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Abstract—In this work, we address the problem of human
action recognition in videos. We propose and analyze a multi-
stream architecture containing image-based networks pre-trained
on the large ImageNet. Different image representations are
extracted from the videos to feed the streams, in order to provide
complementary information for the system. Here, we propose
new streams based on visual rhythm that encodes longer-term
information when compared to still frames and optical flow. Our
main contribution is a stream based on a new variant of the visual
rhythm called Learnable Visual Rhythm (LVR) formed by the
outputs of a deep network. The features are collected at multiple
depths to enable the analysis of different abstraction levels.
This strategy significantly outperforms the handcrafted version
on the UCF101 and HMDB51 datasets. We also investigate
many combinations of the streams to identify the modalities
that better complement each other. Experiments conducted on
the two datasets show that our multi-stream network achieved
competitive results compared to state-of-the-art approaches.

I. INTRODUCTION

Over the past few years, a large amount of video data has
been produced and released due to the easy access to both
devices for capturing new data such as video cameras and
mobiles, and streaming platforms such as YouTube for sharing.
Since the analysis of this large amount of data by human
operators may be stressful and may involve sensitive content,
automatic procedures are needed to address related problems.

The problem addressed in this work is the Human Action
Recognition (HAR) in videos that aims to classify the action
being performed by one or more actors. The understanding of
human activity has several relevant applications, such as in-
telligent surveillance [1], [2], human-computer interaction [3],
[4] and smart home security [5]–[8]. Similar to other video-
based problems, HAR faces some challenges related to diffi-
cult scene conditions (e.g., occlusions and lighting changes)
which affect how the actions are seen in the video. It also
presents specific challenges, for example, the similarity among
different classes (e.g., walking and running) and the various
ways of performing the same action.

§This work relates to a Ph.D. thesis.

Deep networks have been widely explored for HAR. How-
ever, the high cost of video-based networks and the absence of
datasets as large as image-based ones have led the researchers
to explore image networks for the problem. Following this
trend, we propose an image-based network inspired by the
two-stream architecture [9], which is an important method
that gave rise to a variety of state-of-the-art approaches [10]–
[12]. This architecture has two parallel networks working with
different image modalities: RGB which represent static ap-
pearance and optical flow that encodes short-term motion. Its
central idea is to explore the strengths of these modalities by
combining their respective stream outputs. Our main objective
is to provide complementary information for the streams in
order to capture new aspects of the actions.

Our first contribution is a multi-stream framework based
on visual rhythm (VR). VR consists of a compact 2D
representation of the video constructed by the concatenation
of frame-level features (also called “slices”). In contrast to
RGB and optical flow, it represents the entire video in a single
image, being a longer-term modality. The second contribution
is a novel method to construct VRs called Learnable Visual
Rhythm (LVR). LVR is based on Convolutional Neural Net-
works (CNNs) for feature extraction and so, it is able to cap-
ture complex patterns in the frames, achieving superior results
than handcrafted VRs. In our research, we also investigated
three adaptive fusion methods with trainable parameters to
exploit the strengths of each modality in different scenarios,
and carried out an extensive analysis of individual and
combined performance of the streams. However, the adaptive
fusion and part of the extensive analysis are not covered by
this text due to the page limit. We suggest the reading of
Chapter 7 of the Ph.D. thesis [13] for a detailed study.

II. PROPOSED METHOD

Our basic method consists of a three-stream architecture
composed of the spatial, temporal and VR-based streams (Fig-
ure 1). Each stream consists of an image-based CNN. The first
two are based on the two-stream network [9], [15]. The spatial
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Fig. 1. Overview of our three-stream basic method for action recognition. Adapted from Concha et al. [14].

stream performs object recognition using a single RGB frame
randomly selected from the video. Thus, it captures elements
that compose the appearance of the action, for instance, the
usual scenario, objects involved, among others. For instance,
recognizing a guitar may help to recognize a video from the
PlayingGuitar class. However, a green grass field or even
the equipment may not be sufficient to distinguish between
a CricketBowling and a CricketShot video. Therefore, some
dynamics are needed to complement the spatial information.
This is carried out by the temporal stream that receives 10
pairs of consecutive optical images in the form of a 20-channel
image representing the motion information. The 20-channel
image is referred to as a stack of optical flow images.

The third stream is the main contribution of our work and is
based on a long-term feature, the visual rhythm. We proposed
different approaches to it detailed in Subsections II-A and II-B.
Each stream is individually trained and their m-dimensional
score vectors are fused during the test stage using a weighted
average with fixed weights, where m is the number of classes.

A. Adaptive Visual Rhythm

Our first strategy for the VR-based stream is called Adaptive
Visual Rhythm (AVR). For the AVR, the rhythms are hand-
crafted images based on the operations proposed by Souza et
al. [16]. These operations produce two types of slices per
frame defined as the average of the columns/rows intensities
(Figure 2). The slices of a fixed direction are concatenated to
form the horizontal- and vertical-mean VRs.

We propose a method for adaptively deciding the best
VR direction for each action according to the predominant
movement. It is based on the following observation. Consider,
without loss of generality, horizontal-mean slices. If an object
moves orthogonally to the slice direction, it is very likely
that the mean color of the corresponding column remains the
same (Figure 3a). However, a horizontal movement affects the
average color of all columns spanned by the object (Figure 3b).
Therefore, movements parallel to the slice direction tend
to produce more distinctive patterns. For estimating the
predominant direction of movement, we use the Lucas-Kanade

Vertical-mean

Horizontal-mean

Fig. 2. Examples of horizontal- and vertical-mean slices extracted from
Concha et al. [14]. The slices are defined as the average of columns/rows.
They were resized for illustration purposes.
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Fig. 3. Moving objects considering two consecutive frames and horizontal-
mean slices. Parallel movement is better captured in the slice. Extracted from
Concha et al. [14].

point-tracker. The absolute horizontal and vertical displace-
ment estimated by the tracker are accumulated over the frames,
and the highest value defines the rhythm direction.

(a) frame (b) horizontal-mean (c) vertical-mean

Fig. 4. Example of frame and rhythms from a Kinetics video of the “running
on treadmill” class. The horizontal-mean rhythm presents a wavy pattern that
better characterizes the action. Extracted from Maia et al. [17].



Figure 4 shows a frame and the visual rhythms extracted
from a Kinetics [18] video of the “running on treadmill”
class. This action is predominantly horizontal due to the leg
motion. For this reason, the horizontal rhythm presents more
relevant patterns for the classification. As can be observed in
the example, the horizontal rhythm contains a wavy pattern
that represents the leg movements, whereas the vertical one is
composed of quite homogeneous lines.

B. Learnable Visual Rhythm

Image-based networks have achieved great results for image
classification, describing objects and appearance. For this
reason, they are useful to build frame-level descriptors. In this
approach, we use a 2D CNN as the operation to produce VR
slices. This stream is called Learnable Visual Rhythm (LVR),
thanks to its trainable operation. The LVR is also composed
of a second CNN that predicts the action from the produced
VR. Each CNN is an Inception V3 network pre-trained on
ImageNet, and only the second is fine-tuned on each video
dataset. Figure 5 illustrates the LVR stream.

CNN1

Frame i Vector i

CNN2

LVR stream

m

video
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...

Fig. 5. LVR stream composed of two stacked CNNs. The first one computes
an 1D descriptor for each video frame. The second one predicts the action
based on the 2D concatenation of the descriptors. The final LVR output is an
m-dimensional score vector. Adapted from Maia et al. [19].

We consider three distinct points of the Inception to extract
slices, called LVR0, LVR1 and LVR2 (Figure 6). This enables
the analysis of different abstraction levels, from the lowest
LVR0 to the highest LVR2. Average pooling layers and re-
shape method are used to reduce the size of the intermediate
images and collapse them into one dimension. The connections
between the original layers are maintained, therefore, the extra
pooling layers do not affect the results of the following ones.
The resulting feature vectors are normalized using min-max
normalization, which helps mapping them into a grayscale
image. For matching the second CNN input dimension, we
apply an adaptive average pooling along the vertical axis and
a resize method along the horizontal one. This is done due to
the fact that the rhythm height is much greater than its width
(about 10 times greater).

The rationale for using intermediate outputs is that networks
trained for image classification tend to be invariant to the ob-
ject position and poses at the latter layers, but this information
is rather relevant to distinguish actions. The former outputs,
on the other hand, represent less refined information. Since the
three outputs can be computed in a single forward propagation
through the network, they can be combined at a minimum extra
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Fig. 6. An illustration of the three distinct positions considered to extract the
features in the Inception architecture. Each position represents a different level
of abstraction. These features compose the LVR0, LVR1 and LVR2 rhythms.

computational cost for the extractions. A detailed scheme of
the extraction process is given in Figure 6.3 of the thesis [13].

The main purpose of the second network is to find temporal
patterns in the rhythm images. As the first CNN, it is initialized
with ImageNet weights, but fine-tuned on the video dataset.
The training and testing processes consider a single abstraction
level for the inputs at a time, that is, LVR 0, LVR 1 and
LVR 2 are trained/tested separately.

III. RESULTS

Table I shows the stream results on UCF101 [20] and
HMDB51 [21] and includes different VR-based approaches.
In the table, RGB* stands for spatial stream, whereas OF is
the temporal one. The VR-based approaches are identified by
their respective acronyms. We can see that OF outperforms
the others on both datasets. Among the VR approaches, LVR1

presents the best accuracies, considerably exceeding the AVR,
which suggests that deep features may be more representative
than handcrafted ones. These results also indicate the superi-
ority of the intermediate depth in providing good descriptors
for action recognition. Since the Inception is originally trained
for the object recognition problem, latter layers may produce
features more invariant to poses and positions. Hence, the
classification CNN that works with LVR2 images might face
difficulties in capturing the temporal evolution and distinguish-
ing the actions. LVR0, on the other hand, may lack information
about the scene structure. This last observation is reinforced
by the fact that the handcrafted AVR outperforms LVR0.
Moreover, compared to the other depths, this image undergoes
a significant reduction in size to feed the CNN.

TABLE I
INDIVIDUAL RESULTS. CELLS ON BOLD REPRESENT THE HIGHEST

ACCURACIES (%).

Modality UCF101 HMDB51

RGB* 86.61 ± 0.09 51.77 ± 2.15
OF 86.95 ± 0.64 59.91 ± 0.43
AVR 64.74 ± 0.63 39.63 ± 0.60
LVR0 63.64 ± 0.57 35.06 ± 1.34
LVR1 81.26 ± 0.30 51.94 ± 1.01
LVR2 78.75 ± 0.57 45.53 ± 1.53

We have tested many combinations of the streams using the
weighted average to find the best setting for our multi-stream



network. The results are presented in Tables 6.3, 6.4 and 6.5
of the thesis. For the combinations, we assigned weights 2, 3
and 1 for the spatial, temporal and any VR approach, respec-
tively. The experiments show that all combinations outperform
individual versions, suggesting that the streams complement
each other in some levels, even combinations of VR-based
approaches. Most combinations using only the temporal stream
outperform those using only the spatial, however, both together
surpass the others. We also noted that the AVR tends to better
complement the spatial stream, whereas the LVR achieves
higher scores combined with the temporal one. A possible
explanation is that the feature computed in the spatial network
is already embedded into the LVR images, since the feature-
extractor CNNs are very similar to the spatial stream, and
so the LVR were not able to contribute much to it. Finally,
the contribution of the LVR0 is usually lower, in line with
individual results.

From these combinations, we selected the five-stream RGB*
+ OF + AVR + LVR0 + LVR1 which presented the highest
accuracy on HMDB51 and results very similar to the best
combination on UCF101 (a difference of only 0.06%). The
four-stream RGB* + OF + AVR + LVR1 also presented
satisfactory results at a lower computational cost, since it
contains fewer streams. In Table II, which is a short version
of Table 6.6 from the thesis, we compare these combinations
with some state-of-the-art approaches. Table 6.6 also shows
other methods [10], [11], [22]–[25] that achieved higher scores
by pre-training the network on a considerable larger dataset,
the Kinetics [18]. Here, we show only the methods with
protocol similar to ours. We can see that the five-stream
method achieved the 6th best accuracy on UCF101 and the
5th best on HMDB51.

TABLE II
COMPARISON OF ACCURACY RATES (%) ON UCF101 AND HMDB51
DATASETS. CELLS ON BOLD REPRESENTS THE HIGHEST ACCURACIES.

Method UCF101 HMDB51

Two-stream + SVM [9] 88.0 59.4
Two-stream + LSTM [26] 88.6 —
TDD + iDT [27] 91.5 65.9
KVMDF [28] 93.1 63.3
Two-stream fusion + iDT [29] 93.5 69.2
Two-stream TSN [30] 94.0 68.5
Three-stream TSN [30] 94.2 69.4
Recurrent hybrid network [31] 93.2 71.8
L2STM [32] 93.6 66.2
Three-stream [33] 94.1 70.4
STP [34] 94.6 68.9
TLE [12] 95.6 71.1
Two-stream LTC + iDT [35] 92.7 67.2
Gated TSN [36] 94.5 —
Four-stream + iDT [37] 96.0 74.9
Heterogeneous two-stream [38] 94.4 67.2
Two-stream Choquet [39] 92.9 65.9
TEA [40] 96.9 73.3

LVR (four-stream) 94.3 70.7
LVR (five-stream) 94.4 71.0

IV. ANALYSIS

In this section, we analyze the behavior of the streams
inspired by the analysis of the Kinetics paper [18]. Figure 7
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Fig. 7. List of the 5 easiest (highest scores) and 5 hardest (smallest scores)
classes for each modality on UCF101. We use the stream recall per class
(horizontal axis) averaged over all splits.

shows the 5 easiest and 5 hardest classes for each modality
on UCF101. To generate these lists, we considered the class
recall obtained during test and averaged over the splits.

Only the “Billiards” class appears in all lists as an easy
class. None of the classes are in the easiest list of one
stream and the hardest list of another one. Concerning the
RGB* stream, its easiest classes generally involve specific
objects such as “PlayingGuitar” and “HorseRiding”. On the
other hand, its hardest classes present common scenarios
(“CricketShot” and “CricketBowling”, “JavelinThrow” and
“Shotput”) that may have affected the appearance recognition.
“CricketBowling” and “Nunchucks” reached lower scores in
most streams. The majority of the easiest classes of the OF
list present large and characteristic movements involving the
entire body (for instance, “IceDancing”), in contrast with the
hardest ones that contain more subtle motions (for instance,
“BrushingTeeth”).

In addition to “Billiards”, other two classes are present in
the easiest list of every VR-based modality: “BasketBallDunk”
and “IceDancing”. “IceDancing” is also common to the OF



stream, perhaps because it requires temporal information to
be distinguished. A significant number of videos from the
“BasketBallDunk” class have between 51 to 100 frames. It
was expected that the reshape process, regarding the Inception
input size, would distort the rhythm, causing a negative
impact in the scores, but it was not the case. A possible
explanation is that the CNN learned the distortion, since
the majority of the “BasketBallDunk” clips fall in the same
length interval ([51, 100]). which implies that many short
videos were available during the training stage. However, it
is not the only factor, because these streams do not achieve
good results in other classes predominantly short such as
“JumpingJack”. Considering the hardest classes, “Nunchucks”
and “HandStandWalking” are common to the four VR-based
streams.
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Fig. 8. List of the 5 easiest (highest scores) and 5 hardest (smallest scores)
classes for each modality on HMDB51. We use the stream recall per class
(horizontal axis) averaged over all splits.

The top 5 hardest and easiest classes on HMDB51 are
shown in Figure 8. The “golf” class was effectively recog-
nized by every stream, whereas all of them achieved low
scores for the classes “swing baseball”, “throw” and “wave”.
Each hardest list contains exactly one class involving swords

(“sword”, “sword exercise” and “draw sword”). In fact, the
pair “sword exercise” and “draw sword” achieved high con-
fusion rates for every stream, which might indicate some
ambiguity in these two classes. There is a significant overlap
between the hardest/easiest list from the RGB*, LVR1 and
LVR2 streams. A complementarity analysis is required to
assess whether these three streams can be combined or are
redundant.

Tables III and IV show the pairwise complementarity on
UCF101 and HMDB51, respectively, defined as

Comp(ci, cj) = 1− # of common errors
# of ci errors

, (1)

where ci and cj represent two streams. The complementarity
rates indicate the potential accuracy for the pair after the
insertion of the second stream. However, two factors can
influence the real combination accuracy. First, the ability
of the fusion method to select the best output, which can
negatively affect the final accuracy. Second, since the fusion
method combines score vectors and not labels, it can find
the correct prediction from incorrect ones, positively affect-
ing the accuracy. Therefore, the complementarity measure
is used for analytical purposes only. It is worth mentioning
that if cj complements ci much more than the opposite, i.e.
Comp(ci, cj)� Comp(cj , ci), the stream ci is not being very
useful for the pair. For this reason, we use a harmonic mean
of the two values for the analysis.

TABLE III
PAIRWISE COMPLEMENTARITY Comp(ci, cj) ON UCF101 DATASET

AVERAGED OVER THE SPLITS. THE STREAM IN THE ROW CORRESPONDS
TO ci AND cj IS THE STREAM IN THE COLUMN. THE COMPLEMENTARITY

IS NONCOMMUTATIVE.

Complementarity (↑)

RGB* OF AVR LVR0 LVR1 LVR2

RGB* 0.000 0.631 0.376 0.272 0.355 0.365
OF 0.640 0.000 0.299 0.369 0.525 0.541
AVR 0.772 0.738 0.000 0.463 0.663 0.656
LVR0 0.722 0.755 0.441 0.000 0.598 0.609
LVR1 0.579 0.683 0.395 0.308 0.000 0.450
LVR2 0.594 0.701 0.398 0.343 0.463 0.000

Table III shows that all streams present more than 0.272
of complementarity rate on UCF101. We can see that the
pair RGB* and OF presents a balanced complementarity
with harmonic mean HM(RGB*,OF) = 0.635. The LVR
versions present higher complementarity rates combined with
the OF stream rather than in the RGB* combinations, reaching
HM(OF,LVR2) = 0.611, whereas the AVR better comple-
ments the RGB* (HM(RGB*,AVR) = 0.506). The pairs in-
volving the RGB*, LVR1 and LVR2 were able to complement
each other with harmonic means of approximately 0.45.

On HMDB51 (Table IV), all pairs achieved at least 0.184 of
complementarity rate. In contrast to UCF101, the OF stream
complements the RGB* more than the other way around
(HM(RGB*,OF) = 0.358). The RGB* contribution to OF
was similar to LVR1 and LVR2. The LVR1 complementarity



rates were higher than the other VR-based to both the RGB*
and OF streams. As on UCF101, the pairs containing the
RGB*, LVR1 and LVR2 present good scores, despite their
similar behavior on the easiest/hardest classes analysis. In
conclusion, we can see that every pair presents a promising
contribution on both datasets. Even the combinations between
VR-based streams achieved good scores, although the LVR0

shows inferior results.

TABLE IV
PAIRWISE COMPLEMENTARITY Comp(ci, cj) ON HMDB51 DATASET

AVERAGED OVER THE SPLITS. THE STREAM IN THE ROW CORRESPONDS
TO ci AND cj IS THE STREAM IN THE COLUMN. THE COMPLEMENTARITY

IS NONCOMMUTATIVE.

Complementarity (↑)

RGB* OF AVR LVR0 LVR1 LVR2

RGB* 0.000 0.416 0.230 0.184 0.268 0.246
OF 0.314 0.000 0.203 0.205 0.312 0.308
AVR 0.399 0.470 0.000 0.239 0.384 0.366
LVR0 0.387 0.491 0.267 0.000 0.361 0.369
LVR1 0.300 0.439 0.244 0.186 0.000 0.272
LVR2 0.294 0.448 0.239 0.214 0.288 0.000

V. CONCLUSIONS

Human action recognition is a challenging and attractive
problem due to the wide range of possible applications.
Although much effort has been made in this research field,
there is no generic methodology for solving the problem and
many questions remain open. The perception of the problem
itself evolves as new datasets are released.

Throughout this text, we presented our research achieve-
ments for HAR in videos. The central issue of any application
involving video analysis is the definition of a proper spa-
tiotemporal representation that describes the event of interest.
We explored deep learning strategies for this task that learns
complex visual patterns from data. To minimize the high train-
ing cost of video-based deep networks, we follow the trend
of exploring non-trainable elements from traditional methods
in image-based ones. Thus, we used handcrafted inputs that
encode the input video in an image form. Our proposed
architecture is based on the multi-stream architecture [9],
exploring complementary image modalities. In addition to the
original spatial and temporal streams, here we introduced new
ones that work with visual rhythms. Visual rhythms handle
different video lengths and encode long-term information.

Our first approach, the AVR, was part of a collaborative
project. The corresponding stream receives the horizontal-
mean or vertical-mean rhythm as input, which represents the
movement of objects by means changes in intensity over time.
We proposed a method to adaptively decide the best direction
for each video.

The handcrafted AVR evolved into a learnable one (LVR)
composed of a feature-extractor and classification CNNs. We
showed that the LVR achieves higher scores in both the
individual and the combined scenarios. We also showed a
comparison of the proposed methods against state-of-the-art

approaches. Although our method achieves competitive results
compared to those pre-trained only on ImageNet, we are
behind those pre-trained on both ImageNet and Kinetics.

We analyzed the stream performance regarding the datasets
classes and assessed how much the streams contribute to
the combinations using the pairwise complementarity rate.
The VR-based streams were able to provide complementary
information for the spatial and temporal streams. The results
suggest that the AVR tends to better complement the spatial
stream, whereas the LVR achieves higher scores combined
with the temporal one. Furthermore, the VR approaches were
able to complement each other as well.

VI. PUBLICATIONS

The following nine papers have been published since the
beginning of our research:

• VR-based approaches: The original AVR [14] described
in Subsection II-A was published in the 17th IEEE Inter-
national Conference on Machine Learning and Applica-
tions (ICMLA 2018, Qualis B1). An extended AVR [17]
was published as a chapter of the Deep Learning Ap-
plications book (DLAPP 2020), which is composed of
expanded versions of ICMLA 2018 selected papers. The
LVR [19] described in Subsection II-B was published in
ICMLA 2019 (Qualis B1). A strategy exploring optical
flow rhythms [41] was recently published in the Jour-
nal of Visual Communication and Image Representation
(JVCI 2021, Impact Factor of 2.479 and Qualis A2).

• Multi-stream improvements: A data augmentation tech-
nique called Symmetric Extension was proposed specif-
ically for VR inputs and published in the International
Conference on Computational Science and Its Applica-
tions (ICCSA 2021, Qualis B1) [42] and an extended
version in the 15th International Joint Conference on
Computer Vision, Imaging and Computer Graphics The-
ory and Applications (VISAPP 2020, Qualis B1) [43]. We
also proposed different fusion methods based on fuzzy
integrals for the two-stream architecture. It was published
in VISAPP 2020 [39] (Qualis B1).

• Other related papers: We published a survey on VR
that includes different terminologies, applications (be-
yond HAR), and strategies. This survey was published
in Neurocomputing (2020, Impact Factor of 4.438 and
Qualis A1). A siamese architecture for tracking [44] was
published in VISAPP 2020 (Qualis B1).

In addition, an extension of the VISAPP work [39] about
fusion methods [45], a paper related to adversarial attacks on
the temporal stream [46], and a survey on video stabilization
(which may support HAR) [47] have been recently submitted.
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