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Abstract—Monocular depth inference methods based on 360◦

images allow 3D reconstruction of entire rooms with a single cap-
ture. However, most state-of-the-art approaches assume gravity-
aligned images and are highly sensitive to camera rotations.
Such limitations result in poor depth estimates, which may
jeopardize further 3D-based applications. Here, we present a
pipeline for spherical single-image depth inference supplied by
a novel rotation correction module. We show that our gravity
alignment module can improve existing single-image depth esti-
mation methods, being also useful for aligning color and depth
to the horizon, which is highly desirable in many applications.

I. INTRODUCTION

Spherical (360◦, panoramic or omnidirectional) images are
intrinsically defined on the sphere surface and present a full
field of view (FoV) coverage of the environment [1], [2].
Recent releases of consumer-grade devices for acquiring and
visualizing such images/videos are becoming cheaper and
popular, paving the way for many novel applications. In fact,
exploring depth from 360◦ media boosts not only traditional
3D-based applications but also enables fully immersive naviga-
tion in augmented, mixed, and virtual reality (AR/MR/VR) [3].

A promising “all-in-one” full 3D scene capturing system
is to take a single 360◦ image and then infer its depth
map based on the captured panorama. Such a solution en-
ables several applications, like 3D reconstruction/recognition
or full six degrees of freedom (DoF) navigation in virtual
environments (i.e., allowing the user/virtual camera to freely
perform translational and rotational movements). Despite the
recent advances on this ill-posed problem when considering
perspective imagery [4], [5], only few – and more recent –
works try to solve it under the omnidirectional optics [6], [7],
[8], [9], [10], [11].

Projecting intensities from a spherical image to the plane –
which may allow using traditional visual computing methods –
induces severe non-affine distortion regardless of the mapping
function [12]. The de facto planar representation of 360◦

images is called the equirectangular projection [13], [14].
It maps the spherical image to a rectangular domain and
allows using popular Convolutional Neural Networks (CNNs).
However, such representation presents a strongly non-uniform
sampling (particularly closer to the poles). As such, applying a
3D rotation to an image, although not changing its information,
results in very different visual appearances, as shown in Fig. 1.
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Fig. 1. Two panoramas (on the sphere and in equirectangular format) captured
at the same position but different rotations. The image in (a) is roughly aligned
to the horizon/ground plane, whereas the image (b) has an arbitrary rotation.

Many existing single-panorama depth estimation methods
present a considerable decrease in accuracy when the input
images are not gravity-aligned1. This happens mainly because
most existing datasets for training such methods contain
roughly horizon-aligned images, and some authors [6], [15],
[16] mention that the input images should be upright corrected
– the degradation when pitch and roll rotations are present
are explicitly shown in [16]. However, we are not aware of
any single-panorama depth estimation approach that actually
applies an upright correction mechanism as a pre-processing
step. In fact, gravity-alignment approaches for panoramas
that work in a variety of scenarios (indoor or outdoor) were
introduced recently and popular approaches [17], [18], [19]
provide bad estimates when the input panoramas are already
roughly aligned. Others approaches [20], [21] report more
robust results at the cost of more pre- and post-processing.

This paper presents an approach for “robustifying” existing
single-panorama depth estimation methods w.r.t. rotations. We
first present a robust gravity-alignment module that produces
a roughly homogeneous error distribution regardless of the
input rotation of the panorama (hence, correcting the problem
of nearly-aligned panoramas of [17], [18], [19]). We then
compute the depth map of the gravity-aligned image and
perform an inverse rotation to register it with the input

1Here, we consider the terms “upright correction”, “gravity alignment”
or “horizon alignment” as synonyms to refer to the process of aligning the
equator of the panorama to the ground plane of the scene (as in Fig. 1(a)).



(possibly rotated) panorama. As we will show in the experi-
mental results, existing depth estimation approaches are indeed
sensitive to the capture setup. The proposed strategy improves
both quantitative and qualitative depth inference results.

II. RELATED WORK

A. Depth Estimation

Despite the additional problems when processing omnidi-
rectional media, some approaches for single-panorama depth
estimation have been proposed in the past few years. To
mitigate distortions, Silveira et al. [6] deal with multiple
overlapping narrow-FoV tangent projections of the image.
The perspective views are individually fed to a planar depth
estimation method, and the resulting depth maps are fur-
ther combined by minimizing depth discrepancies and alpha-
blending. Yang et al. [7] also support the idea of representing
spherical images as a set of tangent planes. By following the
Manhattan world assumption, the authors extract and combine
geometric and semantic cues from the views for ground plane
detection and occlusions reasoning. Finer estimates of typical
indoor scene objects, such as furniture, are obtained via depth
propagation. The multiplane representation of 360◦ images
was recently formalized by Eder and colleagues [12], who
exposed many other potential applications.

Other studies try to work directly in the equirectangular
domain, in some cases introducing adaptations to CNNs
for dealing with the distortions of panoramas. Zioulis et
al. [9] present a fully convolutional encoder-decoder network
architecture that uses dilated convolutions, which adapt the
receptive fields depending on the kernel position (latitude).
Eder and colleagues [8] introduce a plane-aware encoder-
decoder network that jointly estimates depth and normal maps
from indoor scenarios. Besides the color image, the authors
also supply the network with a latitude-longitude geodesic map
that, as they claim, helps to account for the irregular sampling
of the equirectangular images. Tateno et al. [10] introduce
a deformable convolutional filtering approach applicable to
monocular depth inference. Their contribution allows cross-
domain transfer learning, where perspective image sets can
be used to train models applicable to problems based on
360◦ imagery. Wang and colleagues [11] propose a two-
branch architecture that relies not only on the equirectangular
projection of the sphere but also its cube-map projection –
a particular case of tangent planes. They claim that exploring
the benefits of both representations helps to improve the depth
estimates. UniFuse [22] builds on top of BiFuse, presenting
two encoders fed with equirectangular and cube-map represen-
tations and just one decoder. Unlike BiFuse, however, UniFuse
unidirectionally feeds the cube-map features to the equirectan-
gular features at the beginning of the decoder, arguing that it
improves the final depth estimates in equirectangular format.

The HoHoNet architecture [16] explored the idea of encod-
ing depth information along a column-wise vector. The latent
representation is extracted with a feature pyramid as backbone
and combined by an attention layer [23], and then unwrapped
to the 2D spatial domain using the inverse discrete cosine

transform (IDCT). They emphasize the importance of having
gravity-aligned inputs, and show that depth estimates degrade
as the input panorama deviates from gravity-alignment.

Despite the advances achieved by these approaches, a com-
mon drawback is the lack of performance when rotations are
introduced in the input panorama, as shown in Fig. 1. In fact,
most approaches for monocular depth inference [9], [7], [8],
[10] and 3D layout recovery [24], [15] only show results for
roughly aligned images with the ground plane.Some works
such as [25] evaluate the impact of rotation in the predicted
depth values, but within a very limited range (misalignments
up to 5◦).

B. Gravity Alignment

Altough gravity alignment could be performed using an
Inertial Measurement Unit (IMU) [26], several high-end cam-
eras do not feature this sensor. To overcome this limitation,
several approaches for gravity alignment have been proposed
in the past, initially for narrow-FoV perspective images and
more recently for panoramas. Earlier approaches were based
on geometrical cues, such as lines and vanishing points (VP),
possibly exploring additional constraints on the input image
such as Manhattan [27], [28], [29], [30] or Atlanta [31], [32]
worlds. In general, VP-based methods work well in indoor
and urban scenes, but tend to fail in natural images due to the
lack of structural information. Other approaches [33], [34] try
to estimate the horizon line instead, which is orthogonal to
the gravity vector. These methods usually explore sky/ground
photometric separation and are more suited to natural views
(particularly when there is a clear distinction between the sky
and the ground), prone to errors in urban and indoor scenarios.

More recently, some methods for upright vector estimation
in a generic capture scenario (indoor, outdoor, urban and
natural scenes) based on deep learning have been developed.
Jeon et al. [18] propose a CNN that predicts the rotation in
common perspective images. To predict the upright vector in
spherical images, it generates several crops from a panorama
and then aggregates all the results. Such an approach has
considerably more pre- and post-processing than a direct
regression using the full panorama as input. Shan and Li [20]
propose two classification models to perform first a coarse
alignment (classifying within bins of 10°) and after that a fine
alignment (classifying within bins of 1°). Besides using two
models, this method cannot fully describe the domain of the
problem, generating error even when all the classifications
are correct. The Deep360Up model [17] uses a DenseNet
backbone with a fully connected layer to directly regress the
two relevant angles (pitch and roll) that align the input image
to the horizon. This approach is simple and typically produces
good results, but the errors grow larger as the input panorama
is already roughly aligned. Davidson and colleagues [21] use
VPs to help a CNN segment pixels near the vertical axis, which
is used to find the vertical axis and to estimate the upright
direction. Segmentation models usually have more layers and
are slower than direct regression methods because, after the
feature extraction, they have several up-scaling layers instead



Fig. 2. Example of the “circularity problem”. Despite being perceptually
similar, the roll angle of two images are numerically very different: 5◦ and
355◦, respectively.

of a fully connected one. Jung et al. [19] use a CNN to extract
features and a graph convolutional network (GCN) to find a
spherical representation of the input. However, graph-based
networks are slower than planar ones, and their method does
not address the errors in roughly aligned images.

One crucial issue related to the regression of angular infor-
mation is the “circularity problem”, which might occur since
the angles θ and θ + 2π encode the same rotation. Hence,
very different angle values in roughly aligned images (θ ≈ 0
ou θ ≈ 2π) induce similar rotations, as illustrated in Fig. 2.
Direct regression of the angles, as adopted in [17], [18], [19]
is prone to the circularity problem, which can slow down (or
compromise) the network optimization. In fact, larger errors
were reported for nearly gravity-aligned images in [17]. Note
that this poses a relevant issue when supplying a monocular
depth estimation method with this rotation awareness module:
if the input panorama is already roughly aligned, the baseline
depth estimator tends to perform well; on the other hand, a
noisy estimate for the gravity vector might misalign the input
panorama instead of correcting it, which would decrease the
quality of the depth map. Therefore, this paper focuses on
developing a gravity alignment approach that yields homoge-
neous, small errors for all input rotations (i.e., mitigating the
circularity problem) and then using it to improve the results
of baseline single-panorama depth estimation methods.

III. THE PROPOSED METHOD

Achieving rotation-invariant depth estimation could be done
by training the model with a large range of rotation angles.
However, this might slow down or even turn impractical the
network optimization because of the high variability of the
training set. Here, we propose a two-step approach composed
of rotation estimation and upright correction, followed by
depth inference (and potential de-rotation). Fig. 3 shows an
overview of the proposed method, where the final de-rotation
might be omitted depending on the application (such as
generating a 3D model aligned with the ground plane).

A. Gravity Alignment

The proposed gravity alignment model is inspired by the
Deep360Up architecture [17]. Deep360Up regresses the two
relevant rotation angles and corrects the upright vector. It
explores a DenseNet backbone [35] (pre-trained on Ima-
geNet [36]), with the classification layer replaced by a re-
gression one (with linear activation). Deep360Up encodes the
rotation by the pitch (varying in [0, 180◦)) and roll (varying

Fig. 3. Overview of our method, where R(I, v) denotes the rotation of the
spherical panorama I that aligns a unit vector v of I with the vertical axis.

in [0, 360◦)) angles, and it is trained using high resolution
images (9, 104×4, 552) from the SUN360 dataset [37], which
are rotated and then downscaled to 442× 221 (unfortunately,
the full resolution images from the SUN360 dataset are
no longer available). Rotating low-resolution equirectangular
images produce artifacts due to their non-uniform sampling,
which might bias the model as noted in [17].

To generate the poses required to train the proposed model,
we synthetically rotate the images of the SUN360 dataset at
the maximum available resolution. As far as we know, there
are no publicly available datasets with camera viewing angle
annotations, and as other works [17], [18], [20], [21], [19], we
assume all images in SUN360 are naturally upright-corrected.
To generate a balanced dataset in which all possible rotations
present approximately the same number of training samples,
we generate n upright vectors on the surface of a sphere
using a Fibonacci Lattice [38], which yields approximately
equiangularly spaced points. Then, each aligned image in the
dataset is rotated according to these upright vectors, generating
our training set (we used n = 39, 791, one vector for each
image in the train set). According to Jung et al. [17], 10, 000
poses provide enough generalization capabilities, and the per-
formance only increases marginally beyond this value. We use
a larger value to generate more variability and compensate for
the low-resolution dataset.

In our model, named VectorUp2, we use the same backbone
as [17] for feature extraction, but a different parametrization
for the rotation angles: our model outputs the three compo-
nents of the normalized upright vector. Moreover, due to the
unavailability of the full resolution images in SUN360, we use
1024×512 equirectangular images (resized to 442×221 after
rotation, the same size used by [17]). By outputting the vector
instead of the angles, we fix the circularity problem. Recall
that this issue might occur when similar views with very high

2Our pre-trained network is available at https://github.com/mabergmann/
anglesup



or very low roll angles have different numerical representations
(as shown in Fig. 2), which might slow down or compromise
the training process.

Formally, our gravity alignment model outputs a 3D vector
v = [x y z]>, and minimize the squared `2 error between a
normalized version of v and the ground-truth unit vector vgt:

L(v) =
∥∥∥∥ v

‖v‖
− vgt

∥∥∥∥2 = 2 (1− cos θ) , (1)

where θ is the angle between v and vgt.
Also, we noticed that blurring the images alleviates the

issues introduced by artificial rotations mentioned by [17], and
added Gaussian noise as data augmentation for regularization.
These operations are applied at training time with probabilities
of 30% and 40%, respectively. The variance of the Gaussian
noise is set between 10 and 50 (assuming intensities in the
range [0, 255]), and the blur is performed with a normalized
box filter with a kernel size of 3, 5, or 7 (randomly chosen).
Finally, we modified the training protocol to accelerate con-
vergence by using layer-dependent learning rates: 10−2 in the
randomly initialized layer and 10−3 in the pre-trained layers.
The use of individualized learning rates aims to focus the
training process on the task-specific weights while keeping
the feature extraction more stable. To preserve the fine-grained
optimization in the late stages of the training process, we used
a scheduler that reduces the learning rate by a factor of 0.1
after 10 epochs without improvements in the angular error.
These higher learning rates values are feasible only because
we replace the unconstrained regression layers with a layer that
outputs a normalized vector, reducing numerical instability and
vanishing gradients. These changes produced a 4× speed-up
improvement (convergence in 200 epochs) in the training stage
when compared to [17].

For the sake of comparison, we also trained a model with
the exact same architecture as Deep360Up [17], but with the
images at available resolution. For training this model, further
referred to as AnglesUp for clarity, we reduced the learning
rate to 10−5 and considered 800 epochs, as in [17] – we noted
that convergence using angles was considerably lower than
using unit vectors.

B. Depth inference.

Our framework is suited for any single-panorama depth
estimation approach. Here, we tested our method using a state-
of-the-art monocular method that presents source code and
pre-trained weights called OmniDepth [9]. OmniDepth [9] is
based on a fully convolutional encoder-decoder that regresses
a per-pixel depth map of indoor scenes represented in equirect-
angular format. For handling the distortions present in these
images, the authors employ distortion-aware convolutional
filters, which are implemented using dilated convolutions [39]
that increase each neuron’s receptive field according to its lat-
itude. OmniDepth was originally trained on the 3D60 dataset
(also made available in [9]) in a supervised manner with color
plus depth upright-aligned 360◦ images using the `2 loss and
gradient regularization.

Fig. 4. Percentiles versus the angular error in degrees for VectorUp and
AnglesUp.

C. Rectified depth inference and back-rotation.

As shown in Fig. 3, after correcting the orientation of the
input image and feeding it to a depth inference method, we
de-rotate the resulting depth map, aligning it with the input
image. More precisely, let R(I,v) denote the rotation of an
equirectangular image I that aligns the unit vector point v of
I with the vertical axis (i.e., the gravity vector of the rotated
image is aligned with −v). Also, let fu(I) denote the upright
correction module, which outputs an estimate for v, and fd(I)
denote the depth estimation module, which produces a pixel-
wise depth estimate for the input image I . The complete
pipeline can be summarized as

D = R−1 (fd (R (I, fu(I))) , fu(I)) , (2)

where I is the input RGB panorama and D is the output depth
map aligned with I . For some applications such as AR, MR,
and VR, it might be desirable to generate a 3D model of the
captured scene aligned with the horizon. In that case, it is
possible to use R (I, fu(I)) and fd (R (I, fu(I))) in the 3D
modeling step, and omit the inverse rotation at the end to
obtain a model aligned with the world gravity vector.

IV. RESULTS AND DISCUSSION

In this section, we show the results of the upright correction
module itself and its integration with monocular panorama
depth inference methods.

A. Upright correction

For testing the proposed upright correction module, Vec-
torUp, we use the test split of the SUN360 [37] dataset, after
synthetically rotating the images, as during the training phase.
For assessment, we adopt the angular error, given by

e(vgt,vout) = cos−1 〈vgt,vout〉, (3)

where vgt and vout represent the ground-truth and estimated
upward unit vectors, and < ·, · > denotes the inner product.

Fig. 4 shows the percentiles of the error distribution ver-
sus the angular error for VectorUp and our implementation
of Deep360Up (AnglesUp). The sharp increase of the plot
indicates that most of the error distribution presents a small
angular error. Note that the curve related to VectorUp is
sharper, and present a larger percentile for any angular error,
even though AnglesUp was trained for four times more epochs.
More precisely, 82.77% of the samples present an angular error
smaller than 5◦, which is considered by people as a “very
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Fig. 5. Median error for each pitch/roll for VectorUp (a) and AnglesUp (b).

satisfactory” orientation, and 97.03% are smaller than 12◦,
which is considered a “satisfactory” orientation according to
the subjective assessment from [17].

In its original implementation, Deep360Up presents 90.27%
and 96.36% of the errors smaller than 5◦ and 12◦, respectively,
as reported in [17]. Note that these percentiles are larger
than those associated with AnglesUp and larger than those
of VectorUp for the “very satisfactory” angular threshold
(but smaller in the “satisfactory” range). However, recall that
AnglesUp and VectorUp were trained with lower-resolution
images, which tend to be affected by prominent artifacts when
artificially rotated [17]. Furthermore, we emphasize that our
main goal is to mitigate the circularity problem that produces
bad estimates for nearly aligned panoramas since they can
generate “de-rotated” images that are even less aligned than the
original one and compromise the depth map inference instead
of improving it.

As shown in Fig. 5a, the angular error of VectorUp is
roughly homogeneous for all rotation angles. In fact, it attains
a maximum median error of 3.64◦ compared to 5.2◦ reported
in [17] (possibly related to nearly aligned images), and 67.14◦

achieved by AnglesUp. The high maximum median error of
AnglesUp indicates that using lower-resolution images to train
the model strongly impacts the direct angle regression method.
In fact, the error distribution of AnglesUp clearly shows a peak
for low pitch and roll angles, reproducing the issues reported
in [17] originally.

Fig. 6 depicts some results of rectified images in both indoor
and outdoor scenarios, along with the corresponding angular
errors of the estimated upright vectors using VectorUp and
AnglesUp. The images on the top are rotated versions of

panoramas from the SUN360 dataset [37] (we assume that
original images are gravity-aligned), and the rectified versions
(using the regressed vector) for VectorUp and AnglesUp
(shown on the middle and bottom, respectively). Note that
most of the images are nearly aligned after applying our
gravity-alignment process, opposed to AnglesUp. The last
image shows a common mistake in complex scenes, in which
an “inverted” upright vector is regressed so that the “aligned”
image is roughly upside-down.

It is also worth mentioning that we also implemented a
modified DenseNet backbone replacing planar convolutions
and max-pooling layers with spherical counterparts based on
SphereNet [40]. However, this adaptation does not allow using
pre-trained weights from ImageNet, and it is considerably
slower than the planar versions. When trained from scratch,
the resulting model performed worse than the planar one, with
a maximum median error of 5.05◦ compared to 3.64◦ with the
planar implementation described before (VectorUp). In terms
of computational complexity, our model requires 5.65GMac
(Multiply and accumulate operations) in the inference phase.

B. Rotation-Aware Depth inference

To evaluate the impact of the alignment procedure on the
estimated depth maps, we randomly rotated panoramas (and
the depth maps) from the test set of the 3D60 dataset [9], as-
suming that they are roughly upright aligned. We then compare
the depth maps produced by directly applying OmniDepth and
when combining it with VectorUp and AnglesUp, as given by
Eq. (2). More precisely, we created 10, 000 panoramas with
random synthetic rotations (pitch angle between -90◦ and 90◦

and roll angle between -180◦ and 180◦). Similarly to [9], we
perform median alignment of predicted depth map Dpred and
the annotated map Dgt, scaling the former by a factor s:

s =
median(Dgt)

median(Dpred)
. (4)

We then compute common evaluation metrics, namely the
mean absolute relative error (Abs Rel), mean square relative
error (Sq Rel), root mean square error (RMS), logarithmic
root mean square error (RMSlog), and the accuracy at a given
threshold (δ) [6], [9], [7], [8], [10] while ignoring missing
values in the Dgt.

For the sake of comparison, we also show the result of
the proposed pipeline applied directly to the original images
of 3D60. In this case, the results with our rotation-aware
procedure tend to be worse than the original method since
the two rotations (the initial alignment of the RGB panorama
and the inverse rotation of the depth map) introduce artifacts.
As a final experiment, we tested a hybrid approach in which
the panorama is only rotated if the estimated upright vector
presents an angle larger than ψ w.r.t. the vertical axis so that
panoramas that are roughly aligned (and for which the baseline
depth estimator is expected to work well) are not rotated.

The average results, in all three tested scenarios, for Om-
niDepth without upright correction or using either VectorUp
and AnglesUp are shown in Table I. We can observe a



Fig. 6. Example of inputs (top) rectified by VectorUp (middle) and AnglesUp (bottom). Errors for Vector up are, from left to right, 0.8°, 2.18°, 3.26°, 6.53°,
10.7°, 158.74°. Errors for AnglesUp are, from left to right 5.07°, 1.9°, 146.48°, 7.15°, 24.05° and 11.95°.

TABLE I
QUANTITATIVE RESULTS FOR THE BASELINE METHOD UNDER ROTATION SCENARIOS. RESULTS ON THE ORIGINAL DATASET ARE ALSO PROVIDED.

Framework Orientation Abs Rel ↓ Sq Rel ↓ RMS ↓ RMSlog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
OmniDepth rotated 0.1797 0.1236 0.5972 0.2511 0.7126 0.9285 0.9783

OmniDepth + VectorUp rotated 0.1156 0.0547 0.3735 0.1701 0.8677 0.9741 0.9928
OmniDepth + AnglesUp rotated 0.1113 0.0534 0.3735 0.1676 0.8753 0.9745 0.9925

OmniDepth original 0.0641 0.0197 0.2297 0.0993 0.9663 0.9951 0.9984
OmniDepth + VectorUp original 0.1127 0.0533 0.3656 0.1658 0.8765 0.9763 0.9931
OmniDepth + AnglesUp original 0.1767 0.1172 0.5660 0.2454 0.7228 0.9319 0.9799

OmniDepth + VectorUp (ψ = 12◦) original 0.1029 0.0479 0.3449 0.1585 0.8874 0.9775 0.9936
OmniDepth + AnglesUp (ψ = 12◦) original 0.1762 0.1169 0.5653 0.2452 0.7233 0.9319 0.9799
OmniDepth + VectorUp (ψ = 14◦) original 0.1015 0.0472 0.3419 0.1572 0.8898 0.9777 0.9936
OmniDepth + AnglesUp (ψ = 14◦) original 0.1761 0.1168 0.5648 0.2451 0.7234 0.9319 0.9799

considerable improvement in all error metrics when correcting
the image orientation for the rotated experiment using either
the proposed method VectorUp or AnglesUp compared to
the baseline OmniDepth. We can also note that applying the
rotation-aware procedures to already aligned images (middle
section of the table) produces worse results than the baseline
due to rotation-induced artifacts, as mentioned before, but are
consistent with all the error metrics in the first experiment.
The use of AnglesUp attained considerably worse results than
our method since it tends to produce particularly larger errors
for roughly aligned panoramas, as shown in Fig. 5b.

In the last section of Table I (with ψ values indicated),
we see the depth estimation results using the rotation-aware
scheme only if the upright vector presents an angle larger than
ψ w.r.t. the vertical axis. We tested two values for ψ. The
first one, ψ = 12◦, is based on the “satisfactory” orientation
according to [17]. The second value for ψ is set experimentally
considering the depth error produced by OmniDepth and
variants as a function of the rotation angle. Fig. 7 shows at
what point (marked in red, representing the second choice
for ψ = 14◦) OmniDepth start producing worst results in
rotated images than the rotation-aware approaches. A total of
189 and 199 (out of 325) images were considered aligned
using VectorUp with ψ = 12◦ and ψ = 14◦, respectively, and
all the error metrics improved. For AnglesUp, only 6 and 7
images were considered aligned according the same angular
thresholds, and only a marginal improvement w.r.t. the second
experiment was achieved.

Fig. 7. Mean Absolute Relative error in depth for OmniDepth (blue) and
its rotation-aware versions using VectorUp (green) and AnglesUp (orange) as
a function of the angular deviation from the gravity vector. The red vertical
line at ψ = 14◦ indicates the angular threshold where rotation-aware versions
improve over the baseline.

To better evaluate the effect of using the proposed rectifica-
tion scheme, Fig. 8 shows the depth maps produced by the two
frameworks and the ground-truth depth map for some images
that are far from being gravity-aligned. We can observe that the
direct application of OmniDepth to rotated images generates
artifacts, whereas the proposed method presents results similar
to the ground-truth.

We also evaluated the depth inference error as a function
of the rotation of the input panorama in Fig. 9, where the



Fig. 8. Depth inference results. First column shows color images. Second to fourth columns present the ground-truth depth maps and the estimates from the
baseline OmniDepth and OmniDepth when supplied with VectorUp.

horizontal and vertical axes represent the roll and pitch angles,
respectively. The error maps show that OmniDepth, when sup-
plied by our upright correction module, has much more stable
estimates regardless of the rotations. Although not very clear,
the error map associated with AnglesUp, which resembles the
error map shown in Fig. 5b with a much more subtle peak,
presents larger values for low rotations (particularly for low
pitch values). Fig. 7 also provides this information.

Finally, for the sake of illustration, we also show in Fig. 10
the depth maps produced by the recent depth estimator Bi-
Fuse [11] in a rotated panorama and its aligned version by our
method. We observe that the prediction of BiFuse with upright
adjustment seems sharper and has more valid predictions on
areas corresponding to the horizon on the original image,
where most of the information is located. A full quantitative
analysis of BiFuse cannot be performed because the weights
provided by the authors do not work near the 360◦ images
poles, compromising the analysis.

V. CONCLUSIONS

This paper presented a pipeline for inferring a dense depth
map from a single panorama under a wide range of possible
rotations. For that purpose, we proposed an upright correction
module that rotates the input image to a canonical (rectified)
view. Then we apply a deep monocular depth inference method
and align the generated depth map with the original image by
de-rotating the depth map.

Our experimental validation shows that the upright rectifica-
tion improves qualitative and quantitative results of a state-of-
the-art baseline depth estimation method [9], which is sensitive
to rotations. We also show promising visual results for another
depth estimator [11].

As future work, we plan to train the pipeline in an end-to-
end manner instead of training two isolated modules aiming to
further improve the estimated depth maps. We also intend to
evaluate our gravity alignment approach for single-panorama

Fig. 9. Relative depth error varying the rotation angles (roll and pitch) without
rotation correction (top), with VectorUp (middle) and with AnglesUp (bottom)

layout estimation. Since several of these methods assume
Manhattan worlds, in which the room walls are aligned with a



Fig. 10. Depth inference results. In the first row: rotated color and depth maps
(ground-truth and results from BiFuse). In the second row: upright corrected
color and depth maps (ground-truth and results from BiFuse).

canonical coordinate system [41], gravity-alignment becomes
a critical issue.
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