We evaluated our GCOOD with images from the CIFAR-
10 dataset and four different types of image classification
networks, and compared our results to a SVM classifier.

Further explorations may include extending the training
methodology and the proposed OOD detector to handle Con-
cept and Data Drift. Data imbalance is also another interesting
issue to deal with. We hope that our training methodology and
GCOOD may inspire novel researchers in ML and PR.
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