
A Vision-based Solution for Track Misalignment
Detection

Koteswar Rao Jerripothula∗
Indraprastha Institute of Information Technology Delhi

New Delhi, India
koteswar@iiitd.ac.in

Sharik Ali Ansari∗
COER

Roorkee, India
kunwar.sharik@gmail.com

Rahul Nijhawan
UPES

Dehradun, India
rahulnijhawan2010@gmail.com

Abstract—Derailment is one of the most frequent ways railway
accidents happen. Track defects such as buckling and hogging
that cause misalignment of tracks can easily lead to derail-
ments. While railway tracks get laterally misaligned due to
buckling, vertical misalignments can result from hogging. Such
misalignments are visibly recognizable, and we can even automate
recognition using data-driven models. This paper discusses how
we build such data-driven models. There are no public datasets
available to build such models; therefore, we introduce TMD
(Track Misalignment Detection) dataset. It consists of misaligned
and normal track images. The problem we try to solve here is
essentially a binary image classification problem, which we solve
by exploring the feature extraction approach to transfer learning
(TL). In this approach, we employ a pre-trained network to
extract rich features, which are then supplied with annotations to
a learning algorithm for building a candidate TL model. Several
pre-trained networks and learning algorithms exist, resulting in
multiple candidate TL models; therefore, it becomes essential
to identify effective ones. We propose an evaluation criterion to
decide which are effective ones using our proposed bias-variance
analysis. Our experiments demonstrate that the candidate TL
models selected based on our proposed evaluation criterion
perform better than other candidate TL models while testing.

I. INTRODUCTION

Derailment is one of the severe problems that the railway
mode of transportation has kept on facing since its inception.
This problem has caused many deaths, injuries, and financial
losses. According to the Association of American Railroads,
train accidents are caused by defective tracks, faulty pieces
of equipment, and human errors. Defects in railway tracks
are of two types: (i) ones that are visible from a far distance,
misalignments; and (ii) ones that need a closer inspection, such
as corrugation of rails, wheel burns, wear and crack on rails,
rusted rails, and loose joints. In this paper, we consider the
defects of the first type. While defects like buckling of the
tracks lead to lateral misalignment, hogging defects lead to
vertical misalignment.

We propose a computer vision solution that can help detect
such misalignments. It can help automate railway inspections
and warn railway drivers of such misalignments from far
away in real-time. More specifically, we develop a data-driven
solution that can classify the incoming images from a camera
(mounted in front of a train or railway inspection vehicle)
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Fig. 1. Our objective is to develop a data-driven solution for detecting track
misalignments using a camera mounted in front of trains or railway inspection
vehicles. While the first track is normal, the second and the third ones
have buckling (horizontal misalignment) and hogging (vertical misalignment)
defects, respectively.

into defective or normal, as shown in Fig. 1. The tracks
having buckling (2nd case) or hogging (3rd case) defects are
recognized as defective.

Despite such misalignments being visible from far away, it
is quite challenging to model them in an unsupervised manner.
For an unsupervised approach, we may have to segment [1],
[2] out the tracks and perform shape analysis, which are very
challenging tasks in a natural setting. Even in the supervised
learning approach, effective feature design/extraction [3] for
this problem remains a big concern. Recently, deep learning
has received great attention in computer vision research, for it
can help computers learn features too. However, taking such an
approach from scratch requires large amounts of labeled data
to successfully train a deep neural network that can generate
rich features and eventually perform the expected predictions.

Interestingly, once a deep neural network is trained, the
same network can also help us solve closely related problems
through transfer learning. Transfer learning requires far less
labeled data than what is needed to learn from scratch. Specif-
ically, we explore the feature extraction approach of transfer
learning, where we use pre-trained networks as feature extrac-
tors to generate the features required for learning algorithms.
However, this approach involves hyperparameters, namely pre-
trained networks and learning algorithms. While we vary these
hyperparameters, we evaluate the resultant models using an
evaluation metric we develop. The main idea is to model
bias and variance errors using training and cross-validation



accuracies and find models with minimum joint error. Since
there is no publicly available dataset on this problem, we
collected several railway-track images and provided ground-
truth labels of whether they are defective or normal tracks. We
call it TMD: Track Misalignment Detection1 dataset.

Our main contributions are as follows: (i) We develop a new
dataset for track misalignment detection. (ii) This is the first
work to develop a vision-based solution for track misalignment
detection.

The remaining sections are arranged in the following way.
First, we will discuss how existing works detect different track
defects. Second, we will discuss the dataset we have built to
solve out track misalignment detection problem. Third, we
will discuss how we select effective TL models. Lastly, we
will discuss our experimental results.

II. RELATED WORKS

Development in technology led to the implementation of
various techniques to prevent train accidents. A robotic stick,
proposed by [4], detects and characterizes rolling contact
fatigue cracks using a combined threshold and signature match
algorithm. The authors of [5] proposed a 3D laser-based
method for detecting abrasion, scratch, and peeling of the
rail surface using k-means clustering and the decision tree
algorithm. Authors in [6] also detect surface defects using a
laser-based 3D model. A different approach that uses Acoustic
Emission (AE) was used in [7] to detect rail defects at high
speed; they used multivariate acoustic noise cancellation to
remove noise from waves at high speed.

There are also some vision-based works. Authors in [8]
proposed to utilize gray-level co-occurrence matrix and LBP
(Localized Binary Patterns) features to obtain texture features,
which can be used to identify whether there is a crack in the
track or not. Another method of crack detection was proposed
in [9] by comparing the rail image with faulty rail track
images. Then, there are railway subgrade defects, which were
identified using Feature Cascade, adversarial spatial dropout
Network, non-maximum suppression, and R-CNN in [10]. The
work proposed in [11] performs real-time detection of rail
surface defects at different speeds using the contour of the
direction chain code on morphologically processed images.
Authors in [12] proposed a method to detect surface defects
by first obtaining only the image of the rail, excluding other
parts of the image using the Canny edge detector, and then
detecting the defect using only the image of the rail using
pre-trained CNN. In [13], authors develop a method to enable
the positioning and classification of the track and fasteners
to detect defects; however, it requires a close view of the
individual tracks. Authors of [14] also deal with fastener
related defects. Although many vision-based solutions have
been proposed, through both hand-crafted features and deep
learning, none focus on detecting track misalignments. Our
paper proposes a solution to this underexplored problem of

1Our TMD dataset can be downloaded from the following webpage:
https://sites.google.com/site/koteswarraojerripothula/neatai-servolab/
track-misalignment-detection-sibgrapi-2021

Fig. 2. Buckling Phenomenon: When there is a development of longitudinal
compressive stress (represented by F), the track starts buckling from its
original position. It is basically characterized by the lateral misalignment of
the track.

Fig. 3. Hogging Phenomenon: It is basically characterized by the vertical
misalignment of the track at the ends. It occurs due to the battering (repeated
hitting) action of train wheels.

detecting misalignments caused by buckling and hogging.
Moreover, many methods require images to have a close view
of tracks, which we do not. We try to detect defects that are
visible from far away.

III. TMD: Track Misalignment Detection DATASET

Our dataset consists of images of two types of tracks:
defective and normal. We especially consider buckling and
hogging defects.

Buckling is characterized by lateral misalignment of railway
tracks, as illustrated in Fig. 2. It occurs due to the longitudinal
compressive stress that builds inside the rail due to the
difference in the temperature compared to the RNT (Rail
Neutral Temperature). RNT is the temperature at which the rail
is in a ”stress-free” state. The weakened condition of the track
and the vehicle load also contributes to buckling, according to
[15]. When a train passes through such a laterally misaligned
track, the train wheel may lose contact with the track, causing
a derailment. Reports in [16], [17] show several derailments
that have resulted due to buckling.

The other defect, hogging, occurs primarily due to train
wheels’ battering (repeated hitting) action. It causes tracks to
bend down at their ends, where the tracks are joined to form
continuity. It results in a dip (a vertical misalignment) at such
joints. This phenomenon can be seen in Fig. 3. When one



Normal                   Defective (Buckling)                  Defective (Hogging)                  

Fig. 4. Sample images from our Track Misalignment Detection (TMD)
dataset.

TABLE I
DISTRIBUTION OF IMAGES IN OUR TRACK MISALIGNMENT DETECTION

(TMD) DATASET

Train Test
Defective Normal Defective Normal

221 223 55 56

such dip occurs in the railway track, the dip causes the train
to bounce. Further, when a train bounces, it pushes the track
downwards while landing. Due to such pressure, another dip
starts to form. In this manner, a sequence of dips is created as
the dip causes the train to bounce [18]. The passage of many
trains causes the formed dips to get deeper and deeper up to
the point where the landing may not be on track, resulting in
a derailment. Such a defect is also called cyclic-top due to the
formation of dips in a cyclic manner. The reports in [19], [20]
discuss several instances of derailments that occurred due to
hogging defects in tracks.

We collected a total of 555 track images for our Track
Misalignment Detection (TMD) dataset from the Internet.
The distribution of images in our dataset is provided in
Table I. While we keep 20% of our data for testing, the
remaining portion is used for training. We carefully select
and crop these images such that they appear to have been
taken from a camera mounted on a train engine or a railway
inspection vehicle. All the images comprise a single track.
We split the images having two tracks into two to have
more samples. We show some sample images of normal
and defective tracks in Fig. 4. All the images have been
resized to 224x224 for consistency. We found some grayscale
images too, which we converted to color by simply repeating
the image data in all three color channels. Our TMD
dataset can be downloaded from the following webpage:
https://sites.google.com/site/koteswarraojerripothula/
neatai-servolab/track-misalignment-detection-sibgrapi-2021.

IV. TRANSFER LEARNING

There are two hyperparameters in the feature extraction ap-
proach of transfer learning (TL), namely the feature extractor

(pre-trained network) and the learning algorithm. As we vary
these TL hyperparameters, we will have several candidate TL
models with different degrees of effectiveness. Our goal here
is to identify the most effective models before we test them. In
this section, we develop a criterion to evaluate these candidate
TL models.

Numerous pre-trained networks can take the role of feature
extractors, such as Inception v3, VGG16, VGG19, and so on.
Let F = {f1, f2, · · · , fm} denote the set of m feature extrac-
tors available for consideration. Similarly, numerous learning
algorithms are available for consideration, such as decision
trees, SVM, logistic regression, etc. Let A = {a1, a2, · · · , an}
denote the set of n learning algorithms we have. In this way,
there are m (feature extractors) × n (learning algorithms) TL
models possible. Out of these m × n TL models, some TL
models will be very effective. These models should have low
bias and variance errors. To quantify this observation, we need
to model these errors.

A. Bias Error

A TL model is likely to have high bias error when it is too
simple and performs poorly during training and validation.
[Note: We use cross-validation strategy for validation]. So
the error is inversely proportional to these accuracies. If we
assume the relationship to be inverse of exponential, for a
given fi and aj , we can model bias error in the following
manner:

B(fi, aj) ∝ e−T (fi,aj)e−V (fi,aj) (1)

where B(fi, aj) denotes the bias error and T (fi, aj) and
V (fi, aj) denote the training and validation accuracies, respec-
tively, for the TL models built using fi and aj . By modeling
bias errors in this way, we can expect its value to be minimum
when both the accuracies are high, and maximum when both
the accuracies are 0.

B. Variance Error

A TL model will have a high variance error when it is not
general and tends to be too specific to the training data. Similar
to the bias error discussed above, we again consider training
and validation accuracies to model the variance error. A model
that generalizes well should get similar accuracies during
training and validation. Therefore, the higher the similarity
between the two accuracies, the smaller the variance error.
Thus, for a given fi and aj , we can model variance error
(denoted by S(fi, aj)) in the following way:

S(fi, aj) ∝ e(T (fi,aj)−V (fi,aj)), (2)

which ensures that the value will be minimum only when
T (fi, aj) = V (fi, aj), which means the model has generalized
well. In contrast, if there is a high difference, the error will
also become high.

C. Joint Error

Both the above discussed errors are important, and they
need to be jointly minimized. We combine these two errors



TABLE II
OUR TRAINING ACCURACY T (·), CROSS-VALIDATION ACCURACY V (·) AND EVALUATION METRIC VALUE X(·) OBTAINED FOR DIFFERENT DIFFERENT

TL MODELS. FROM THIS TABLE, THE APPROACHES HIGHLIGHTED IN BLUE ARE SELECTED AS THE MOST EFFECTIVE ONES BASED ON OUR EVALUATION
CRITERION (7).

a\f Inception v3 SqueezeNet VGG16 VGG19
T (f, a) V (f, a) X(f, a) T (f, a) V (f, a) X(f, a) T (f, a) V (f, a) X(f, a) T (f, a) V (f, a) X(f, a)

kNN 0.948 0.890 0.905 0.917 0.867 0.880 0.935 0.892 0.903 0.914 0.874 0.884
DT 0.973 0.739 0.798 0.982 0.840 0.876 0.993 0.824 0.866 0.977 0.840 0.874
SVM 0.993 0.917 0.936 0.991 0.914 0.933 0.980 0.910 0.928 0.986 0.890 0.914
SGD 1.000 0.930 0.948 1.000 0.930 0.948 1.000 0.935 0.951 1.000 0.932 0.949
RF 0.993 0.854 0.889 0.991 0.865 0.897 0.998 0.899 0.924 0.993 0.887 0.914
NN 1.000 0.937 0.953 1.000 0.939 0.954 1.000 0.948 0.961 1.000 0.941 0.956
NB 0.851 0.829 0.835 0.867 0.856 0.859 0.880 0.863 0.867 0.881 0.840 0.850
LR 1.000 0.926 0.945 1.000 0.932 0.949 1.000 0.948 0.961 1.000 0.944 0.958
GB 1.000 0.887 0.915 1.000 0.908 0.931 1.000 0.921 0.941 1.000 0.921 0.941
AB 1.000 0.793 0.845 1.000 0.842 0.882 1.000 0.863 0.897 1.000 0.831 0.873

by multiplying them, as shown below, to obtain what we call
joint error ε(·):

ε(fi, aj) = B(fi, aj)
α × S(fi, aj)β (3)

where α and β having 0-1 range represent weights given to the
two errors. If this joint error is low, we can consider the TL
model to be very effective. Let the proportionality constants
for the Eqns.(1) and (2) be ρb and ρs, respectively. Now, when
we substitute the two errors in Eqn.(3), we get the following
relationship:

ε(fi, aj) = ραb ρ
β
s e

−α
(
T (fi,aj)+V (fi,aj)

)
+β

(
T (fi,aj)−V (fi,aj)

)
(4)

Remember that ρb,ρs, α and β are all constants. Hence, the
term ραb ρ

β
s has no role to play when we try to minimize the

error. Hence, only the exponential term remains for minimiz-
ing.

D. TL Model Selection

We can achieve our objective of finding the most effective
TL models by minimizing the exponential term of Eqn.(4),
which means maximizing the negative of its exponent. Hence,
this negative of the exponent becomes our evaluation metric.
The higher the value, the better. Therefore, let X(·) denote
our evaluation metric, which can be expressed as follows, after
rearrangement of the terms involved:

X(fi, aj) = (α+ β)V (fi, aj) + (α− β)T (fi, aj). (5)

Now, if we want to have the 0-1 range for X , just like T
and V , we need to have the sum of the coefficients of training
and validation accuracies to be one, which results in α = 1

2 .
Hence, the final expression of X becomes the following:

X(fi, aj) = (
1

2
+ β)V (fi, aj) + (

1

2
− β)T (fi, aj), (6)

where if we set β also to 1
2 , our evaluation criterion will then

just rely on validation accuracy. Sometimes, validation accu-
racy alone can be misleading, when the number of samples is
too small, which can happen in TL. Therefore, we set β as
0.25 as the default value to ensuring that V has 0.75 weightage
and T has at least 0.25 weightage.

TABLE III
CLASSIFICATION ACCURACIES OF DIFFERENT TL MODELS ON TEST SET.

ONLY 4 (SHOWN IN RED) OUT OF 33 UNSELECTED MODELS COULD
CROSS/TOUCH THE AVERAGE OBTAINED BY OUR EFFECTIVE TL MODELS

(SHOWN IN BLUE).

Inceptionv3 SqueezeNet VGG16 VGG19
kNN 0.838 0.811 0.865 0.829
DT 0.712 0.775 0.838 0.820
SVM 0.910 0.874 0.901 0.910
SGD 0.937 0.892 0.937 0.919
RF 0.820 0.856 0.856 0.847
NN 0.946 0.874 0.928 0.928
NB 0.847 0.793 0.820 0.865
LR 0.946 0.901 0.919 0.901
GB 0.901 0.856 0.928 0.883
AB 0.775 0.775 0.811 0.829

Now that we have an expression for our evaluation metric
X(·), we can find effective candidate TL models based on the
following criterion:

X(fi, aj) > (mX + sX) (7)

where mX and sX denote average and standard deviation of
all the X scores available.

V. EXPERIMENTAL RESULTS

A. Evaluation Metric (X) Scores

As mentioned earlier, we consider two transfer learning
hyperparameters: feature extractor and learning algorithm.
Specifically, we use Inception v3 [21], VGG-16 [22], VGG-
19 [22] and Squeezenet [23] as possible feature extractors,
pre-trained on ImageNet. As far as the learning algorithms
are concerned, we use Ada Boost (AB), Decision Tree (DT),
k-Nearest Neighbors (kNN), Neural Networks (NN), Logistic
Regression (LR), Naive Bayes (NB), Gradient Boosting (GB),
Random Forests (RF), Stochastic Gradient Descent (SGD) and
Support Vectors Machine (SVM) algorithms. Hence, we end
up developing 4 × 10 = 40 TL models using our training
subset, and we need to select the most effective ones based
on the criterion given in Eqn.(7). The training and validation
accuracies of each candidate TL model is given in Table II.
By accuracy, we mean classification accuracy. We also report



Fig. 5. Sample test images that have been correctly classified as defective by our best TL model InceptionV3+NN.

the corresponding values of our X(·) scores. We obtain the
threshold value mX + sV equal to 0.9508 from these scores.
Out of these 40 TL models, a total of 7 models satisfy our
selection criterion (7) and have been shown in blue. The seven
selected TL models are InceptionV3+NN, SqueezeNet+NN,
VGG16+SGD, VGG16+NN, VGG16+LR, VGG19+NN and
VGG19+LR.

We conduct all our experiments using Python’s Orange
library. To have reproducible results without much difficulty,
since there are 40 TL models, we simply use the default
settings of its functions. For example, ‘k’ in the k-fold cross-
validation (used for obtaining validation scores V ) is 5.
Similarly, ‘k’ in the kNN learning algorithm is also 5. We
encourage readers to refer to Orange’s widget catalog2 to know
more about these default settings.

B. Test Results

Having obtained the most effective TL models, let’s com-
pare them (shown in blue) with other TL models in terms of
test accuracies given in Table III. As it can be seen, most
of the other TL models have test accuracies less than the
average test accuracies of the selected TL models. The average
is 0.919, and only 4 (shown in red) out of the remaining 33
TL models could cross/touch that mark. Among the models we
selected, InceptionV3 + NN performed the best. We provide

2https://orangedatamining.com/widget-catalog/

Fig. 6. Correlation Coefficient (between X scores and test results of a feature
extractor for different learning algorithms) while varying the variance error
weight (β)

the images correctly classified as defective and normal by this
TL model in Figs. 5 and 7, respectively. As it can be noted, it
has classified them quite well. We also provide the confusion
matrix for the test results of this model in Fig. 8. As can
be seen here, only six images got misclassified out of 111.



Fig. 7. Sample test images that have been correctly classified as normal by our best TL model InceptionV3+NN.

Fig. 8. Confusion Matrix of our best TL model InceptionV3+NN in the test
phase. Only 6 out of 111 images got misclassified.

Out of these 6, 5 of them have been wrongly classified as
normal when they were actually defective. One reason why
such a thing can happen is that the network can get confused
between buckling and turning tracks in some rare cases.

C. Correlation between X and Test Results

If Fig. 6, given a feature extractor, we report different corre-
lation coefficients obtained as we vary β. Here, the correlation
coefficient represents the correlation between our X scores
and different test results obtained by a feature extractor for

different learning algorithms. It can be seen that there are
different values of β at which different feature extractors find
the maximum correlation. Hence, assuming β = 0.5, i.e.,
considering validation accuracy alone is not necessarily the
optimal approach of selecting effective TL models. It might
be better to give some weightage to training accuracy too in
finalizing TL models, as we did. Also, the choice of β can
vary across the applications. If we don’t expect much variation
of images in an application such as this, β, the weight for
variance error, can be on the lower side. That’s another reason
why we choose β = 0.25.

CONCLUSION

We develop a vision-based solution to detect railway track
misalignments, both horizontal and vertical. The goal is to
identify a couple of effective transfer learning (TL) models
and then test them. First, we develop a novel dataset named
TMD: Track Misalignment Detection3, comprising images of
defective and normal tracks. Then, we identify seven very
effective models with the help of bias and variance errors
modeled using training and validation accuracies. Out of
these seven, the InceptionV3+NN model gave us the best test
accuracy, around 94.6%.

3Our TMD dataset can be downloaded from the following webpage:
https://sites.google.com/site/koteswarraojerripothula/neatai-servolab/
track-misalignment-detection-sibgrapi-2021
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