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Abstract—We present a technique for real-time adjustment of
spatial frequencies in images and videos. Our method allows for
both decreasing and increasing of frequencies, and is orthogonal
to image resizing. Thus, it can be used to automatically adjust
spatial frequencies to preserve the appearance of structured pat-
terns during image downscaling and upscaling. By pre-computing
the image’s space-frequency decomposition and its unwrapped
phases, these operations can be performed in real time, thanks
to our novel mathematical perspective on frequency manipulation
of digital images: interpreting the problem through the theory
of instantaneous frequencies and phase unwrapping. To make
this possible, we introduce an algorithm for the simultaneous
phase unwrapping of several unordered frequency components,
which also deals with the frequency-sign ambiguity of real
signals. As such, our method provides theoretical and practical
improvements to the concept of spectral remapping, enabling real-
time performance and improved color handling. We demonstrate
its effectiveness on video and a large number of images subject
to frequency adjustment. By providing real-time control over
the spatial frequencies associated with structured patterns, our
technique expands the range of creative and technical possibilities
for image and video processing.

I. INTRODUCTION

We present a new mathematical perspective on frequency
manipulation of digital images and videos. Using the theory of
instantaneous frequencies and phase unwrapping operators [1],
our real-time spatial frequency adjustment technique is
the first method capable of performing image edits such as
the ones shown in Figure 1 in real time. The performance
improvement resulting from our formulation is also critical
for making frequency adjustments in videos practical.1 The
idea of our method is to decompose an image into local phase
and amplitude components such that the phase encodes the
high-frequency structured content. This decomposition provides
simple and interesting ways of manipulating frequency through
phase manipulation.

Our technique starts by obtaining a space-frequency de-
composition of the image (orange block of Figure 2). The
decomposition represents the original image as a sum of several
cosine functions and a residual. Each cosine has an associated
frequency and amplitude. The frequencies are jointly integrated

∗
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1Please refer to the following link for some videos demonstrating our work:
https://www.inf.ufrgs.br/∼eslgastal/RealTimeFrequencyAdjustment/

(a) Reference image (b) Our α=0.3 (c) Our α=0.1 (d) Our α=0.03

135× 171

(e) Our (0.01 s)

135× 171

(f) SR (1.5 s)

135× 171

(g) O-MOMS (0.01 s)

Fig. 1. (a) Reference image with 1,618 × 2,048 pixels (hand drawing
“Brothers”, by artist Tyler Hobbs, used with permission). (b–d) Examples of
frequency adjustments applied to (a) using our technique, with the images kept
at the original resolution (please zoom-in to see the details and to avoid aliasing
artifacts caused by the PDF reader’s resampling filter). (e) Downscaled version
of (a) generated with our technique in real time (0.01 seconds for frequency
adjustment and image reconstruction). (f) Downscaled version of (a) obtained
with spectral remapping (SR) [2] (1.5 seconds). (g) Downscaled version of (a)
without changing the image frequencies. Note how the high-frequency patterns
from the original image are lost. In images (e–g), resampling to 135× 171
pixels was done using the O-MOMS method [3].

by our weighted least-squares system (blue block of Figure 2)
to obtain smooth phase functions that may be scaled by a
factor α to reconstruct the image with the original frequencies
adjusted by α (green block of Figure 2). The reconstruction
algorithm may be performed per-pixel, allowing for a fast
parallel real-time implementation. Despite working with cosine
functions for the decomposition, our technique is able to handle
complex structured patterns, as demonstrated in Figure 5.

Our novel mathematical framework is fundamental in allow-
ing our approach to work in real time. To make this possible, we
introduce technical contributions to ridge analysis and 2-D / 3-D
phase unwrapping of digital images and videos (Section IV-B).

https://lume.ufrgs.br/handle/10183/225714
https://www.inf.ufrgs.br/~eslgastal/RealTimeFrequencyAdjustment/


Space-Frequency Decomposition Phase Unwrapping Real-Time Frequency Adjustment and Reconstruction

Input Image (h) ...
...

0 2 4 6 8

0

2

4

6

8

0.1 0.2 0.3

Amplitudes Instantaneous Frequencies

Residual Image (d)

...

O
ur

L
ea

st
-S

qu
ar

es
In

st
an

ta
ne

ou
s-

Fr
eq

ue
nc

y
In

te
gr

at
io

n
M

et
ho

d

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

...

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

0 2 4 6 8

0

2

4

6

8

200 100 0 100 200 300
radians

Unwrapped Phases

Frequency-Adjusted Components

+

C
ol

or
sp

ac
e

Tr
an

sf
or

m
at

io
n

an
d

R
es

id
ua

l
A

dd
iti

on

Frequency-Adjusted
Output Image (hα)

...
...

...
...

B1(x, y)

B2(x, y)

Bn(x, y)

∇ϕ̂1(x, y)

∇ϕ̂2(x, y)

∇ϕ̂n(x, y)

ϕ1(x, y)

ϕ2(x, y)

ϕn(x, y)

B1(x, y) cos(αϕ1(x, y))

B2(x, y) cos(αϕ2(x, y))

Bn(x, y) cos(αϕn(x, y))

Input Image (h) ...
...

0 2 4 6 8

0

2

4

6

8

0.1 0.2 0.3

Amplitudes Instantaneous Frequencies

Residual Image (d)

...

O
ur

L
ea

st
-S

qu
ar

es
In

st
an

ta
ne

ou
s-

Fr
eq

ue
nc

y
In

te
gr

at
io

n
M

et
ho

d

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

...

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

0 2 4 6 8

0

2

4

6

8

200 100 0 100 200 300
radians

Unwrapped Phases

Frequency-Adjusted Components

+

C
ol

or
sp

ac
e

Tr
an

sf
or

m
at

io
n

an
d

R
es

id
ua

l
A

dd
iti

on

Frequency-Adjusted
Output Image (hα)

...
...

...
...

B1(x, y)

B2(x, y)

Bn(x, y)

∇ϕ̂1(x, y)

∇ϕ̂2(x, y)

∇ϕ̂n(x, y)

ϕ1(x, y)

ϕ2(x, y)

ϕn(x, y)

B1(x, y) cos(αϕ1(x, y))

B2(x, y) cos(αϕ2(x, y))

Bn(x, y) cos(αϕn(x, y))

Input Image (h) ...
...

0 2 4 6 8

0

2

4

6

8

0.1 0.2 0.3

Amplitudes Instantaneous Frequencies

Residual Image (d)

...

O
ur

L
ea

st
-S

qu
ar

es
In

st
an

ta
ne

ou
s-

Fr
eq

ue
nc

y
In

te
gr

at
io

n
M

et
ho

d

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

...

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

0 2 4 6 8

0

2

4

6

8

200 100 0 100 200 300
radians

Unwrapped Phases

Frequency-Adjusted Components

+

C
ol

or
sp

ac
e

Tr
an

sf
or

m
at

io
n

an
d

R
es

id
ua

l
A

dd
iti

on

Frequency-Adjusted
Output Image (hα)

...
...

...
...

B1(x, y)

B2(x, y)

Bn(x, y)

∇ϕ̂1(x, y)

∇ϕ̂2(x, y)

∇ϕ̂n(x, y)

ϕ1(x, y)

ϕ2(x, y)

ϕn(x, y)

B1(x, y) cos(αϕ1(x, y))

B2(x, y) cos(αϕ2(x, y))

Bn(x, y) cos(αϕn(x, y))

Input Image (h) ...
...

0 2 4 6 8

0

2

4

6

8

0.1 0.2 0.3

Amplitudes Instantaneous Frequencies

Residual Image (d)

...

O
ur

L
ea

st
-S

qu
ar

es
In

st
an

ta
ne

ou
s-

Fr
eq

ue
nc

y
In

te
gr

at
io

n
M

et
ho

d

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

...

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

0 2 4 6 8

0

2

4

6

8

200 100 0 100 200 300
radians

Unwrapped Phases

Frequency-Adjusted Components

+

C
ol

or
sp

ac
e

Tr
an

sf
or

m
at

io
n

an
d

R
es

id
ua

l
A

dd
iti

on

Frequency-Adjusted
Output Image (hα)

...
...

...
...

B1(x, y)

B2(x, y)

Bn(x, y)

∇ϕ̂1(x, y)

∇ϕ̂2(x, y)

∇ϕ̂n(x, y)

ϕ1(x, y)

ϕ2(x, y)

ϕn(x, y)

B1(x, y) cos(αϕ1(x, y))

B2(x, y) cos(αϕ2(x, y))

Bn(x, y) cos(αϕn(x, y))

Input Image (h) ...
...

0 2 4 6 8

0

2

4

6

8

0.1 0.2 0.3

Amplitudes Instantaneous Frequencies

Residual Image (d)

...

O
ur

L
ea

st
-S

qu
ar

es
In

st
an

ta
ne

ou
s-

Fr
eq

ue
nc

y
In

te
gr

at
io

n
M

et
ho

d

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

...

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

0 2 4 6 8

0

2

4

6

8

200 100 0 100 200 300
radians

Unwrapped Phases

Frequency-Adjusted Components

+

C
ol

or
sp

ac
e

Tr
an

sf
or

m
at

io
n

an
d

R
es

id
ua

l
A

dd
iti

on

Frequency-Adjusted
Output Image (hα)

...
...

...
...

B1(x, y)

B2(x, y)

Bn(x, y)

∇ϕ̂1(x, y)

∇ϕ̂2(x, y)

∇ϕ̂n(x, y)

ϕ1(x, y)

ϕ2(x, y)

ϕn(x, y)

B1(x, y) cos(αϕ1(x, y))

B2(x, y) cos(αϕ2(x, y))

Bn(x, y) cos(αϕn(x, y))

Input Image (h) ...
...

0 2 4 6 8

0

2

4

6

8

0.1 0.2 0.3

Amplitudes Instantaneous Frequencies

Residual Image (d)

...

O
ur

L
ea

st
-S

qu
ar

es
In

st
an

ta
ne

ou
s-

Fr
eq

ue
nc

y
In

te
gr

at
io

n
M

et
ho

d

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

...

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

0 2 4 6 8

0

2

4

6

8

200 100 0 100 200 300
radians

Unwrapped Phases

Frequency-Adjusted Components

+

C
ol

or
sp

ac
e

Tr
an

sf
or

m
at

io
n

an
d

R
es

id
ua

l
A

dd
iti

on

Frequency-Adjusted
Output Image (hα)

...
...

...
...

B1(x, y)

B2(x, y)

Bn(x, y)

∇ϕ̂1(x, y)

∇ϕ̂2(x, y)

∇ϕ̂n(x, y)

ϕ1(x, y)

ϕ2(x, y)

ϕn(x, y)

B1(x, y) cos(αϕ1(x, y))

B2(x, y) cos(αϕ2(x, y))

Bn(x, y) cos(αϕn(x, y))

Input Image (h) ...
...

0 2 4 6 8

0

2

4

6

8

0.1 0.2 0.3

Amplitudes Instantaneous Frequencies

Residual Image (d)

...

O
ur

L
ea

st
-S

qu
ar

es
In

st
an

ta
ne

ou
s-

Fr
eq

ue
nc

y
In

te
gr

at
io

n
M

et
ho

d

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

...

R
ea

l-T
im

e
Fr

eq
ue

nc
y

A
dj

us
tm

en
tα

0 2 4 6 8

0

2

4

6

8

200 100 0 100 200 300
radians

Unwrapped Phases

Frequency-Adjusted Components

+

C
ol

or
sp

ac
e

Tr
an

sf
or

m
at

io
n

an
d

R
es

id
ua

l
A

dd
iti

on

Frequency-Adjusted
Output Image (hα)

...
...

...
...

B1(x, y)

B2(x, y)

Bn(x, y)

∇ϕ̂1(x, y)

∇ϕ̂2(x, y)

∇ϕ̂n(x, y)

ϕ1(x, y)

ϕ2(x, y)

ϕn(x, y)

B1(x, y) cos(αϕ1(x, y))

B2(x, y) cos(αϕ2(x, y))

Bn(x, y) cos(αϕn(x, y))

Fig. 2. Overview of our frequency-adjustment technique. (Orange block) The input image is decomposed into several cosine waves (Eq. (4)), represented by
per-pixel scalar amplitudes and instantaneous-frequency vectors. The frequency vector direction and magnitude are given by the vector from the center of the
color wheel to the pixel color in the wheel. This decomposition may be performed in the RGB space (applied to each color channel independently) or in
some other color space where channels better encode the high-frequency content, such as the PCA-defined color space used for this illustration. (Blue block)
The detected frequencies are then integrated by our method to recover a continuous scalar field of unwrapped phases. Note that the unwrapped phase values
for each pixel are not sorted between the images, and as such the phase data may appear more discontinuous than they actually are. Note also the absence
of phase information for low-detail regions, which are treated as residue only. (Green block) The frequency-adjusted content is obtained by reconstructing
the waves from their original amplitudes and corresponding scaled unwrapped phases (Eq. (19)), using a user-provided scaling factor α (for this example,
α = 0.25). All waves are summed to obtain the frequency-adjusted content. Finally, to obtain the reconstructed image, the frequency-adjusted content is
transformed back to RGB space (if initially in RGB space no transformation is needed) and summed back to the residual.

We also show how to handle the problematic sign-ambiguity
that arises from the conjugate-symmetry of real waves (Sec-
tion IV-A1). Our approach also improves color handling when
compared to recent frequency remapping methods [2], by
correlating the color channels during frequency integration (Sec-
tion IV-C). This improvement is visible in Figure 6.

By defining the frequency scaling factor α as a function of
an image resizing factor r, spatial frequencies are automatically
adjusted to preserve the appearance of structured patterns during
image downscaling (Figure 1(e)). Combined with our method’s
real-time performance, this opens up a variety of interesting
applications, such as dynamically computing detail-preserving
thumbnails for image galleries, or adapting an image’s content
in real time based on viewing distance.

In summary, the contributions of our work include:

• The first real-time technique for spatial frequency adjust-
ment of images and videos (Section III). It is based on a
novel mathematical framework that enables its improved
performance over the state of the art. It requires pre-
processing the space-frequency decomposition and the
unwrapped phase of the image, but frequency adjustment
is subsequently performed in real-time.

• A phase-unwrapping technique to recover the phases of
real waves that locally reconstruct an image (Section IV).
Our solution naturally handles a sign ambiguity involving
the phase unwrapping of real waves, in addition to

simultaneously treating many unordered phase components
without explicit sorting. As such, it extends the state-of-
the-art on phase unwrapping that only covers a single
phase component wrapped to [−π, π).

• A technique for processing color images for use with
spatial frequency adjustment (Section IV-C). It is based
on a multi-channel optimization performed in RGB space
and avoids some color artifacts associated with the use
of PCA-based color reconstruction.

II. RELATED WORKS AND BACKGROUND

Our work was inspired by the spectral remapping (SR)
technique for image downscaling [2]. SR remaps frequencies
that are not representable in the target resolution to new
representable frequencies, preserving the orientations of the
original high-frequency patterns. This solution effectively
encodes important structured details at lower frequencies during
downscaling, instead of discarding them with an anti-aliasing
filter. This results in more faithful representations of the original
content. The technique, however, has only been demonstrated
for image downscaling in combination with a remapping func-
tion that takes similarly-oriented waves to a common frequency.
More importantly, (i) it is non-interactive, requiring the solution
of a sparse linear system for each combination of input image I
and downscaling factor r; and (ii) the PCA-based reconstruction
strategy used for processing color images may introduce some
noticeable artifacts depending on the target resolution.



Our frequency-adjustment technique can be employed
to image downscaling and addresses the aforementioned
issues being up to 100× faster than SR. In addition, we also
demonstrate its extension to videos.

To achieve our results, we introduce a phase unwrapping
algorithm that simultaneously handles several real-wave phase
components, in addition to inter-component dependencies (Sec-
tion IV). Phase unwrapping is the process of recovering a
continuous function θ(x) from samples θ̂(x) whose values
are only known up to modulo 2π [4]. This procedure is a
fundamental building block in many applications, ranging
from satellite topography and marine/earth seismology to the
analysis of brain waves [5], [6]. Phase unwrapping is tightly
linked to the theory of instantaneous-frequency decompositions
and space/time-frequency analysis [1]. In this context, it is often
called “ridge” analysis, and it may be derived from Gabor [7]
and wavelet transforms [8]. There is a significant amount of
theory and algorithms developed in this area for 1-D signals,
such as acoustic and speech data [9]. The corresponding 2-D
and 3-D problems (required for our frequency-adjustment
technique) are significantly more challenging to solve [10].

III. FREQUENCY ADJUSTMENT

Consider a continuous wave signal s(x, y) = cos(θ(x, y))
described by a continuously-differentiable phase function θ.
The horizontal ∇xθ(x, y) and vertical ∇yθ(x, y) instantaneous
frequencies of this signal are given by the partial derivatives
of its phase [1]:

∇xθ(x, y) =
∂

∂x
θ(x, y) and ∇yθ(x, y) =

∂

∂y
θ(x, y).

(1)
Similarly, the local wavefront orientation (normal direction) at
(x, y) is given by the gradient vector

∇θ(x, y) = [∇xθ(x, y),∇yθ(x, y)] .

A frequency-adjusted version sα of s, where frequencies are
scaled by a factor α > 0, is obtained as:

sα(x, y) = cos(αθ(x, y)). (2)

It is easy to see that the horizontal and vertical frequencies of sα
are α∇xθ and α∇yθ, i.e., scaled versions of the corresponding
frequencies of s. The local direction of wave propagation
is preserved in sα since ∇αθ = α∇θ. Finally, sα is still a
continuous function, as was s. Figure 3 illustrates an example of
frequency adjustment for a signal where θ is known analytically.

A. Frequency Adjustment of Natural Images

Given a natural image h(x, y), we seek a decomposition
which represents it as a sum of N components with phase
functions θ1 . . . θN , amplitude functions A1 . . . AN , and a
residual d(x, y):

h = s+ d where s(x, y) =

N∑
n=1

An(x, y) cos(θn(x, y)).

(3)
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Fig. 3. Example of frequency adjustment. The continuous phase function
θ(x, y) is defined by a Perlin noise scalar field (left). Scaling the phase by
factors α > 0 results in frequency-adjusted signals cos(αθ(x, y)), which
preserve the local wavefront orientations.
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Fig. 4. Example of unsuccessful frequency adjustment. When the phase
function ϕ̂(x, y) is wrapped (values recovered as ϕ̂ = arccos(cos(ϕ)) are
in [0, π] – see color scale on the left), scaling the phase by factors α > 0
does not result in frequency-adjusted signals. One must therefore unwrap the
phase function before being able to perform frequency adjustment. Compare
to Figure 3.

Obtaining such a decomposition for a given image h is a
severely under-constrained problem. Thus, we require the
summation in s(x, y) to only encode high-frequency content
that should be affected by the frequency adjustment (remaining
content goes into the residual d). Furthermore, the phase func-
tions are required to be piecewise smooth for the instantaneous
frequencies to be well defined almost everywhere, making
s(x, y) (and thus h) amenable to frequency adjustment. Finally,
the amplitudes An(x, y) should vary slowly when compared
to local frequencies, so that high-frequency variations become
encoded in the phases only [1].

B. Finding a Decomposition

Time/Space-frequency analysis may be employed to measure
the instantanous frequencies of several non-harmonic spectral
components [1]. Gastal and Oliveira [2] describe a practical
algorithm for this purpose, approximating the neighborhood
around each pixel as a sum of Gaussian-windowed plane waves.
From the constant frequencies and phase-shifts of such waves
it is possible to extract, for each pixel, a series of phase values
ϕ̂n(x, y) and associated amplitudes Bn(x, y), n = 1 . . . N ,
such that

h = s+ d where s(x, y) =

N∑
n=1

Bn(x, y) cos(ϕ̂n(x, y)).

(4)
Despite the similarity of this expression to that of Eq. (3),
the values ϕ̂n cannot be directly employed for frequency
adjustment since they are wrapped to [0, π]. The problem
that occurs when trying to do so is illustrated in Figure 4.

IV. PHASE UNWRAPPING IN TWO DIMENSIONS

While 1-D phase unwrapping has a simple solution [12],
2-D unwrapping is more involving and requires specialized



(a) Reference (1,536× 2,048) (b) (r = α = 0.14) (c) Ours (r = 1, α = 0.25) (d) Ours (r = 1, α = 1.25)

Fig. 5. Picture of a lizard (courtesy of William Warby). (a) Reference image. (b) Downscaled version of (a) generated with (bottom) and without (top) our
technique for frequency adjustment and resampling to 220× 293 using the method of [11] and [3], respectively. (c) and (d) Examples of spatial frequency
adjustment generated by our technique. The images were kept at the original resolution (r = 1): (c) Frequency decreasing obtained with a scaling factor
α = 0.25. (d) Frequency increasing obtained with a scaling factor α = 1.25. Note the adjusted frequencies of the details on legs and belly of the lizard.
(Please zoom-in to see the details and to avoid aliasing artifacts caused by the PDF reader’s resampling filter).

algorithms [10]. These algorithms work with a wrapped phase
θ̂ ∈ [−π, π). Thus, solving the phase unwrapping problem in
this case consists only in finding the shift factors k(x, y) in
Eq. (5) (that is, there is no sign-ambiguity problem).

Digital images are real functions and modeled using
real waves: the cosines in Eq. (3). Therefore, in this
situation the measured phase has a reduced angular range,
ϕ̂ = arccos(cos(θ)) ∈ [0, π], and an ambiguous sign, since
cos(ϕ̂) = cos(−ϕ̂). As a result, ϕ̂ is related to the true phase
θ by an unknown sign, σ, in addition to an unknown shift, k:

θ(x, y) = σ(x, y) ϕ̂(x, y)+2πk(x, y) for σ(x, y) ∈ {−1,+1}.
(5)

Such sign ambiguity and reduced angular range make phase
unwrapping for digital images and videos a challenging task.

A. Unwrapping the phase of one real wave

For frequency adjustment of digital images, one is interested
in unwrapping the phase θ(x, y) from a real wave component
cos(θ(x, y)). The wrapped phase measurement ϕ̂(x, y) ∈ [0, π]
is thus related to the true phase according to Eq. (5). Since
k(x, y) defines a piecewise-constant function, the unwrapped
and wrapped gradients are related only by the unknown sign
σ(x, y) at each position (x, y):

∇θ(x, y) = σ(x, y)∇ϕ̂(x, y) almost everywhere. (6)

We can obtain ∇ϕ̂ directly from a space-frequency decompo-
sition. We now focus on how to integrate the gradient field

∇θ = σ∇ϕ̂ to recover the phase function, without explictly
computing the signs σ.

(Throughout the text we denote the pointwise product of two
functions f and g as fg; that is, (fg)(x, y) = f(x, y) g(x, y).
Furthermore, f = g denotes pointwise equality: f(x, y) =
g(x, y),∀(x, y).)

1) Integrating the phase gradient field for one real wave: To
recover the unwrapped phase θ, the gradient field ∇θ = σ∇ϕ̂
is integrated in the least-squares sense.

Let Tx and Ty be two unit-shift operators that act on a func-
tion θ as Tx(θ)(x, y) = θ(x−1, y), and Ty(θ)(x, y) = θ(x, y−
1). Furthermore, let ◦ in T◦ stand for either x or y. Then, a
trapezoidal integration rule gives the following linear relations
between the unknown phase values θ(x, y) of all pixels [13]:

θ − T◦(θ) = 1
2

[
∇◦θ + T◦(∇◦θ)

]
. (7)

Given that ∇θ = σ∇ϕ̂, Eq. (7) may be expanded as (we
underline the parts of the equations that have changed):

θ − T◦(θ) = 1
2

[
σ∇◦ϕ̂+ T◦(σ∇◦ϕ̂)

]
. (8)

By introducing a function ϕ satisfying σϕ
def
= θ, Eq. (8)

becomes

σϕ− T◦(σϕ) = 1
2

[
σ∇◦ϕ̂+ T◦(σ∇◦ϕ̂)

]
. (9)

Note that to solve the above equation one must know σ. To re-
move this dependency, we start by multiplying both sides by σ:

σ2ϕ− σT◦(σϕ) = 1
2

[
σ2∇◦ϕ̂+ σT◦(σ∇◦ϕ̂)

]
. (10)



Note that σ2 = 1 for any (x, y), since σ(x, y) ∈ {−1,+1}. Fur-
thermore, since T◦(fg) = T◦(f)T◦(g), Eq. (10) simplifies to

ϕ−∆◦σ T◦(ϕ) = 1
2

[
∇◦ϕ̂+ ∆◦σ T◦(∇◦ϕ̂)

]
, (11)

where ∆◦σ
def
= σT◦(σ). Note that ∆xσ and ∆yσ encode the lo-

cations where σ changes sign. More precisely, ∆xσ(x, y) = −1
whenever the sign of σ(x, y) differs from the sign of the
neighboring pixel σ(x− 1, y), and ∆xσ(x, y) = +1 otherwise.
An analogous relation is true for ∆yσ(x, y) in the y-dimension.

As shown below in Section IV-A2, it is possible to compute
∆◦σ despite σ being unknown. As such, the only unknowns
in Eq. (11) are the values of the function ϕ, which may be
found by solving the associated linear system through least
squares:

min
ϕ

∑
◦∈{x,y}

∥∥ϕ−∆◦σT◦(ϕ)− f◦
∥∥2

+ λ ‖ϕ‖2, (12)

where f◦(x, y) encodes the right-hand-side of Eq. (11), for
◦ ∈ {x, y}. The recovered phase ϕ is enough to perform
frequency adjustment, without knowing the per-pixel sign
σ, since the cosine is an even function. Thus cos(αϕ) =
cos(ασ ϕ) = cos(α θ) and so it is not necessary to recover θ.

Eq. (12) has a unique solution obtainable from the linear
system

(DT
xDx +DT

y Dy + λ I)ϕ = DT
x fx +DT

y fy, (13)

where I is the identity matrix, and Dx and Dy are similar
to backward-difference matrices, but (i) have some entries
with flipped signs (according to ∆xσ and ∆yσ); and (ii) only
include contraints for non-missing values (the reconstruction of
pixels with missing values is handled by windowing, discussed
in Section V). We use λ = 10−6 in the regularizer since it
produces good results according to our empirical tests.

2) Determining sign changes and computing ∆σ: Let p
and q be two neighboring pixels, with local gradients ∇ϕ̂(p)
and ∇ϕ̂(q) . Also, recall that ∇θ = σ∇ϕ̂. Two situations are
possible:

1) There is a sign change between the phase gradients
∇θ(p) and ∇θ(q) of p and q, meaning that σ(p) 6= σ(q);

2) There is no sign change between p and q, and σ(p) =
σ(q).

Possibility (1) implies ∆σ(p) = σ(p)σ(q) = −1, while
possibility (2) implies ∆σ(p) = σ(p)σ(q) = +1. To determine
which one is true, we recall that the phase θ should be
continuously differentiable, meaning that the phase gradient
∇θ should be continuous. As such, we choose the option that
better preserves the continuity of ∇θ, i.e., that results in the
smallest change between ∇θ(p) and ∇θ(q). Thus,

∆σ(p) = arg min
v∈{−1,+1}

∥∥∇ϕ̂(p)− v∇ϕ̂(q)
∥∥2
. (14)

B. Unwrapping the phases of several real waves

Natural images contain complex structured patterns. These
patterns require the summation of several cosine components
in order to be correctly represented by the decomposition

of Eq. (3). The several phase functions {θ1, θ2, . . .} that build-
up a pattern are in principle independent and could be separately
unwrapped. In practice, however, this independent unwrapping
is severely error prone. To understand why, note that, before
unwrapping, one would be required to assign each n-th gradient
measurement∇ϕ̂n(p), of a pixel p, to a particular phase compo-
nent θκp(n), where κp(n) is an indexing function (permutation)
specific for p. Furthermore, the permutations κp and κq for all
neighboring pixels p and q should be consistent to each other,
assigning the gradients that belong together to the same phase
component. Otherwise, severe unwrapping errors will occur.

Due to ambiguous information returned by the space-
frequency decomposition, sometimes it is not possible to
precisely define the permutations κp for all pixels p. Fur-
thermore, for particular pixels, the permutations are often
incorrectly defined due to noise or frequency measurement
errors. As a result, the whole phase unwrapping solution
becomes compromised.

We avoid the aforementioned difficulties by, instead, defining
weighted associations between all measurements ∇ϕ̂n and
all phase functions θn (in place of discrete permutations).
This significantly reduces the possibility of unwrapping errors,
especially in the presence of ambiguous information returned by
the space-frequency decomposition. It also makes the algorithm
more robust to noise and measurement errors, and handles
missing phase information.

Consider a pixel p and let N(p) denote the number of
measured phase components for p. Furthermore, let T◦(p)
denote the neighboring pixel of p according to the unit-
shift operator T◦. For valid indices n = 1 . . . N(p) and
m = 1 . . . N(T◦(p)), the inter-component version of the
integration rule (Eq. (11)), which couples the n-th component
of pixel p to the m-th component of the neighboring pixel
T◦(p), is given by

ϕn−∆nm
◦ σ T◦(ϕ

m) = 1
2

[
∇◦ϕ̂n+∆nm

◦ σ T◦(∇◦ϕ̂m)
]
. (15)

As before, ∆nmσ(p) determines if there is an expected change
in sign between the n-th gradient measurement ∇ϕ̂n(p) of p,
and the m-th measurement ∇ϕ̂m(q) of q = T◦(p).

Some components are more likely to belong together than
others. Thus, let the weight µnmpq (defined below) be propor-
tional to the probability of ∇ϕ̂n(p) and ∇ϕ̂m(q) belonging
to the same phase component θk. We transform Eq. (15) into
a weighted least-squares system, that simultaneously searches
for the unwrapped phase components ϕn that best adapt to all
couplings between measurements, but giving greater weight to
the most probable ones (through µnm):

min
ϕn

∑
◦∈{x,y}

∑
∀n

∑
∀m

∥∥µnm◦ {Lnm◦ − fnm◦ }
∥∥2

+ λ
∑
∀n

‖ϕn‖2.

(16)
Here, Lnm◦ is the left-hand-side of Eq. (15), and fnm◦ is its right-
hand side. Furthermore, it is understood that n and m only vary
over the valid indices for each pixel. For µnmpq , we use the wave
alignment measure proposed by Gastal and Oliveira [2] (which
determines how well the local Gabor approximations, associated



(a) Original photograph (b) Our multi-channel
frequency adjustment

(c) Spectral remapping
[2]

Fig. 6. Our multi-channel phase unwrapping leads to a frequency-adjusted
image, in (b), that is faithful to the colors of the original photograph, in (a).
The remapping algorithm of Gastal and Oliveira [2], in (c), reduces frequencies
but is not able to correctly preserve colors. Adjustment of α = 0.2. Original
photograph c© Monceau on Flickr.

with∇ϕ̂n(p) and∇ϕ̂m(q), match around the midpoint between
p and q), scaled by a frequency-vector orientation measure.

C. Processing Color Images

Frequency adjustment should be performed in all channels
of a color image, since they have correlated information [14].
Thus, while each color channel has its own phase decompo-
sition (Eq. (3)), their phase functions are unwrapped simulta-
neously, in a single optimization step. Let Ec be the energy
functional from Eq. (16), written for the phase components ϕnc
of a specific color channel c ∈ {R,G,B}. We minimize the
global energy

(ER + EG + EB) + β (XRG + XGB + XRB), (17)

where Xc1c2 are cross-channel phase constraints, between two
channels c1 and c2, and β = 10−3 (chosen empirically). These
new constraints seek similar phase solutions ϕnc1(p) and ϕmc2(p),
for a pixel p, if the measured instantanous frequencies ∇ϕ̂nc1(p)
and ∇ϕ̂mc2(p) are similar, between channels c1 and c2. The
indices n = 1 . . . Nc1(p) and m = 1 . . . Nc2(p) range over all
detected phase components for pixel p at, respectively, color
channels c1 and c2.

The cross-channel constraints Xc1c2 are expressed as

Xc1c2 =

Nc1∑
n=1

Nc2∑
m=1

ηnmc1c2

(
ϕnc1 −∆nm

c1c2σ ϕ
m
c2

)2
, (18)

where ∆nm
c1c2σ(p) determines if there is an expected change

in sign between the gradient vectors ∇ϕ̂nc1(p) and ∇ϕ̂mc2(p).
Similarly, the weight ηnmc1c2(p) measures the similarity of such
vectors, according to their orientations and magnitudes.

As shown in Figure 6, when compared to the color-
processing algorithm of Gastal and Oliveira [2], our multi-
channel optimization leads to fewer color distortions when
used for spatial frequency adjustments.

V. IMPLEMENTATION DETAILS

Eq. (16) or (17) is solved once in a pre-processing step and
the phase values ϕn(p) are stored for subsequent real-time
frequency adjustment. The resulting linear system is sparse and
positive definite, which we solve using a QR factorization from
SuiteSparse [15]. Frequency adjustment by a factor α > 0

is obtained simply by replacing θn with αϕn in Eq. (3). The
resulting frequency-adjusted image is then reconstructed as

hα = sα + d, where sα(p) =

N(p)∑
n=1

Bn(p) cos(αϕn(p)).

(19)
In practice, it is best to compute sα(p) using a neighborhood
Ωp around p. This is achieved through the use of a weighted
reconstruction window w, centered at p and covering Ωp.
This guarantees a smooth reconstruction for sα, even in the
presence of noisy measurements or missing phase values. The
corresponding windowed-reconstruction equation becomes

sα(p) =
∑
q∈Ωp

N(q)∑
n=1

w(p−q)Bn(q) cos (α{ϕn(q) +∇ϕ̂n(q) · (p− q)}) .

(20)
The expression ϕn(q)+∇ϕ̂n(q) ·(p−q) is a first order (linear)
extrapolation of the phase ϕn(q) from q to p, where p · q is the
dot product between the points p and q. In Eq. (20), w is given
by the square of an L2-normalized Gaussian, with the same
standard deviation as the Gabor atoms [2]. A complexity analy-
sis of our algorithm, its comparison against Spectral Remapping,
and a discussion on limitations can be found in the full text.

A. Processing Videos and 3-D Volumes
While one could consider independently applying our method

to the individual frames, this introduces visual artifacts due to
discontinuities in the recovered phases for adjacent frames. A
more robust solution processes the whole 3-D (x, y, t) video
volume at once. For the phase unwrapping pre-processing step,
this is done by adding a new set of linear constraints relating to
the third dimension: that is, simply by considering ◦ ∈ {x, y, t}
in Eqs. (12) and (16) and all associated equations. The resulting
3-D phase functions ϕn(x, y, t) are stored and later employed
for real-time frequency adjustment by combining the frequency-
adjusted components cos(αϕn(x, y, t)) according to Eq. (20)
(windowed reconstruction with a 3-D neighborhood Ωp). As in
the case for images, this process is completely independent per
pixel and can be computed in parallel on a GPU. Furthermore,
this can be done during video playback where only the current
frame has to be reconstructed. The same considerations apply
for processing 3-D volumes in general (3-D scalar fields).

VI. CONCLUSIONS & PUBLICATIONS

In this text we highlighted the contributions from the
M.Sc. dissertation “Real-Time Frequency Adjustment of Im-
ages and Videos”. These contributions were presented at the
Eurographics 2021 conference and published as an article in
the Computer Graphics Forum journal (Qualis A1) [16].

We proposed the first real-time technique for manipulation of
local structured high-frequency content of images and videos.
Our work also contributes a phase-unwrapping technique
to recover the phase of real waves, and a technique for
processing color images for use with frequency adjustments.
By performing frequency adjustment with real-time feedback,
our technique expands the range of artistic and technical
possibilities for image and video processing.
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