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Abstract—Fine-grained computer vision tasks refer to the
ability of distinguishing objects that belong to the same parent
class, differentiating themselves by subtle visual elements. Image
classification in car models is considered a fine-grained classifi-
cation task. In this work, we introduce BRCars, a dataset that
seeks to replicate the main challenges inherent to the task of
classifying car images in many practical applications. BRCars
contains around 300K images collected from a Brazilian car
advertising website. The images correspond to 52K car instances
and are distributed among 427 different models. The images
are both from the exterior and the interior of the cars and
present an unbalanced distribution across the different models.
In addition, they are characterized by a lack of standardization
in terms of perspective. We adopted a semi-automated annotation
pipeline with the help of the new CLIP neural network, which
enabled distinguishing thousands of images among different
perspectives using textual queries. Experiments with standard
deep learning classifiers were performed to serve as baseline
results for future work on this topic. BRCars dataset is available
at https://github.com/danimtk/brcars-dataset.

I. INTRODUCTION

Supervised classification approaches typically require a
large set of annotated data. This is especially true for Deep
Learning (DL) techniques. In the context of computer vision, a
convolutional neural network (CNN) is a DL algorithm widely
used for image classification tasks. CNNs have constantly
advanced the state-of-the-art in image classification tasks in
datasets such as ImageNet [1] and PASCAL VOC [2].

Naturally, the success obtained in these general tasks led
researchers to evaluate these image classification approaches
in domain-specific classification tasks, such as classifying bird
species [3], [4], plant diseases [5], aircraft models [3], [4],
among others. These domain-specific tasks are called fine-
grained visual classification tasks (FGVC).

Several datasets were built for the most diverse FGVC
tasks. The Caltech-UCSD Birds dataset (CUB-200-2011) with
11,788 images from 200 wild bird species [6] and the FGVC-
Aircraft dataset, with 10,000 images of aircrafts belonging to
100 models [7] are examples of datasets designed for FGVC
tasks. In the domain of vehicles, the first dataset for FGVC was
Cars by Krause et al. [8]. More recently, Yang et al. [9] created
the CompCars dataset, which has more images and classes.
Both these datasets have been designed for FGVC tasks. They
are properly labeled and have undergone careful procedures to
ensure data diversity. Their images were prepared in a way that

a single car is shown in the center of the image. In the case of
CompCars, which also has internal images among the images
of specific parts of the vehicle, all images were obtained from
the same perspective. Clearly, a controlled environment is a
fundamental part of the evaluation of an experiment. However,
real-world car images do not follow that pattern. It is common
to find partial images, images of the interior of the vehicle,
images of specific parts, such as the dashboard, seats, engine,
wheels, etc. In addition, real images are taken from several
different perspectives. In order to account for a more realistic
environment, we created BRCars, a dataset with car images
collected from a car advertising website, characterized by the
lack of standardization with regards to the perspectives.

There are several applications that can benefit from the
automatic classification of car models, including intelligent
transport monitoring, surveillance, self-inspection for car in-
surance, and automatic ad verification for advertising websites.
In all these applications, the images are not likely to be
standardized. As a consequence, there is a need for datasets
that contain this type of image.

Another important issue is that car models vary across
countries. In some cases, the same model is identified by
different names (e.g., the Brazilian Kia Mohave is known as
Borrego in the US) and, in other cases, the same name refers to
different cars (e.g., the Brazilian Fiat Fiorino is derived from
the Uno model, while the Italian version is a minivan). These
differences illustrate the need for datasets that are specific for
each country.

The main contributions of this paper are: (i) BRCars, a
real world dataset containing images of cars collected from
a Brazilian car advertisement website; and (ii) experimental
results of classification algorithms that can be used as a
reference for future work on this topic.

II. RELATED WORK

In this section, we discuss existing datasets of car images.
Krause et al. [8], created the Cars dataset, which contains
16,185 images belonging to 196 classes, which refer to car
models. Their images were collected from Flickr, Google, and
Bing. With the intention of saving costs in the annotation
process, as well as ensuring data diversity, the authors applied
a deduplication procedure. The remaining candidate images
were submitted to Amazon Mechanical Turk to determine
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whether the images belong to the target class. The images
were divided into training and test sets, with about 8K images
each. The Cars dataset is characterized by having images
from different external perspectives of the cars. The images
have different dimensions and resolutions. Predominantly, the
images contain a single car positioned at the center, with no
other cars in the background.

Yang et al. [9] introduced the Comprehensive Cars
(CompCars) dataset, which contains data from two scenarios:
web-nature and surveillance-nature. The web-nature scenario
has 136K images capturing the entire car and 27K images
capturing specific parts of the cars. These images refer to
1,716 models from 163 makes. The images of the entire car are
labeled with bounding boxes and viewpoints. The surveillance-
nature group contains 50K images of cars captured in the
frontal view. As reported by the authors, the CompCars dataset
is well-prepared for the following computer vision tasks:
(i) FGVC task: the dataset allows classification tasks to be
performed at three different levels of granularity: make, model,
and year. (ii) attribute prediction: From the images, predict
five attributes: (i) maximum speed; (ii) displacement; (iii)
number of doors; (iv) number of seats; and (v) type of car. (iii)
model verification: Given two car images, verify whether the
images belong to the same model. Similar to the Cars dataset,
in CompCars the images of the cars from external perspectives
are characterized by presenting the car without occlusions and
arranged in the central region of the image (except the set of
images of specific parts).

Still on the domain of cars but focusing on Automatic
License Plate Recognition (ALPR), we can cite UFPR-ALPR
[10] and Vehicle-Rear [11]. Both these datasets contain Brazil-
ian cars but were not designed for FGVC.

Both Cars and CompCars were created with the aim of
providing a controlled environment for carrying out experi-
ments. In fact, these datasets were designed for the FGVC
task and have become widely used benchmarks in the literature
[3], [12], [13]. However, although a controlled environment is
a fundamental part of verifying an experiment, in practice,
car images do not follow that pattern. Therefore, in this
work, we assembled a dataset with the goal of reflecting the
challenges inherent to FGVC tasks in practical applications.
Furthermore, as discussed in the Introduction, car models vary
across countries and, to the best of our knowledge, there is no
such dataset for Brazilian cars.

III. THE BRCARS DATASET

In this section, we present the data collection and the
construction process that were followed when assembling the
BRCars dataset.

Throughout this paper, we use the term instance to refer to a
specific car advertisement, which is composed of M images.
For the construction of the dataset, we collected images of
car advertisements from the webmotors.com.br website1, one
of the largest car advertisement websites in Brazil. We chose

1http://www.webmotors.com.br

webmotors due to its large number of vehicle advertisements.
It is important to mention that according to the current privacy
terms of the website, commercial use of the data is prohibited
without the prior and express consent of webmotors. In total,
a set of 2,808,846 images was collected, which are distributed
among 1,005 different car models. The images belong to a
set of 336,660 car advertisements. The ground truth classes
come from the website itself since the advertisements contain
the make and the model of the vehicles. Our inspection found
that the class assignments were trustworthy. Thus, no further
annotation effort was required.

Due to the high class imbalance (i.e., some car models have
many more images than others), we created two sets to eval-
uate the FGVC task; they are: BRCars-196 and BRCars-427.
Those are described in the next subsections. BRCars datasets
are available at https://github.com/danimtk/brcars-dataset.

A. BRCars-196 set

BRCars-196 has 196 classes, with each class referring to a
car model. For the assembly of this set, we first selected only
the models that have at least 200 instances of vehicles. Then,
for each car model, 200 instances were randomly selected.
Finally, each of the 200 sets of images from the 200 random
selections were grouped to compose the images of each model.
As a result of this selection process, this set is composed of
the most common car models. Since each car instance has
a variable number of images, the final number of images
belonging to each model has slight variations. After removing
noisy images using the procedure described in Section III-C,
BRCars-196 has 212,609 images, from which 170,151 are
intended for training, while 42,458 are intended for testing.
Table I shows more statistics. The average images by model
is 1,084.74 with a standard deviation of 81.92. Of the total
images, 40,665 images are internal images (with an average
of images by model of 207.47 and a standard deviation of
37.00).

B. BRCars-427 set

BRCars-427 includes BRCars-196 and additional 231
classes referring to models that have fewer than 200 car
instances. In order to remove classes that are extremely
underrepresented in terms of instances, we discarded models
with fewer than 20 instances. These additional 231 classes
have a varied number of images. The goal of adding the classes
with fewer instances is to replicate the challenge of dealing
with rarer models. After the noise removal procedure (see
Section III-C), BRCars-427 is composed of 300,325 images,
from which 239,668 are intended for training, while 60,657 are
intended for testing. Table I shows that the average number of
images by model is 703.34 with a standard deviation of 403.78.
Of the total images, 58K are internal images (with an average
of images of 135.76 by model and a standard deviation of
81.26). The bigger standard deviation, when compared with
BRCars-196, gives highlights the imbalance from the 231
classes with fewer images.

http://www.webmotors.com.br
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TABLE I
STATISTICS OF THE DATASETS: NUMBER OF IMAGES PER MODEL

Dataset Perspective Images Avg images by model (SD)

BRCars-196
all 212,609 1,084.74 (81.92)

external 171,944 877.27 (60.09)
internal 40,665 207.47 (37.00)

BRCars-427
all 300,325 703.34 (403.78)

external 242,354 567.57 (325.95)
internal 57,971 135.76 (81.26)

C. Removing Noise

Due to the nature of the source of the data, a considerable
number of images can be characterized as noise, among them:
images of keys and car documents, images that have only
textual elements, images of specific parts that are not repre-
sentative (such as wheels, parts of vehicle, doors, etc.). Noise
images do not present visual information that can contribute
to the recognition of the car model, and thus, they should be
discarded. In order to do that, we adopted a hybrid annotation
procedure for visual aspects that mixes manual and automatic
procedures. We consider that relevant images should include
an external perspective of the car (in whole or in part), or of
the cockpit.

Our procedure for removing noise images relies on the
new pre-trained CLIP (Contrastive Language – Image Pre-
training) architecture [14]. CLIP consists of a text encoding
architecture combined with an image encoding architecture. It
is trained with the contrastive function loss in pairs of images
and texts collected from the Web. This way, it is able to learn
visual concepts from natural language supervised training.
After being trained, given a pair containing a textual query
and an image, it allows calculating the similarity between their
respective vectors.

We use CLIP as an annotator for the perspectives of the
cars in order to assist in the selection of the relevant images.
More specifically, we use the version that relies on Vision
Transformers ViT-B/32 [15] with the encoding. We created
two sets of textual queries. The first set contains four text
queries: (i) engine; (ii) wheel; (iii) external body view; and
(iv) interior view. The second set has seven text queries: (i)
seats; (ii) cockpit; (iii) instrument panel or dashboard; (iv)
gearshift; (v) sunroof; (vi) radio; and (vii) door panel. These
queries define the classes that will be automatically assigned
to the images.

All images were submitted to CLIP and then, for each
image vector, the cosine similarity with the query vectors was
calculated. These similarities were grouped according to the
query sets and submitted to a softmax function to obtain the
probabilities of each query in relation to the image. The most
likely textual query for each query set was assigned as the
image class, so that each image receives the two most likely
classes, one from the first query set and the other from the
second query set.

Then, two samples were generated, each containing around
5K images. The first sample has random images among those

Fig. 1. Samples of the images from the BRCars dataset. Images are taken
from different perspectives and may not include the entire vehicle. In addition,
there are images from the interior of the car.

that were labeled by CLIP as external body view and the
second sample has random images that were labeled both
as internal view and cockpit (internal view & cockpit).

The two samples were manually annotated to validate
whether the images indeed belonged to the target class. The
results of this analysis found accuracies of 96.84% for external
body view and 81.20% for internal view & cockpit. The manual
annotations were used to train two binary auxiliary CNNs, one
for the external/not external classes and another for the cock-
pit/not cockpit classes. Finally, the images previously classified
by CLIP as external body view and internal view &cockpit
were submitted to a second annotation step using the respective
auxiliary CNNs.

D. Characteristics of the BRCars Datasets

In this subsection, we describe the properties of the BRCars
datasets and their images.

1) Style of images: The images are characterized by a lack
of standardization with regards to their perspectives. Unlike
the Cars and CompCars datasets, which present well-centered
images, the images in our three datasets are considerably
non-standard. In addition, there are mixed images of internal
and external perspectives. This is due to the nature of the
images – the advertisers are in diverse environments; some
are more and others are less suitable for photography. Also,
the advertisers have different levels of photographic skills.
Figure 1 shows 12 images from the dataset, highlighting the
lack of standardization in terms of perspective.



Volkswagen

Gol

2015

Instance 1 Instance 2 Instance N

2020

Voyage

Ford· · ·

· · ·

· · ·

· · ·

Fig. 2. Hierarchy of the dataset. BRCars can be approached in different
granularities: (i) make; (ii) model; (iii) year; and (iv) car instances.

2) Hierarchy: The dataset is organized in a tree structure
shown in Figure 2. The structure is similar to the one adopted
by CompCars [9], where the granularity gets finer as we move
down the tree. In the first level, granularity refers to the car
make. Then, in the second level, the granularity refers to the
car model, followed by the year in the third level. Finally,
the actual instances of a specific car are in level four. The
fourth level is a novelty in relation to the other datasets since
it groups images belonging to a specific car instance. That is,
due to the nature of the origin of the images, it is possible to
group a set of images belonging to a specific instance.

IV. FINE-GRAINED CLASSIFICATION SETUP

In this section, we apply classification algorithms to predict
the car model of a given input image. The goal is to provide
baseline classification results for BRCars.

In our experiments, we compared different CNN architec-
tures, namely InceptionV3 and ResNet50, and Siamese ver-
sions of these networks. A Siamese network is an architecture
consisting of two or more identical neural networks that
aim to generate feature vectors and compare them. Siamese
networks have been applied in several fields, such as face-
recognition [16], [17], image retrieval [18], and multi-domain
tasks [19]. Siamese networks learn a function f able to
generate feature vectors with high discriminative capacity
among the different classes. Thus, we send three input images
to the Siamese architecture: (i) an anchor image (A); (ii) a
positive image (P ) that corresponds to the same class as the
anchor and; (iii) a negative image (N) which belongs to a
different class. The goal is that f learns to generate output
vectors such that vectors belonging to the A images are close

to the P image vectors and away from the N image vectors.
To do that, we use the triplet-loss function:

L(A,P,N) = max(D(f(A), f(P ))−D(f(A), f(N)) +m, 0)
(1)

where where D denotes the Euclidean distance and m is the
hyperparameter used to set a margin that makes sure that the
distance between A and P is smaller than the distance between
A and N by at least a margin m [17].

We chose these architectures due to their accuracy being
constantly among the highest in image classification tasks. The
framework adopted for the execution of the experiments used
Keras2, integrated with Tensorflow 2.33.

A. Pre-processing

Initially, the input images submitted to InceptionV3 and
ResNet50 were resized to 256×256. We applied the data
augmentation procedure so that, in each epoch, for each of
the images belonging to the batch, random transformations in
series were applied. The transformations were: (i) rescaling
1/255; (ii) rotations with a range of 30 degrees; (iii) zoom
transformations with a range of 0.15; (iv) width shift with a
range of 0.2; (v) height shift with a range of 0.2; (vi) shear
with a range of 0.15; and (vii) horizontal flip transformations
with nearest fill mode. No data augmentation was used in the
Siamese architecture.

B. Transfer learning

The CNNs were started with the pre-trained weights from
the ImageNet set [1]. Then, for each architecture, we removed
the last layer, keeping only the resource extraction layers.
Then, we added a Global Average Pooling layer [20] and
two new fully connected layers to each CNN. The first fully
connected layer has 1024 units and the second fully connected
layer has 512 units. Finally, we added the softmax layer
corresponding to the number of desired outputs. This layer had
196, 427, 196, and 431 units for the BRCars-196, BRCars-427,
Cars, and CompCars datasets, respectively. Between the sec-
ond fully connected layer added with 512 units and the
softmax layer, we applied a dropout layer [21] of 0.5.

For the Siamese architectures, the CNNs were started
with the first-epoch weights of the categorical cross-entropy
training. That is, we train the CNN architectures initialized
with Imagenet weights for one epoch with categorical cross-
entropy. Then, we remove the last two layers and train the
networks with the triplet-loss function. The final architecture
is: CNN layers→ Global Average Pooling layer→ 1024 layer
Relu → 512 layer. This one-epoch training was essential for
the Siamese architectures to converge.

C. Training

For training InceptionV3 and ResNet50, we used the Adam
optimizer [22], with a learning rate of 1e-4. The loss function

2https://keras.io/
3https://www.tensorflow.org/
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adopted was the categorical crossentropy. After applying the
settings, the models were trained for 25 epochs.

For the Siamese architectures, we adopted the hard-batch
strategy to perform online triplet mining [17]. The batches
were generated through a uniform random selection of c
classes with uniform random selections of r images for each c
selected class. In our experiments, we used c = 16 and r = 4,
that’s resulted in batches of 64 images. We used the Adam
optimizer with a learning rate of 1e-5. The models were trained
for 15 epochs. We observed that there is no enhancement in
classification accuracy above that number of epochs. After
Siamese training, we applied the k-nearest neighbors (KNN)
algorithm on the image vectors to make predictions for new
unseen images. We call these architectures KNN InceptionV3-S
and KNN ResNet50-S. The hyperparameter k was set to 5 as
it showed good results in both datasets.

D. Evaluation Metrics

To evaluate classification quality, we adopted the following
standard metrics:

Precision measures the ratio of the images classified as
belonging to a class c that actually belong to that class.

Recall measures the the proportion of instances that belong
to a class c, which that were classified as such.

F1 is the harmonic mean between precision and recall.
These three metrics were calculated for each class and then
macro-averaged. Macro-averaging is especially useful for im-
balanced datasets such as BRCars-427 since it gives equal
weights to each class (and not each instance). We basically
calculate the F1 for each of the n classes and then take the
average.

E. Results

Classification results are shown in Table II. Comparing
the results across datasets, we notice that BRCars-427 has
lower scores in all metrics. This was expected given that
there are over twice as many classes and the dataset is very
unbalanced. The F1 achieved by InceptionV3 and ResNet50
were very close, with InceptionV3 being slightly superior in
both datasets by a 0.02 margin. On the Siamese runs, both
KNN InceptionV3-S and KNN ResNet50-S achieve the same
scores for all metrics except for F1 on BRCars-427 (in which
KNN ResNet50-S loses by one percentage point). We can
also see that the Siamese versions performed worse results
than their counterparts. The difference was more noticeable on
BRCars-427. We believe this happened due to the training set
having both external and internal images, generating confusing
image triplets which may have degraded the result of the
Siamese networks.

Table III shows the top-3 classes in terms of F1 for all
four architectures in both datasets. We can see that some car
models are the same for different architectures and datasets.
JEEP RENEGADE, FIAT 500, CITROEN C4, and FIAT MOBI
all appear more than once among the top-ranked models. This
suggests that these classes present unique visual information
that helps in their accurate identification.

TABLE II
RESULTS OF EACH ARCHITECTURE IN FINE-GRAINED CLASSIFICATION

TASK

Dataset Architecture Precision Recall F1

BRCars-196

InceptionV3 0.92 0.91 0.91
ResNet50 0.89 0.89 0.89

KNN InceptionV3-S 0.85 0.85 0.85
KNN ResNet50-S 0.85 0.85 0.85

BRCars-427

InceptionV3 0.82 0.79 0.79
ResNet50 0.80 0.77 0.79

KNN InceptionV3-S 0.67 0.62 0.64
KNN ResNet50-S 0.67 0.62 0.63

TABLE III
TOP-3 CLASSES IN TERMS OF F1

Dataset/Arch. Class with the highest F1

BRCars-196 IV3
HYUNDAI CRETA (0.99)

FIAT 500 (0.99)
VOLVO XC40 (0.99)

BRCars-196 R50 JEEP RENEGADE (0.99)
CHEVROLET MERIVA (0.98)

NISSAN KICKS (0.97)

BRCars-196 IV3-S FIAT MOBI (0.98)
FIAT 500 (0.98)

CITROEN C4 (0.97)

BRCars-196 R50-S RENAULT KWID (0.99)
JEEP RENEGADE (0.97)

FIAT MOBI (0.97)

BRCars-427 IV3 CITROEN C4 (0.99)
FIAT 500 (0.99)

CHERY TIGGO (0.99)

BRCars-427 R50 FIAT 500 (0.98)
FIAT MOBI (0.98)

TOYOTA YARIS (0.98)

BRCars-427 IV3-S FIAT TORO (0.97)
VOLVO XC40 (0.97)
FIAT MOBI (0.97)

BRCars-427 R50-S FIAT 500 (1.00)
CITROEN C4 (1.00)

JEEP RENEGADE (1.00)

Figure 3 gives an overview of the F1 scores obtained in
each class (where each column represents a class). We can
see that for both datasets, InceptionV3 and ResNet50 achieved
similar results. This similarity is evidenced looking at the
pattern formed by the F1 scores on Figure 3. When comparing
the columns of Figure 3a which refers to InceptionV3 trained
on BRCars-196, with the columns on Figure 3b which refers
to the ResNet50 trained on the BRCars-196 dataset, we can
observe a pattern, mainly in the classes with the lowest
F1. Although it presents slightly lower results, the same
pattern is observed in the Figures 3c and 3d, that refer to
Siamese networks KNN InceptionV3-S and KNN ResNet50-S,
respectively. These similar patterns seem to indicate that the
low F1 in these classes may be related to the degree of
difficulty of visually distinguishing among the classes. It is
also possible to observe, although it is less apparent, a similar
pattern comparing the columns of Figure 3e which refers to
InceptionV3 trained on BRCars-427, with the columns on
Figure 3f which refers to ResNet50 trained on BRCars-427.
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Fig. 3. F1 by class for model classification across the different subsets and algorithms.



TABLE IV
CLASSES WITH LOWEST F1 AND THEIR MOST FREQUENT PREDICTED CLASSES

Dataset/Arch. Class with lowest F1 Most frequently classified as 2nd most frequently classified as

BRCars-196 IV3
MERCEDES-BENZ C 180 (0.49) MERCEDES-BENZ C 200 (0.44) MERCEDES-BENZ C 250 (0.10)
MERCEDES-BENZ C 200 (0.57) MERCEDES-BENZ C 180 (0.17) MERCEDES-BENZ C 250 (0.08)

VOLKSWAGEN POLO (0.59) VOLKSWAGEN POLO SEDAN (0.22) VOLKSWAGEN VIRTUS (0.17)

BRCars-196 R50
MERCEDES-BENZ C 180 (0.36) MERCEDES-BENZ C 200 (0.55) MERCEDES-BENZ C 250 (0.15)

VOLKSWAGEN POLO (0.54) VOLKSWAGEN VIRTUS (0.28) VOLKSWAGEN POLO SEDAN (0.21)
BMW 320i (0.54) BMW 328i (0.5) BMW X3 (0.01)

BRCars-427 IV3
MERCEDES-BENZ B 170 (0.0) MERCEDES-BENZ B 180 (0.91) MERCEDES-BENZ B 200 (0.09)

FORD F-4000 (0.0) FORD F-250 (0.37) FORD F-350 (0.26)
BMW 316i (0.1) BMW 320i (0.71) BMW 328i (0.16)

BRCars-427 R50
FORD F-4000 (0.0) FORD F-250 (0.42) FORD F-350 (0.26)

MERCEDES-BENZ E 500 (0.05) MERCEDES-BENZ E 350 (0.58) MERCEDES-BENZ CLK 320 (0.08)
BMW 316i (0.06) BMW320i (0.61) BMW 328i (0.35)

BRCars-196 KNN IV3-S
MERCEDES-BENZ C 200 (0.36) MERCEDES-BENZ B 180 (0.35) MERCEDES-BENZ B 250 (0.26)
MERCEDES-BENZ C 180 (0.39) MERCEDES-BENZ C 200 (0.32) MERCEDES-BENZ C 250 (0.22)

BMW 320i (0.47) BMW 328i (0.42) BMW X6 (0.03)

BRCars-196 KNN R50-S
MERCEDES-BENZ C 200 (0.39) MERCEDES-BENZ C 180 (0.32) MERCEDES-BENZ C 250 (0.22)
MERCEDES-BENZ C 180 (0.41) MERCEDES-BENZ C 200 (0.34) MERCEDES-BENZ C 250 (0.17)
MERCEDES-BENZ C 250 (0.46) MERCEDES-BEN C 180 (0.28) MERCEDES-BENZ C 200 (0.26)

BRCars-427 KNN IV3-S
BMW 420i (0.05) BMW 428i(0.35) BMW 430i (0.22)

MERCEDES-BENZ GLE 43 AMG (0.06) MERCEDES-BENZ GLE 400 (0.71) MERCEDES-BENZ GLC 250 (0.14)
FORD F-4000 (0.07) FORD F-250 (0.32) FORD F-350 (0.26)

BRCars-427 KNN R50-S
FORD DEL REY (0.0) CHEVROLET OPALA (0.30) CHEVROLET CHEVETTE (0.25)

FORD F-4000 (0.0) FORD F-250 (0.47) FORD F-1000 (0.16)
MERCEDES-BENZ GLE 43 AMG (0.1) MERCEDES-BENZ GLE 400 (0.67) MERCEDES-BENZ GLC 250 (0.14)

In BRCars-427, the low F1 in certain classes is associated
with the small number of images in the 231 additional classes
with fewer instances. We found moderate positive correlations
around 0.6 between the number of images in the classes and
their corresponding F1 scores.

Figures 3g and 3h refer to KNN InceptionV3-S and
KNN ResNet50-S on BRCars-427. We can see that both
histograms have bars that widely vary in height, representing
the high variance of F1 among the classes. According to the
results presented on Table IV, which shows the classes with
the lowest F1 with the respective classes responsible for the
most frequent false positives, in all cases, the predicted false
positive class belonged to the same make.

Table IV presents the three classes with the lowest F1 for
each architecture trained in the BRCars-196 and BRCars-427
datasets. This information is presented in the Class with lowest
F1 column, and the classes are sorted by F1 in ascending
order. For each of the three classes with the lowest F1, we also
present the two classes that were most often wrongly predicted
(shown in columns 3 and 4). Among the three classes with
the lowest F1 scores, MERCEDES-BENZ models appear on
all trained architectures. This is not surprising, as the different
models from this make share a strong visual identity with each
other. The table also shows that C 180, C 200, C 250, B 170,
B 180, and B 200 are the classes most frequently confused
with each other by all classifiers.

In BRCars-427, FORD F-4000 was one of the three
classes with lowest F1 scores for all classifiers. Except for
BRCars-427 KNN IV3-S, all other models had an F1 of zero
since no instances were correctly predicted into the class. In
addition to FORD F-4000, two other classes had a F1 score
of zero in some architecture – MERCEDES-BENZ B 170 and

FORD DEL RAY.
Figure 4 presents some examples of the classes that were

most often wrongly predicted (from Table IV). We observe
that these models are very similar. Among these classes,
VOLKSWAGEN POLO is a special case for two reasons: (i)
there are two classes for VOLKSWAGEN POLO – one for the
sedan and another for the hatch version. Other models did not
have such a separation; (ii) the new VOLKSWAGEN POLO is
only available in the hatch version. However, VOLKSWAGEN
VIRTUS is a sedan model very similar to VOLKSWAGEN
POLO (their front perspectives are identical). This way, the
new VOLKSWAGEN POLO and the old VOLKSWAGEN POLO
HATCH belong to the same class (although their front has
changed), while VOLKSWAGEN VIRTUS and VOLKSWAGE
POLO SEDAN, are two distinct classes.

Comparison with other datasets. In order to enable a
comparison of the classification performance on BRCars
and existing vehicle datasets, we also trained ResNet50 and
InceptionV3 on the Cars and CompCars datasets. The results
are in Table V.

TABLE V
RESULTS ON EXISTING DATASETS

Dataset Architecture Precision Recall F1

Cars InceptionV3 0.85 0.84 0.83
ResNet50 0.83 0.81 0.81

CompCars InceptionV3 0.85 0.82 0.82
ResNet50 0.84 0.78 0.79

The scores were better than the scores in BRCars-427
(which is more unbalanced) and worse than in BRCars-196.
This seems to indicate that the algorithms are robust in



dealing with unbalanced data. It may also be possible that
the larger volume of images may have contributed for a better
generalization in our datasets.

Fig. 4. Examples of car models that are often misclassified – the cars in each
row are often confused.

V. CONCLUSION

This paper introduced BRCars, a dataset of Brazilian car
images for FGVC tasks. BRCars contains 300,325 images
belonging to 52,505 car advertisements of 427 car models.
Compared to existing datasets for the FGVC task in the
context of vehicles, our dataset is characterized by a lack
of standardization with regards to perspectives (containing
both external and internal images). Also, our classes are
unbalanced, i.e., some car models have more images than
others. We believe that these characteristics are more repre-
sentative of how images are presented in a number of practical
applications, including transport monitoring, surveillance, self-
inspection for car insurance, and automatic ad verification for
advertising websites.

We believe that there are several possible usages for the
BRCars dataset. In this first work, we focused on building
a dataset for fine-grained classification, emphasizing external
and cockpit perspectives with the goal of enabling experiments
that can more closely replicate the real world.

In this paper, we did not train separate classifiers for internal
and external images. This could be done as future work to
assess how having more homogeneous classes affects the
results. Additionally, one could add other perspectives, such
as the car engine or other specific parts of the car interior.
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