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Abstract—Exploring digital libraries of scientific articles is an
essential task for any research community. The typical approach
is to query the articles’ data based on keywords and manually
inspect the resulting list of documents to identify which papers
are of interest. Besides being time-consuming, such a manual
inspection is quite limited, as it can hardly provide an overview of
articles with similar topics or subjects. Moreover, accomplishing
queries based on content other than keywords is rarely doable,
impairing finding documents with similar images. In this paper,
we propose a visual analytic methodology for exploring and
analyzing scientific document collections that consider the content
of scientific documents, including images. The proposed approach
relies on a combination of Content-Based Image Retrieval (CBIR)
and multidimensional projection to map the documents to a
visual space based on their similarity, thus enabling an inter-
active exploration. Additionally, we enable visual resources to
display complementary information on selected documents that
uncover hidden patterns and semantic relations. We show the
effectiveness of our methodology through two case studies and
a user evaluation, which attest to the usefulness of the proposed
framework in exploring scientific document collections.

I. INTRODUCTION

A major component in scientific research is the compilation
of pertinent literature, a task typically performed by querying
various academic sources, e.g., articles, surveys, reviews,
books, and thesis/dissertation stored in digital libraries. For
instance, well-known repositories such as IEEE Xplore, ACM
DL, and ArXiv enable the traditional searching paradigm
where users perform queries based on keywords, resulting
in a list of textual snippets containing the title, authors, and
other information summarizing the content of each document.
Users must manually inspect the snippets to find documents
of interest; digital libraries do not provide resources to gather
documents based on their content, making the literature compi-
lation a tedious and time-consuming task. Moreover, resources
to perform queries from images, tables, and charts are not
available, impairing the search for content other than text.
The image-based query has been widely used in Content-
based Image Retrieval (CBIR) systems and could also be
employed to support the exploration of scientific literature
libraries. Performing queries based on images and other non-
textual content can make it possible to answer questions such
as: “Which are the typical images in papers from this author?”,

*Matheus Viana is no longer filliated to IBM Research.

“Which articles have images similar to this one?” or even “Is
this image similar to any other published?”.

Another critical issue in exploring scientific literature is how
to enable visual resources that render the analysis of multiple
document collections an easier task. Some academic search
engines such as Microsoft Academic Visual Explorer and
Google Scholar enable visual representations for co-authorship
analysis and citation evolution over time. Besides being quite
limited, the visual resources enabled in those tools are not
linked to queries mechanism, what considerably restricts the
scope of any exploratory analysis. There are also alternatives
to replace the regular list of textual snippets with some
visualization-oriented representations, mainly in the context
of web search result analysis [1], [2]. However, despite the
effectiveness demonstrated by these methods, they have not
been introduced into digital libraries for exploring articles yet.

In this work, we propose an interactive visualization tool
for exploring large collections of scientific documents. Called
DRIFT (Document exploration based on Image and textual
Features), the proposed methodology combines core CBIR
functionalities with an interactive multidimensional projection
mechanism that identifies documents with similar content,
including images. In contrast to existing systems, our approach
enables several exploratory and visualization resources that
make complex analysis doable, increasing the user’s ability to
perform complex searches and analyses.

In summary, the main contributions of this work are:
• A methodology that combines content-based image re-

trieval mechanisms, multidimensional projection, and vi-
sual analytic tools into a single framework that handles
documents based on their textual and image content.

• A visual analytic tool called DRIFT, which implements
the proposed framework to enable customized exploration
of large collections of scientific documents.

• Two case studies and a user evaluation that demonstrate
the utility and effectiveness of our methodology.

II. RELATED WORK

We organize our review on methods that explore scientific
publication collections in three main categories:
Citation based methods focus on uncover citation and
research collaboration patterns [3]–[5]. Liu et al. [6], for
instance, search for citations in a specific paper and build



a tag cloud to intuitively conveying which part of the paper
each citation refers to. Yan and Ding [7] analyze six different
types of scholar networks (coupling, co-citation, topic, co-
authorship, co-word) aiming a better understanding how they
are related. Cite2vec [8] uses word embeddings for document
exploration based on the context in which they are cited.
Textual content-based methods employ text processing
strategies to establish similarities among documents. For in-
stance, Action Science Explorer (ASE) [9] is a system that en-
ables interactive analysis of a paper collection through linked-
views, identifying key papers, topics, and research groups. The
integration between text analysis and citation context turns
ASE an informative representation. However, the visualization
suffers from the problem of occlusion, as textual labels can
overlap. Survis [10] is a visual analytic system designed to
analyze and disseminate literature databases. A set of linked-
views allows users to explore citation relations over time.
One remarkable feature is the use of an interactive selector
for enriching visualizations, providing a visual mechanism for
ordering and filtering publications. Literature Explorer [11]
uses standard components such as trees and theme river to
detect thematic topics to support document retrieval, avoiding
that the number of topics has to be pre-defined.
Image-based methods aim to extract and processing images
from scientific documents, which are then employed to query
and compare scientific documents. One of the few image-based
approaches described in the literature is the work by Deserno
et al. [12], which makes use of images with annotated words
to query and group medical documents, reporting a gain in
the quality of the query due to the use of images. In fact, the
benefit of using images to enrich the querying process has also
been reported by Muller et al. [13], showing that the relevance
of documents retrieved from text and images is higher than
using only textual queries. Commercial tools also are part of
this group, as the case of Pinterest [14], and Alibaba [15],
which faces the big challenge of searching into large image
collections by using deep neural network models.

In a lower number, some approaches are devoted to combin-
ing two or more methods. For instance, Felizardo et al. in [16]
uses graphs and edge bundles to understand how a network of
articles references each other in the collection while examines
the textual content by using a multidimensional projection
method. However, it falls in a visual occlusion when it scales in
number of documents, especially in its citation map, impairing
the exploration of large datasets. PaperVis [17] presents a
mixed representation based on keywords and citations for
exploring scientific papers. Despite that, none of them allow
us to manipulate these interactions from the user activity to
generate new insights and supporting the exploration task.

The method proposed in this work combines the last
two approaches discussed above, enabling interactive linked-
components to efficiently uncover hidden relation patterns in
scientific document collections. Moreover, DRIFT allows ana-
lysts to restore and compare previous states of their interaction,
helping the construction of insights from different selections.
DRIFT turns out to be useful in several tasks, as the quick

identification of papers of interest and analysis of their content.

III. GOALS AND ANALYTICAL TASKS

To define our goals, we had a series of meetings with
multiple researchers with 5 to 15 years of experience. Also, we
conducted an exhaustive literature review to evaluate available
systems for scientific literature exploration. As a result of this,
we came up with a set of goals and analytical tasks that guided
our tool design.

A. Goals

Below we describe the four objectives that lead to the
development of our tool.
G1. Support exploration of scientific documents collections.
Available digital libraries offer limited tools for analyzing
scientific documents since their exploration relies on the
accuracy of its search engine for retrieving relevant documents.
However, researchers could not have exact inputs for perform-
ing accurate queries, requiring an exploratory analysis to know
about the collection and extract significant insights. Our goal
is to build a visual analytic tool that enables scientific docu-
ment collection exploration by combining a set of interactive
resources and allowing the analyst to identify documents of
interest. In this way, digital libraries might benefit from this
proposal.
G2. Integrate image and textual content. Most scientific
literature exploration tools focus on text to organize docu-
ments — e.g., text matching, citation networks — preventing
the exploitation of several features available in scientific
papers. Thus, one main goal for our project is to build a tool
to perform a multimodal exploration. For that, we wish the
analyst to query for both image and textual content to led the
exploration process.
G3. Understand metadata and topics in documents groups.
Researchers are quite familiar with reviewing document meta-
data — e.g., authors, publisher, and publication date — since
it provides additional information to decide about document
relevance. Likewise, recognizing topics rapidly from document
groups enhances analysts’ capabilities to review more litera-
ture. We identify this goal as an opportunity for improving the
manner how researchers can effectively extract insights from
document collections while interactively refine their search
criteria.
G4. Support literature review task. Exploring and analyzing
scientific literature end up in customized collections containing
relevant documents for the analyst. These collections organize
references according to specific interests and motivations. For
instance, support the writing of the Related Work section for
an article or prepare a bibliography for a curricular syllabus.

B. Analytical Tasks

After understanding the goals of the project, we define the
set of analytical tasks that our tool must support.
T1. Image similarity queries. Given a query image, we
want our tool to be able to retrieve a set of images ranked
by similarity. These results allow the analyst to discover



documents associated with the retrieved images. This task
supports goals G1 and G2.
T2. Group documents based on image and textual content.
Enable analysts to group documents and create collections
considering both textual and image content. This task allow
us to achieve goals G1 and G2.
T3. Selecting and filtering collections. Allow the analyst to
select a document collection and filter its content according to
his/her search criteria. This task allow us to achieve goals G1
and G2.
T4. Compare document collections. Enable topics and meta-
data analysis in document collections created by the analysts.
Moreover, our tool must facilitate comparison between docu-
ment collections to identify similarities among them. This task
gives support to goal G3.
T5. Storing and managing document collections. Each time
an analyst creates a document collection, he/she must be able
to save it. Moreover, users should have access to the stored
collections to perform operations such as querying, retrieving,
and merging. This task allow us to achieve goals G3 and G4.
T6. Exporting customized document collections. After
the exploration process, the analyst should be able to export
his/her results into a human and machine-readable format. This
task allows us to achieve goal G4.

IV. DRIFT

DRIFT is a visualization tool designed to support analy-
sis and exploration of large scientific document collections,
revealing the similarity between document contents while
enabling interactive resources to store and recover intermediate
steps of the exploratory analysis. DRIFT’s methodology, illus-
trated in Fig. 1, comprises three main steps: (i) extraction and
processing of each document, (ii) interactive exploration using
both image and textual information, and (iii) visual analysis
of selected document subsets.

DRIFT allows the analysts to choose the number of images
to be used for querying as well as the number of images
to be retrieved by the CBIR components. Each component
brings a set of documents associated with the images, i.e., the
documents that contain the retrieved images as part of their
content. The associated documents are considered as control
points to guide the multidimensional projection process, which
is responsible for mapping the documents based on their
similarity to 2D visual space. Textual features are only used
to accomplish the projection. Thus, using images of interest
users can find relevant documents that are then used to drive
an exploratory analysis. Additionally, we implement visual
resources to support analytical tasks, i.e., author-frequency,
and year-frequency histograms as well as a topic-based word-
cloud. A streamgraph component, named as Selection Visual
Manager, helps to save and display intermediate steps of the
exploratory analysis. Such intermediate steps, called states,
can be recovered, compared, and employed to generate new
states, which can be downloaded as subsets of documents.

We design these visual components to achieve the identified
goals. All components address at least one analytical tasks
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Fig. 1: An overview of our proposed three-step methodology.

TABLE I: Methodological and analytical properties and their
related tools.

T1 T2 T3 T4 T5 T6
Multi-CBIR View •
Multidimensional
Projection View

• •

List-based Selection Re-
finement View

• • •

Selection Content Summa-
rization View

• •

Selection Inspector View • •
State Manager View • •

described in Section III-B. Table I details the relation between
the visual resources and analytical tasks (T1-T6 columns).

A. Content Extraction and Processing

We used ArXiv® digital library and the e-proceedings of
a well-known conference in visual computing from 2011 to
2014 as the document collections to be handled by DRIFT.
The keywords used as well as the number of images contained
in each category is described in Table II.
Content Extraction. The tool pdf2text from Poppler library
is applied to convert the textual content of PDF files into
ASCII text files. The tool pdfimage also from Poppler library
is used to convert pages of PDF documents into 8-bit PNG
image files. The PNG files are input into an image processing
pipeline to extract figures contained on each page. We use the
global Otsu method [18] to binarize the PNG files, searching
for components in the resulting binary images.
Text Processing. We adopt simple but robust textual pro-
cessing to perform this task. In summary, ASCII files as-
sociated with each document are processed to extract term
frequency vectors. Additionally, we performed a conventional
text processing filtering — i.e., stemming, stop word removal,
and definition of Luhn’s lower and upper cuts — ending with
a tf-idf vector representation of each document. We process
only the abstract rather than the full content of each document
to reduce the computational burden.
Image Features Extraction. We relied on AlexNet [19]
architecture pre-trained on the ImageNet dataset. Unlike the
original network architecture, we changed the last layer from
1000 to 5 neurons. It was done to fine-tune on our first dataset
(DT1) which consisted of 5 categories. Then, we modified the
learning rate of the last layer by a factor of 10; this allows the
back-propagation to have a high effect on the last layer and
a slight impact on the previous ones. Finally, it run 50,000
iterations with a momentum of 0.9 and a base learning rate
of 0.001. The features extracted from the last fully connected



TABLE II: Datasets used for our study

ID Query # Articles # Images Source
seismic 274 5,002
market 273 2,772

DT1 gravitational 274 3,082 ArXiv
disease 274 3,795

gene 274 3,731
Proceeding 2011 45 1,010

DT2 Proceeding 2012 45 1,195 IEEE
Proceeding 2013 36 869 Xplore
Proceeding 2014 45 1,033

computer graphics 95 2,010
DT3 image processing 93 1,922 ArXiv

computer vision 96 2,732

layer is a vector of 4,096 elements. For the other two datasets
(DT2-3) we did not fine-tune the CNN because the images
did not contain classes, that is why we extract the feature of
these two datasets using the model already trained with DT1.
Note that although we are doing fine-tuning in a classifier,
our goal is not to use the classifier output, but to refine and
extract the characteristics for our problem. To avoid the curse
of dimensionality, we additionally reduce the feature vector
dimension to 50 using PCA.

B. Multi-CBIR and 2D Mapping

In the following, we describe the two main views that
lead the exploration process and how they are integrated for
interactively finding key documents.
Multi-CBIR view. Traditionally, a CBIR mechanism returns
a similarity-based ordered list of images by querying one
specific image. The similarity can be defined as a distance
measure between feature vectors. In our implementation the
CBIR retrieves a user-defined number of similar images,
which are displayed next to the query image in an image
board, as illustrated in Fig. 3a. Up to five queries can be
performed simultaneously using different input images. On
the image board, images belonging to the same document are
highlighted when the user hovers a specific image, fading out
the remaining images. The exploration starts in this view.
Multidimensional Projection view. Textual information from
each document gives rise to a high-dimensional vector that
represents the document. In order to interactively explore
the documents based on their similarity, we map the high-
dimensional vectors to a 2D visual space using a multidimen-
sional projection method. Specifically, we use Local Affine
Multidimensional Projection (LAMP) [20] due to its interac-
tive capability and good performance in terms of accuracy.
This method uses a reduced number of sample points (called
control points) to drive the mapping of the remaining data
instances into the visual space. LAMP makes it possible to
interactively positioning control points on the visual space,
updating the projection layout according to user intervention.
This main feature is decisive for our choice of using LAMP
over any other local multidimensional projection method. This
view is located in the middle of the interface, as shown in
Fig. 3b.
Finding Key Documents. DRIFT combines multi-CBIR and
multidimensional projection views to enable an interactive
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Fig. 2: Finding key documents by the combination of both
Multi-CBIR and Multidimensional Projection views.

exploration of document collections. As illustrated in Fig. 2
a user query for images using the CBIR component and (a)
our system retrieves multiple set of images based on image
queries, (b) automatically it selects the documents where
retrieved images are contained, (c) these documents are used
as control points by our multidimensional projection view for
mapping the entire document collection where the parameter α
can be tuned between zero and one forcing LAMP to perform
a more local or global mapping, respectively, (d) according
to his/her interests the analyst repositions the control points
to customize groups, and finally (e) the entire collection is
reprojected based on such reposition.

C. Visual Analysis

A main functionality of our methodology is the interactive
selection of subsets of scientific documents. The user can
select a subset of articles by drawing a polygon around points
(documents) of the projection. The borders of the points
selected will be colored in red. Each time the analyst selects
a subset of documents, linked-views are updated showing
relevant information from the selected documents. Relevant
information is depicted in the following visual components:
List-based Selection Refinement view. This component
shows the list of selected documents, depicting the title and
DOI, where the later is linked to the original publication page.
Particular documents can be removed from the list by clicking
in the trash button, as shown in Fig. 3c.
Selection Content Summarization view. Once a group of
documents is selected, three visual summarization widgets are
updated to show relevant content from the selected subset.
Specifically, the visual summarization widgets show author-
frequency and publication-year frequency histograms, and
topic wordcloud, as shown in Fig. 3d. Those widgets provide
an overall view of most-cited authors, topics discussed, or
which period comprises the larger number of publications.
Selection Inspector view. The process of selecting documents,
inspect their summary to choose the most relevant ones
is typically accomplished several times. The final subset is
the merging of documents that remains at the end of each



Fig. 3: An overview of DRIFT views: (a) Multi-CBIR, (b) Multidimensional Projection, (c) List-based Selection Refinement,
(d) Selection Content Summarization, and (e) Selection Inspector.

iteration. Aiming to facilitate such an iterative process, we
employ an interactive streamgraph metaphor that stores the
documents, images, and authors resulting from each itera-
tion cycle. The number of documents, images, and authors
are represented as streamgraph layers — orange, red, and
turquoise, respectively — and each iteration cycle is marked
with three vertically aligned dots in the layout, as illustrated in
Fig. 3e. This widget allows to recovering a state saved during
the analytical process, supporting to restore relevant articles
identified during any cycle. Indeed, the widget enables a wide
range of operations over, e.g., compare, combine, or delete the
result of any iteration cycle.
State Manager view. Suppose that during the exploratory
analysis two states (SA and SB) are produced. After selecting
these two states from the streamgraph and click on the
“compare” button a modal window shows up, as illustrated in
Fig. 4. To compare the content of two states, we implement this
view (inspired in [21]), which performs set operations on states
SA and SB : intersection (Fig. 4a) and difference (Fig. 4b-c).
The result of a set operation (Fig. 4d) can be saved as a new
state in the streamgraph. On the bottom part of the modal
window, under title Selected, the title of chosen documents are
displayed. Once the New state button is selected, a new state
will be added to the streamgraph. The user can also export the
filtered documents as .json file containing the selected article
titles and their respective web links.

Our prototype is developed in JavaScript, using D3.js library
what should make it possible to plug DRIFT into digital
libraries running on Web. The preprocessing steps such as
feature extraction are speeded up using C++ libraries.

a

b

c

d

Fig. 4: Comparing two different states of user interaction by
using the State Manager View.

V. CASE STUDIES

We propose two scenarios to assess DRIFT’s effectiveness
in terms of exploration of a scientific document collection.

A. Exploring the DT1 Dataset

For a fuller understanding of the step-by-step performed
in this case study, support your reading by watching the
supplementary material. Suppose we are looking for articles
related to gravitational waves associated with supernovae. We
start the exploratory analysis by performing queries from two
images related to the topic of interest.

To emulate the behavior of an analyst, we selected two
inputs knowing a priori that they appeared in articles that
talk about the topic of search. The first input image is related
to a novel gravitational-wave signature in supernovae and we
decided to retrieve up to six images from CBIR. Images after
the sixth do not belong within the domain we are looking
for. We found three articles related to seismic features and
gravitational waves. Using the second input image and setting



the number of retrieved images to nine the search results in
five documents.

Eight documents, used as control points,
drive the mapping of the document collection.
The inline figure illustrates the
entire process displaying the re-
sulting streamgraph. In the first
state, the projection displays two
sets, the blue and the red control
points on the right and the left
side, respectively. Complementary components, such as the
wordcloud, summarize the selection with the words “grav-
itational”, “frequency” and “scattering”. In the same way,
the second state is the selection of points on the left side. In
the state 5, the inner region of the projected point cloud is
selected, revealing a broader range of topics published from
2007 to 2016.

States 6 to 9 comprise different document selections on the
same projection. State 10 combines eight relevant articles from
states 8 and 9. On the state 12, documents on the rightmost
region of the projection layout are associated with topics
of interest. However, some documents clutter the analysis,
so we resort to the managing states tool to compare the
current and the ninth state. The resulting analysis gives rise
to a subset of nine documents saved in the thirteenth state,
which are mostly related to “gene”, “data”, and “model”.
Finally, we decided to combine the two states deemed most
relevant for our analysis, the eleventh and thirteenth states.
We use one last time the managing state tool, resulting in a
set of articles closely related to the topics of interest, namely
“gravitational”, “wave”, “simulations”, “scattering”, which
have been published in 2011, 2013, 2015, and 2016, this later
with a larger number of publications. The merged states are
export as a JSON file for future analysis and readings.

B. Exploring the DT2 Dataset

In the second case, we aim to find articles related to 3D
models (see Fig. 5) starting with five query images. We chose
four of them by their explicit relation to our target, and the last
from another topic, i.e., a common picture in the context of
image processing. The main purpose of using such an image is
to employ it to properly drive the multidimensional projection,
pushing unrelated articles towards this control point.

The initial projection places most instances in the middle
of the layout, as illustrated in Fig. 5a. The list of titles —
shown with the interactive selector — allow us to identify that
documents of peripheral regions belong to distinct topics, see
Fig.s 5b and 5c, respectively.

The interaction between control points and images of CBIR
enables the identification of relevant control points. Therefore,
we can rearrange the projection by moving a blue control
point to the bottom-left, and the red to the right, as shown
in Fig. 5d. The content of the wordcloud reveals terms as
“face”, “reconstruction”, “skull”. Also, in Fig. 5e we gather
red, blue, and violet control points, and select them and their
neighbors. Both selections reveal two configurations, in Fig. 5d

we group some documents about 3D mostly, while Fig. 5e
depicts images and words conveying image processing context.

Then, we aim to explore the content in some different
regions of the projection, so after one more interaction, we
found two groups for analysis. In Fig. 5f we highlight (orange
and purple borders) these selections which contain partially
related articles to our search. Both of them were stored in
Selection Inspector View as states 2 and 3 respectively, as
illustrated in Fig. 5g. After interacting in our State Manager
View we filtered a few articles to compose a new state, stored
as state 4.

By simple inspection, we can notice that most of the
retrieved articles depict similar textual content to the selected
control points. We store this new selection as state 5. Then,
we decide to analyze the contribution of one of the orange
points, which talks about curves on surfaces, so we drag it
towards the middle region, bringing with it the most similar
documents, as illustrated in Fig. 5j. As can be noticed, the
neighbors talk in general on geometry processing for surfaces,
which is close, but not completely, related to our search. We
store this selection as state 6. We opt to compare the states
“0” and “1”, since they were not carefully explored yet. In
Fig. 5k, the State Manager view shows two selections without
intersections. We found four useful articles for our purposes
inspecting titles, authors, and contained images We store them
into state 7.

Finally, we compare the states 5 and 7. We found two
selections without intersection but containing four articles
highly relevant to our study, as illustrated in Fig. 5l. At the end
of our exploration, we have produced three states containing
scientific articles that allow us to extract related methods to 3D
modeling in computer graphics, i.e., fourth, sixth, and eighth
states. As can be noticed, we successfully discriminate such
articles, even in a highly related-topic collection, by using
images and textual information included in each article.

VI. USER EVALUATION

We conducted a controlled user evaluation to assess whether
DRIFT enables the discovery of documents of interest plau-
sible time in comparison with the list-based traditional
paradigm. The evaluation follows a four-step procedure: (1)
Introduction, we gave a brief explanation of the purpose of the
study to the participants. (2) Tool exposure, we show the par-
ticipants the functionalities in DRIFT. (3) User familiarization,
participants had 10 minutes to play with the tool, exploring
a synthetic collection. And (4) Evaluation, we invited the
participants to perform a specific search activity.

We set-up two search activities (named A1 and A2) by using
two questions detailed in Table III. All activity involved an
analytical procedure from the DT3 dataset, detailed in Table II.

For this study, we invited six users experienced in literature
systematic review — four with a master’s degree and two with
a doctoral degree — working on image processing, machine
learning, or visualization from different research institutions.
We split the participants into two groups, group GR1 contain-
ing users 1 to 3 (U1-U3), and group GR2 users 4 to 6 (U4-U6).



Fig. 5: Summarizing interactions in the case study on DT2: (a) input images and initial projection, (b-k) multiple interactions
that include point reposition, comparison among states and inspection of visual resources, and (l) final selection.

Both groups performed the search activity (A1) using DRIFT
and list-based paradigm respectively. Later, they performed
the second activity (A2) inversely. We implement a list-based
interface emulating traditional scientific repositories. Before
our interface display all documents from DT3, we ranked them
extracting the content from their abstracts and performing a
string matching algorithm with the terms “face rendering”,
and “volumetric human people”.

TABLE III: Proposed activities, questions, and group distribu-
tion to user evaluation.

Activity
Target Question DRIFT List

A1 Identify a
particular
group of
documents

How many and which docu-
ments use human faces for ren-
dering?

GR1 GR2

A2
How many and which docu-
ments address volumetric rep-
resentations of human body?

GR2 GR1

This study verified the following hypothesis:
• Users of DRIFT will spend less time to answer questions

that require a global analysis of the corpus, with no
significant loss in precision.

We computed Precision and Recall to evaluate the relevance
of document retrieved. Additionally, we stored the elapsed
times taken to accomplish A1 and A2 activities. Results are
shown in Table IV. In A1, by the list-based approach, re-
searchers obtained a significantly lower performance in terms
of all measures. The difference between the best precision
value for list-based and the worst for DRIFT is close to 0.22,
and even that U1 performs perfectly the test, obtaining a
precision of 1. However, the elapsed times show the users
spent almost the same time (close to the average value) to
perform this task.

TABLE IV: Precision (Pr), Recall (Rc) values and spent times
(t) in minutes obtained by the six participants in A1 and A2.

list-based DRIFT
Pr Rc t Pr Rc t

A1
U4 0.20 0.20 12:08 U1 1.00 0.60 7:38
U5 0.28 0.40 12:39 U2 0.80 0.80 7:34
U6 0.33 0.20 12:02 U3 0.55 1.00 16:11

A2
U1 0.75 0.37 13:55 U4 0.75 0.09 6:27
U2 0.28 0.63 10:28 U5 0.75 0.09 9:08
U3 0.25 0.63 23:12 U6 0.70 0.09 9:29

Avg 0.35 0.41 0.76 0.45

On the other hand, U1 and U2 of DRIFT obtained the
lowest times for this experiment, except by U3 that spent
much more time. In A2 activity, GR1’ precision average was
decreased while GR2 was increased considerably. For instance,
U4 — who obtained the poorest precision in A1 — improves
its performance obtaining 0.75 of precision in A2. Moreover,
inspecting the elapsed times, DRIFT’ users obtained the three
lowest times. The lowest row in Table IV summarizes the
activities by average.

A t-test comparison was performed for each group, showing
5 percent level (α = 0.05), a statistical difference between
DRIFT and the list-based approach. For precision values,
we obtained a two-tailed p-value equals to 0.0023, which is
considered to be statistically significant. These results confirm
our initial hypothesis.

VII. DISCUSSION AND LIMITATIONS

The described design and case studies clearly show that
our approach provides an efficient alternative for exploring
and analyzing extensive collections of scientific documents.
Our implementation into the web context aims to introduce a
new paradigm into digital libraries’ exploration. In that way,
we allow the analysts to extract insights while mitigating



the overwork for establishing mental relationships among
documents, as digital libraries currently have us accustomed.

The novel combination of multiple-CBIR and multidimen-
sional projection represents a flexible and powerful mechanism
to gathers image and textual features in a methodology for
document exploration. However, the feature extraction step
dramatically impacts the whole process of analysis. It is crucial
to have a valuable set of features describing images and texts
to help us improve the accuracy of searches. Particularly, some
articles do not contain images, in that case the interaction with
any CBIR component is limited because DRIFT can only use
their textual information.

Our implementation visually illustrates the states to be
queried, filtered, and combined. It relies on a streamgraph-
based plot that performs an advisory role. However, it is not
entirely appropriate when document selections are unbalanced,
i.e., collections with few elements can be challenging to
visualize. On the other side, lower sections of the graph
can help reveal outliers. Moreover, it allows us to stack
more attributes and visualize them simultaneously, e.g., the
number of reads/downloads or average h-index from the entire
collection.

VIII. CONCLUSION

In this work, we propose DRIFT, a novel visual analytic
tool for analyzing scientific literature collection. It comprises
multiple linked components such as content-based image
retrieval, multidimensional projection, frequency histograms,
word clouds, and a streamgraph. The proposed method is fully
interactive, intuitive for analysts aiming to extract subsets of
documents according to its requirements. Moreover, it pro-
poses a new paradigm that conciliates both image and textual
features into a continuous feedback process. Furthermore, we
implemented DRIFT in a web-based environment with the
future envision to plug it into a digital library. We demonstrate
the usefulness of our methodology in two detailed case studies
and user evaluation. Results show that our approach is an
attractive method for analyzing multiple types of documents.

ACKNOWLEDGMENT

This work was supported by Universidad Católica San
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