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Abstract—Ball trees are hierarchical bounding structures –
usually binary trees – where each node consists of a ball (circle,
sphere, etc) enclosing its children. Approaches for building an
optimal ball tree for a given set of leaves (points or balls enclosing
other geometric primitives) typically rely on minimizing some
function of the shape of the tree, regardless of the intended
application. In this paper we examine the problem of building
ball trees for 2D primitives, trying to balance construction time
with the efficiency of the produced trees with respect to a set
of distance-based queries. In particular, we present three new
construction algorithms, propose an optimization whereby each
internal node is the smallest ball enclosing all leaves rooted
at that node, and describe enhancements to several distance
query algorithms. Moreover, an extensive experimental study was
conducted in order to evaluate our algorithms with different
kinds of data sets, including ball collections that approximate
2D shapes.

I. INTRODUCTION

Querying spatial relationships in two-dimensional geometric
models is a common activity performed by many applications.
Typically, data structures such as bounding volume hierarchies
(BVH) are used to model spatial distributions. These tree
structures employ a variety of simple volumes, such as balls1

[1], [2], axis-aligned bounding boxes [3], [4] or oriented
bounding boxes [5], [6].

Many varieties of BVHs have been proposed for efficient
processing of spatial queries, such as M-trees [7], VP-trees
[8], R-trees [9], [10], and Ball trees [11], [12]. In this work
we explore binary ball trees in two dimensions; thus, we use
the term ball as a synonym for circle.

Ball trees are classic data structures used in many applica-
tions, such as collision detection [13], [14], image matching
[15], data anonymization [16], non-parametric methods [17],
and searching spatial data [10], [11].

Our main motivation for studying ball tree construction
algorithms is our interest in measuring relative distances
between irregular two-dimensional shapes at interactive rates.
In particular, we intend to use ball trees to deal with scanned
documents that are segmented into pieces that can be grouped
independently of their original position on the page.

1Here the term is used as a generalization of circles (or disks) in two
dimensions, spheres in three dimensions, or hyperspheres in 4 or more
dimensions.

A. Contributions

In this work we propose the following contributions that
build on the algorithms and experiments on ball trees as
described in the seminal paper by Omohundro [12]:
• The three best-performing ball tree construction algo-

rithms described by Omohundro were extended with what
we call the enclosing leaves optimization - (EL), i.e.,
internal nodes built as the smallest bounding circles of all
descendant leaf nodes. This is in contrast with the usual
practice of bounding just the two immediate descendants.

• Three new ball tree construction algorithms are proposed,
also extended with the EL optimization.

• In addition to experiments with different random dis-
tributions of points, we also use data sets containing
collections of circles approximating test shapes, since
these arise in many important applications.

• Experiments were conducted to gauge the quality of ball
trees as they are used in six different types of queries.
This experimentation supplements the usual practice of
equating quality to the total ball area.

• The branch and bound strategy used in tree distance and
tree intersection queries employs a new distance bound
metric that is tighter than the usual maximum distance
metric (see Section IV).

II. FUNDAMENTALS

A ball tree is constructed from an input set of balls. De-
pending on the intended application, input balls may represent
different entities, such as the shape of an object, bounding
balls of some collection of discrete objects, point clouds, etc.
An optimal ball tree for a given input clearly depends on its
performance in the application at hand, which, in turn, depends
on the distribution of nodes in the tree.

Construction algorithms for BVHs such as ball trees can
be divided into three classes: Top-down, Bottom-up and
Insertion-based construction [14]. The top-down approach is
the most popular, where the algorithm recursively subdivides
the collection into smaller and smaller partial collections until
only one element is left and placed in a leaf node. Bottom-
up algorithms locate pairs of nodes that are close together,
creating parent nodes pointing to them; this is done recursively
from individual leaf nodes until reaching the root of the tree.
The insertion (also called incremental) method starts with an



Fig. 1. Typical binary ball tree representation. (a) shows a ball tree where
internal nodes enclose the two immediate children, while in (b) they enclose
all descendant leaf nodes. (c) depicts the tree topology, which is the same for
both trees.

empty tree, inserts one ball at a time at the best location in
the tree.

Omohundro [12] states that bottom-up strategies are gener-
ally better, despite having a high construction cost, because
they tend to be more efficient in finding optimal grouping.
Omohundro uses the total volume of all balls in a ball tree
as a measure of its quality and concludes that minimizing
the total volume may be the most efficient criterion for most
applications.

Let us consider the problem of constructing a ball tree for
a collection of n balls. To simplify the analysis, we assume a
bottom up approach, where all leaf nodes are paired together
in order to build the next higher level. Assuming that n is
even, the lowest level of the tree will consist of m = n

2 pairs
of balls. Let’s call P the total number of possible pairings,
such that P (n) is related to Stirling numbers of the second
kind
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By examining Equation 1, it can be shown that P (n) ∈
O(cn) for some constant c > 1. Table I shows a few values of
P (n), which makes this clearer. As the search space for this
problem is huge, a deterministic approach to find a tree that
can be considered optimal in some sense is out of the question
and we must rely on heuristics.

TABLE I
NUMBER OF PAIRINGS OF n ELEMENTS FOR SOME VALUES OF n.

n 4 6 8 10 30 50
P (n) 6 90 2, 520 113, 400 8× 1027 9× 1056

A. Enclosing leaves optimization

The strategy used by Omohundro to define the ball cor-
responding to a given node follows that of most approaches
found in the literature (e.g. [11], [18]), i.e., the root of a subtree
is defined as the smallest ball containing the two immediate
descendants, which can be computed in constant time.

However, circles (and balls, in general) do not enjoy the en-
closing properties of other shapes used as bounding structures.
For instance, if two axis-aligned rectangles R1 and R2 are the
smallest such rectangles which enclose two point sets S1 and
S2, then it follows that the smallest axis-aligned rectangle that
contains R1 ∪R2 is also the smallest with respect to S1 ∪S2.
The same cannot be said for circles.

In this work, once a ball tree is built, an additional step
– which we call the Enclosing Leaves optimization – is
performed to ensure that each internal node corresponds to the
smallest circle containing all leaves rooted at that node. We
note that finding the smallest circle which contains a collection
of circles can be done in O(n) [19]–[22], and thus this step
takes O(n2) for a tree with n leaf nodes.

B. Related problems

Ball trees can be seen as level-of-detail approximations
of the object, in the sense that nodes at lower levels of
the hierarchy (closer to the root) provide less accurate but
more concise approximations than those at deeper levels. For
example, collision detection between two objects represented
by ball trees A and B is calculated by a recursive descent
process, where pairs of nodes at increasingly deeper levels are
tested for intersection.

The concept of tightness can be characterized in several
ways for BVHs in general and for ball trees in particular. For
instance, clearly, the root node of a ball tree in 2D containing
n leaves (circles) must be the smallest circle containing all
leaves (see Fig 1). However, depending on how the collection
is partitioned to form the two children of the root, we might
have considerably different results. We might strive to obtain
the smallest circles for each subcollection, i.e., obtaining the
smallest total area for their bounding circles. Alternatively,
we might try to obtain subcollections with disjoint bounding
circles, or at least with the smallest possible overlap, since
queries considering points within the intersection of the two
circles would necessarily traverse both subtrees. Another ap-
pealing heuristic is to split the collection into two subcollec-
tions with roughly the same number of elements, since this
would lead to more balanced trees. Once we settle on the
criterion for minimality, however, finding the optimal ball tree
for a given input is a combinatorial problem of exponential
complexity. Note that in this paper we focus on 2D problems
and adopt the criterion of minimum total area for the circles
of all nodes.

Another related problem is that of approximating a given
shape S by a minimal set of balls B such that the distance
from a point to S is bounded by the distance from the point
to B within a given error margin ε.This way, shallow levels
of the tree provide a rough approximation of the object. For



instance, finding the closest pair of points between two objects
represented by balanced ball trees takes time O(log2 n) rather
than O(n2) [23].

Typically, the approximation algorithm first computes the
distance transform (DT) of S, extracting a skeleton based on
the discrete medial axis (DMA [2], [24]–[26]) and using points
along the skeleton as circles of maximum radius [27]–[29].

Fig. 2. Example of our own algorithm for covering a shape with circles: (a)
Original shape. (b) Object approximated by a union of balls. (c) A maximal
circle with center on the DMA.

III. BALL TREE CONSTRUCTION

Although ball trees have been proposed as a type of metric
trees [30] and used as spatial decomposition devices, we do
not concentrate on construction algorithms proposed for that
purpose (e.g., [31]). Rather, we focus on their use in tasks
such as collision detection and assorted Euclidean distance-
related queries, using on Omohundro’s seminal work on ball
tree construction [12] as a yardstick.

Six ball tree construction algorithms were implemented2.
The first three follow the discussion of Omohundro [12] and
we refer to them as the KD construction, Online and Bottom up
algorithms. We note that, although two other algorithms were
tested by Omohundro, these three were considered the best
performing. Our implementations differ from those described
in [12] mainly in two aspects: the first is the use of EL
optimization, described earlier. The second is that leaf nodes
may consist of balls, rather than points.

Next, we present a quadratic algorithm (Q) and two others
that use Voronoi neighborhoods [32], [33] which we call V0
and V1.

A. KD construction algorithm

This is a top-down offline algorithm, similar to the method
proposed by Friedman [23] for building KD-trees. According
to [12], if the data set is large and relatively uniform, then the
KD approach is fast and simple and more suitable. If the data
is clustered or sparse or has extra structure, the KD approach
tends not to reflect that structure in its hierarchy. The tree
is built by recursively splitting each set into two subsets with
roughly the same number of balls. At each stage, the algorithm
determines the axis of largest dispersion and the median value
with respect to that axis is used to perform the split. The
overall complexity of this algorithm is O(n log n). However,
adding EL optimization increases its complexity to O(n2).

2The implementation and demo code for all these algorithms can be found
at https://observablehq.com/@lretondaro/optimized-2d-ball-trees.

B. Online algorithm

This algorithm builds the tree incrementally. It tries to insert
each new ball into the tree, searching for the ideal location,
i.e., the one that contributes the least to the total volume of the
tree. This ball tree structure tends to group the closest nodes as
siblings and leave those that are more distant or that are much
larger near the top of the tree and in different branches. Once
the sibling of the node is determined, the algorithm yields a
parent and inserts it together with the new leaf into the tree.
The ball tree is built in O(n log2 n). Adding EL optimization
raises the complexity to O(n2).

C. Bottom up algorithm

Initially, the algorithm finds the pair of balls that has the
smallest enclosing ball for each node. These pairs are kept
in a priority queue and at each iteration the best partners
are recalculated with the help of an auxiliary insertion tree
built with the online algorithm. Nodes that have already been
combined are removed from the insertion tree and when there
is only one node left in the insertion tree, construction is
complete in O(n2 log2 n).

D. Q algorithm

In this algorithm, the input ball collection B is initially
sorted by radius. Then, the optimal pair for each element in
this sorted order is determined, i.e., for Bi, all elements Bj

such that j > i — and such that j has not yet been paired —
are examined and the element yielding the smallest bounding
circle is chosen. The internal nodes formed by pairing balls
of B are again sorted by radius and a new collection B′ is
created, containing only a fraction 0 < α ≤ 1 of these having
the smallest radii is kept, whereas the other pairs are dissolved
and their immediate children are also put in B′. The whole
process is then repeated, now considering the new collection
B′, until B′ contains a single ball - the root of the tree.
The complexity of this algorithm is O(n2), but the constant
depends on α: larger values result in a smaller number of
repetitions.

E. V0 algorithm

Similar to the Q algorithm, the input balls are placed in a list
L sorted by radius. This algorithm builds the Voronoi diagram
V , whose sites correspond to the centers of the balls ∈ L.
For each element Vi ∈ V , there is a set of points that depict
its neighborhood sites N(i). Then, for each Vi element, all
sites j ∈ N(i) are examined, i.e., the respective corresponding
balls ∈ L. The optimal pair is determined when yielding their
smallest enclosing circle. The balls i and j are removed from
the L list and the new parent ball is inserted. So, the list L is
sorted again and the algorithm rebuilds V . As long as there are
balls in L, the algorithm continues until it finishes building the
tree from the last single ball. The complexity of the algorithm
V0 is O(n2 log n).

https://observablehq.com/@lretondaro/optimized-2d-ball-trees


F. V1 algorithm

Using the same approach as V0, this algorithm selects the
optimal pair of balls in L list, from the Voronoi neighborhood
comparison for each iteration, i.e., examining all elements of
N(i) elements for each Vi. However, the elements ∈ L are not
ordered. Instead, they are shuffled only once at start, so that
the elements are always taken in random order. The procedure
to update list L is the same as used in V0 and the ball tree is
built in O(n2 log n)

IV. QUERY ALGORITHMS

The evaluation of a particular ball tree construction algo-
rithm, in addition to an analysis of its time and space complex-
ity, typically includes measurements of certain characteristics
of trees built from assorted inputs. As mentioned earlier, the
de facto standard for this kind of measurement is the total
area of all balls in the tree. In the present study, however,
we add other empirical measures to this mix, namely, we
conduct additional experiments where trees built with each
algorithm listed in Section III are used for answering a variety
of proximity queries.

A. Query processing strategy

Distance-related queries between two trees A and B are
routinely computed by a concerted descent of the two trees,
analyzing one pair of nodes (a, b)fora ∈ A, b ∈ B at a time.
The process clearly must start with the two root nodes, but
from this point on, choosing the next pair to be examined
must be informed by some heuristic. The idea is to prioritize
pairs of nodes with a greater chance of leading to a better
solution to the query than what has been seen so far.

Our query algorithms involving two ball trees A and B
follow a branch-and-bound strategy, where, at each step, a
pair (a, b) | a ∈ A, b ∈ B of nodes is considered only if
combinations of their descendants (if any) can still improve
the objective function of the search. The traversal of the search
space is performed with the help of a priority queue P ordered
with respect to some function fP (a, b). This function ranks a
pair of nodes a, b according to its chance of containing the
solution among pairs built with a and b or their descendants.
As an additional requirement, fP (a, b) must support an early
termination of the search, that is, it must be possible to
determine whether P still contains pairs worthy of examination
after examining the pair at the head of the queue.

As an example, consider Algorithm 1, which computes
the shortest distance between A and B, i.e., the shortest
distance between two leaves a ∈ A, b ∈ B. Clearly, the
early termination clause expressed in line 6 implies that no
pair of balls (a′, b′) still in the queue may yet yield a pair
of leaves whose distance is smaller than minDist. In other
words, if a′ is the set of all leaves in the tree rooted at a (and
analogously for b′), and dist(a, b) stands for the Euclidean
distance between a and b, then we define

dmin(a, b) = min{dist(a′i, b′j) | a′i ∈ a, b′j ∈ b},

Algorithm 1 - Tree Distance
Input: A,B {ball trees}
Input: fP {priority queue ranking function}

1: P ← priority queue ordered by fP
2: P.push((root(A), root(B))
3: minDist←∞
4: while P 6= ∅ do
5: (a, b)← P.pop()
6: if dist(a, b) > minDist then
7: return minDist
8: end if
9: if isLeaf(a) and isLeaf(b) then

10: minDist← dist(a, b)
11: else if isLeaf(a) and not isLeaf(b) then
12: P.push((a, b.left))
13: P.push((a, b.right))
14: else if not isLeaf(a) and isLeaf(b) then
15: P.push((a.left, b))
16: P.push((a.right, b))
17: else
18: P.push((a.left, b.left))
19: P.push((a.left, b.right))
20: P.push((a.right, b.left))
21: P.push((a.right, b.right))
22: end if
23: end while
24: return minDist

and require that fP (a, b) ≥ d+min(a, b) ≥ dmin(a, b), where
d+min is some heuristic that bounds the real value of dmin.

On the other hand, if two pairs (a1, b1) and (a2, b2) are such
that d+min(a1, b1) = d+min(a2, b2), it may be advantageous
to assign a different priority to them. This can be done by
adding a second criterion to break the tie. We propose using a
maximum distance estimate d+max(a, b) for that purpose, i.e.,
a heuristic that bounds

dmax(a, b) = max{dist(a′i, b′j) | a′i ∈ a, b′j ∈ b}.

The rationale is that a pair with lower d+max should be
considered before another with higher d+max.

Some authors propose using a ranking function based on
the area of intersection between the two nodes [34], but this
scheme does not establish a distinction between pairs that
do not intersect. A more natural choice for d+min(a, b) is
dist(a, b), but we can do better if a and/or b are internal nodes
by considering the minimum distance between the up to four
possible pairings of their children. Similarly, d+max(a, b) can
be estimated by the maximum distance between a and b but a
better (tighter) estimate might be the smallest of the maximum
distances for the up to four pairings of their children. In
our experiments, a ranking function fP using the minimum
distance between children with ties broken with the maximum
distance between children gave the best results.



(a) Pangram (b) Border (c) Rabbit 256 (d) Rabbit 128

Fig. 3. Ball trees of shape approximation - colored leaf balls cover the object shape.

B. Other queries

In addition to the Tree Distance (TD) query, we also
conducted tests for the following queries:

• Tree intersection (TI) - Finds a pair of leaf nodes (a, b)
such that a ∩ b 6= ∅. This algorithm is analogous to
Algorithm 1, except that (1) node pairs popped from P
which do not intersect are discarded right away; (2) if
a pair of intersecting leaf nodes is found, the algorithm
returns true; and (3) when P becomes empty, false
is returned.

• Point Intersection (PtI) - Given a point p, finds a leaf
node a, such that a ⊃ p. This is analogous to TI,
regarding p as a tree with a single node.

• Distance to Point (DtP) - Given a point p, finds a leaf
node a, such that dist(a, p) is minimal. This is analogous
to TD, regarding p as a tree with a single node.

• Line intersection (LnI) - Given a line r, finds a leaf
node a, such that a ∩ r 6= ∅. This algorithm is similar to
TI, except that (1) fP uses distance estimates between
balls and line r; (2) a node popped from P which does
not intersect r is discarded right away; (3) if a leaf node
intersecting r is found, the algorithm returns true; and
(4) when P becomes empty, false is returned.

• Distance to Line (DtL) - Given a line r, finds a leaf node
a such that dist(a, r) is minimal. This algorithm adapts
TD in much the same way LnI is an adaptation of TI.

It should be mentioned that Omohundro [12] also proposes
an algorithm for DtP queries which does not require a priority
queue. Rather, it is a simple recursive depth-first search where
at each step the child closest to the query point is traversed
first. In our experiments, though, the global node selection
criteria provided by a priority queue yields better results in
terms of the number of visited nodes. Of course, the cost of
maintaining a priority queue for this type of query may offset
the gains obtained thus. At any rate, however, the adoption
of priority queues in all query algorithms provides a uniform
standard for judging the impact of the construction algorithm
in the query results.

V. EXPERIMENTS

In order to evaluate the construction algorithms described
in Section III, we conducted a host of different experiments.
Besides evaluating directly these algorithms by measuring
construction time and total ball area, we also conducted
experiments to gauge how well the constructed trees behave
with respect to the proximity queries described in Section IV.
Since more than 3.5M data points were collected in 218
different types of experiments, here we comment only the most
relevant findings3. All algorithms were coded in JavaScript
and run in a Chrome v90.04 browser on a workstation with a
Intel i7 1.8GHz processor (8 cores) with 12 GB main memory,
running Ubuntu Linux v20.04 64 bits.

A. Test data

For the experiments, we used input ball sets falling in
two general classes of distributions: (1) random uniform and
Cantor distributions, similar to those used in [12] ; and (2)
shape approximations, i.e., ball sets that approximate 2D
shapes as discussed in Section II-B (see Fig. 3).

The balls in the random collections have radius 0.01 dis-
tributed inside a square of unit size. Two collections with 500
balls each were used and these are called 500-R and 500-C
according to the distribution (uniform or Cantor).

The four shape approximation ball collections are represen-
tative of pictures, symbols and text that we can extract from
documents: Pangram, Border, Rabbit 128 and Rabbit 256. The
balls in each collection were produced from source images
using our own ball approximation algorithm with ε = 0.01
(see Section II-B) and are shown in Fig. 3, whereas relevant
statistics are shown in Table II.

TABLE II
THE shape approximation BALL COLLECTIONS

Shapes Rabbit 128 Rabbit 256 Pangram Border
Image Resolution 124× 122 255× 250 144× 81 247× 243

# Balls 190 391 997 1, 254

3All data, as well as interactive charts that allow its exploration can be found
at https://observablehq.com/@lretondaro/optimized-2d-ball-trees-results.

https://observablehq.com/@lretondaro/optimized-2d-ball-trees-results


B. Query testing methodology

In order to provide a fair sampling of the queries, these were
performed considering a fixed test area equivalent to a square
of side 8. This space is subdivided into a 40×40 regular grid,
yielding 41× 41 points. All ball trees are scaled so that their
root node has unit radius. For each query type, one object is
placed at the center of the grid, while the comparison object
varies in position, generating a total of 1681 individual queries.
For queries involving a tree and a point, the point remains fixed
at the center while the tree is translated so that the root ball’s
center coincides with each grid point. Likewise, for queries
involving a line, this is placed centered on the vertical axis of
the grid.

We also distinguish query samples taken when the objects
are close together from those taken when they are distant. We
use the term close to refer to queries taken when there is at
least some chance of intersection between the two objects,
otherwise we classify the query as distant. This distinction is
useful since the overall distance between the objects clearly
impacts the time complexity of the query. For instance, a PtI
distant query can be answered with just one comparison.

Since all query algorithms rely on a priority queue, the
time complexity of each individual query is measured in terms
of the total number of operations (totalOps) executed on the
queue, i.e., the number of push and pop operations. This
is reasonable, since these are the most expensive operations
executed for each iteration of the loop (see Algorithm 1),
having complexity O(log n) each, where n is the size of the
queue.

C. Tree construction

Fig. 4. Ball tree construction algorithms by run time (without EL optimiza-
tion).

Initially, we present a study of the running time of ball
tree construction algorithms. Two versions of the Q algorithm
were used, with α = 0.2 and 0.5, respectively. All algorithms,
except for the Bottom up, exhibit a similar speed, with KD
construction running the fastest in most tests (see Figure 4).
The Bottom up algorithm is significantly slower than all other
algorithms. For instance, for the Rabbit 256 data set, it runs
more than 37 times slower than the fastest algorithm (KD
construction) and more that 5 times slower than the second
slowest algorithm – Q(0.2). Also notice that decreasing Q’s α

value from 0.5 to 0.2 impacts severely the its running time,
more than doubling this measure for all data sets.

The running times shown in Fig. 4 exclude the EL opti-
mization step, which, although quadratic, is quite fast for the
tested data sets (see Table III). Indeed, even when paired with
the fastest construction algorithm (KD construction), it does
not take more than 12% of the total time even for the largest
data set (Border). Clearly, when run after a slow algorithm,
its impact in the total running time becomes negligible.

TABLE III
EL OPTIMIZATION TIME (MS)

Bottom up KD Online Q(0.2) Q(0.5) V0 V1
500-C 0.69 0.62 0.71 0.67 0.68 0.69 0.68
500-R 0.72 0.66 0.69 0.65 0.63 0.67 0.69
Border 1.74 1.92 2.22 1.69 1.59 1.62 1.61

Pangram 1.47 1.36 1.60 1.35 1.32 1.48 1.37
Rabbit 128 0.24 0.22 0.26 0.22 0.19 0.21 0.19
Rabbit 256 0.47 0.39 0.53 0.46 0.44 0.45 0.46

Fig. 5. Ball tree construction algorithms by total tree area (with EL
optimization)

With respect to the total area, we confirm that the Bottom-
up algorithm produces trees with the smallest overall area for
most data sets (see Fig. 5). This advantage is largest in the
case of the 500-C data set, where KD construction produces
a tree with total area more than 2.2 times larger than that
produced by the Bottom-up algorithm. We also note that the
construction algorithms introduced in this paper fare rather
well for all data sets. For instance, the worst result obtained
with the V0 algorithm was for the Pangram data set, with an
area only 20% larger than that of the Bottom up, whereas for
all other data sets, its result was at most from 2% to 6% larger.
Still for Pangram, the best result was obtained with the Q(0.2)
with an area 6% smaller than that of the Bottom up. We note
further that reducing α from 0.5 to 0.2 produces trees with
smaller areas, but the gain is rather modest in general.

The effect of EL optimization on the total area of the
tree also depends on the data set type. Data sets with large
balls such as the Rabbits are the least benefited. For instance,
whereas the Rabbit 128 tree built with the Bottom-up algo-
rithm had its area improved by 4% (from 53 to 50.9), the tree
for the Border data set built with Q(0.2) algorithm improved
more than 61% (from 54.4 to 33.6).



D. Priority queue ranking functions

We have conducted all query tests with four variants of fP ,
as discussed in Section IV-A. These variants correspond to
using only the minimum distance, or using minimum distances
as the main criterion, but breaking ties with the maximum
distance. Minimum and maximum distances, in turn, can be
estimated from the distance between the nodes themselves, or
by the minimum among the distances between their children.
Figure 6 shows a chart for Tree distance queries between a
pair of Pangram trees built with the Bottom up algorithm,
where the number of queue operations is shown as a function
of the distance computed between the two trees for each of
four fP variants. Notice that using the children to estimate
distances results in less queue operations being necessary
overall. Moreover, using minimum distances as a primary key
with maximum distances as a secondary key makes queries
at zero distance require dramatically less operations. Since
these findings are repeated for all trees and all queries, our
discussion henceforth will only consider results computed with
this last fP variant.

Fig. 6. Tree distance (TD) – totalOps by few close distances . Pangram ball
trees built with the Bottom up algorithm.

E. Query performance

We focus next on the performance of the Tree Distance
query for the various data sets and construction algorithms.
Table IV show the average total number of priority queue
operations required to answer that query for a pair of each data
set. Again we observe that the trees built with the Bottom up
algorithm behave best, followed closely by some of the other
algorithms, notably Q. The worst of the lot seems to be the
Online algorithm. We notice that decreasing the value of α
for the Q algorithm does not improve the results in all cases,
with Q(0.2) and Q(0.5) performing similarly.

TABLE IV
TD QUERIES AVERAGE NUMBER OF QUEUE OPERATIONS

B up KD Online Q(0.2) Q(0.5) V0 V1
500-C 66.79 218.36 70.48 69.34 68.10 72.47 72.69
500-R 83.38 102.71 84.45 88.67 84.76 87.04 103.33
Border 149.17 195.20 822.74 160.32 167.02 225.43 214.95

Pangram 68.02 93.26 170.46 68.80 72.97 91.00 81.08
Rabbit 128 65.55 78.22 138.18 77.90 68.35 66.10 82.68
Rabbit 256 87.68 118.35 208.16 98.94 102.95 101.25 134.95

As for the DtP queries (distance to point), the Online
algorithm surprisingly fares rather well, besting the Bottom up

algorithm for the 500-C and 500-R data sets, as indicated in
Table V, which shows the average number of queue operations
for all construction algorithm/data set combinations. Another
unexpected result is the worsening observed for the trees
obtained with the Q algorithm as α is reduced from 0.5 to 0.2.
Since the difference is small, α = 0.5 is clearly indicated in
most cases, since it allows for construction costs significantly
lower than α = 0.2.

TABLE V
DTP QUERIES AVERAGE NUMBER OF QUEUE OPERATIONS

B up KD Online Q(0.2) Q(0.5) V0 V1
500-C 29.31 37.28 29.07 30.28 29.91 30.31 31.75
500-R 30.11 33.27 29.44 32.12 30.55 30.85 33.63
Border 48.21 52.13 67.13 48.93 48.56 51.37 50.45

Pangram 33.07 37.23 44.57 33.47 34.57 35.69 34.47
Rab. 128 32.98 31.35 36.30 35.42 32.28 31.65 32.12
Rab. 256 39.58 38.64 45.15 42.64 38.95 37.01 35.22

Experiments with Tree intersection (TI) queries for close
distances reveal that the trees built with the Bottom up
approach lead to the best results in almost all cases, except for
the Border data set, where Q(0.2) yields a slightly better result.
Either the KD construction or the Online approach yields the
worst results in all data sets, requiring in some cases more than
twice the number of operations. All construction algorithms
proposed here fare relatively well. For instance, the trees built
with Q(0.5) requires between 4% and 40% more operations
than those built with the Bottom up approach.

Focusing now on experiments with point intersection
queries (PtI). In Figure 7, we observe that for close distances
the algorithms behave similarly, especially if look at the results
obtained for the 5 best performing algorithms. For instance,
for the Rabbit 256 tree, V1 requires only 31% more operations
than the best result, which is obtained by the Bottom up tree.
In the case of the 500-C data set, we observe that the result for
KD construction is significantly worse than what is obtained
by the other algorithms. This can be attributed to the fact that
(1) our query sampling missed all balls in the data set, i.e., no
point intersections were detected, and (2) KD is the only top
down construction algorithm, which leads to many large balls
in the top levels of the tree.

Fig. 7. Point intersection (PtI) - Ball tree construction algorithms by totalOps
(filtered by Close distance).



VI. CONCLUSION

In this work, we examined the problem of building ball
trees for 2D primitives, with the purpose of balancing con-
struction time and efficiency of the trees with respect to a set
of distance-based queries. Three new ball tree construction
algorithms were presented (Q, V0 and V1), in addition to the
original implementation of three classic algorithms proposed
by Omohundro [12] (KD construction, Online e Bottom up).
Besides evaluating directly these algorithms by measuring con-
struction time and total ball area, we also conducted a host of
different experiments to gauge how well the constructed trees
behave with respect to the proximity queries. All algorithms
were extended with EL optimization, ensuring an improvement
in query processing times. We use a branch and bound strategy
in tree distance and tree intersection queries that employs a
priority queue ranked by a function that combines minimum
and maximum distances, leading to better overall results.

For most of the experiments performed, the ball trees built
with Bottom up algorithm obtained the best performance,
despite its slow build time. The results show that algorithms
V0, V1 and Q yield query performances comparable with
those obtained with the Bottom Up approach, but with a much
lower construction time. The Q algorithm, in particular, yields
uniformly good results, even beating the Bottom up approach
in some cases when tuned with α = 0.2.

As a future work, we intend to repeat this study for ball
trees in three dimensions, also called sphere trees, which
are abundantly employed for collision detection. Also, since
algorithms V0 and V1 are quick and got reasonable results for
some specific queries, we consider studying a way to improve
their heuristics.
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