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Abstract—Recently, the real-time monitoring of the urban
ecosystem has raised the attention of many municipal forestry
management services. The proper maintenance of trees is seen
as crucial to guarantee the quality and safety of the streetscape.
However, the current analysis still involves the time-consuming
fieldwork conducted for extracting the measurements of each part
of the tree, including the angle and diameter of the trunk, to cite
a few. Therefore, real-time monitoring is thoroughly necessary
for the rapid identification of the constituent parts of the trees in
images of the urban environment and the automatic estimation
of their physical measures. This paper presents a method to
segment the tree trunks in photographs of the municipal regions.
To accomplish such a task, we introduce a semantic segmentation
convolutional neural network architecture that incorporates a
depthwise residual block to the well-known U-Net model to
reduce the parameters required to create the network. Then,
we perform a post-processing step to refine the segmented
regions by removing the additional binary areas not related
to the tree trunk. Lastly, the proposed method also extracts
the central line of the identified region for future computation
of the trunk measurements. Compared with the original U-Net
architecture, the obtained results confirm the robustness of the
proposed approaches, including similar evaluation metrics and
the significant reduction of the network size.

Index Terms—Deep learning; convolutional neural networks;
image processing; semantic segmentation; urban forest.

I. INTRODUCTION

Smart city solutions are quickly gaining attention as part of
several discussions towards a more sustainable urban ecosys-
tem. The deployment of new emerging technologies is attract-
ing the interest of many researchers and public administrators
for smarter management of urban areas [1]. Among the new
possibilities for promoting the rapid appraisal of the public
areas, one can cite tree surveillance in urban streets. The
assessment of urban trees is usually the principal concern of
forest managers for the proper preservation of public spaces.
Quality appraisal of the trees is often required to preserve the
health of the citizens and avoid financial losses in case of any
risk of falling.

Tree detection and urban forest surveillance are usually cov-
ered up in the state-of-the-art literature of remote sensing since
aerial images are the most basic approach in the area [2]–[5].
However, images captured at the street level arise as a potential

and inexpensive alternative in several tree monitoring tasks,
including the mapping and inventory of the trees. The tree
detection in images is usually performed considering the entire
structure altogether without splitting their constituent parts to
evaluate them separately. Such a process might facilitate the
image segmentation and the measurements from solely the
target part without a complex procedure to remove undesired
elements in the scene. Examples of metrics acquired from
specific parts of the tree include the Diameter at the Breast
Height (DBH) and the tree angle, to name a few. The former
consists of measuring the trunk width at 1.20 or 1.30 meters
above the ground, while the latter includes the slope of the
tree estimated from the trunk direction.

Computer-aided methods play an essential role to rapidly
provide the most critical measurements for further analysis
of the tree condition, including possible damages and the
risk of falling [6]–[9]. Image processing and analysis, for
instance, constitute one of the different options to identify
trees in urban landscapes. However, automatic surveillance of
the urban environment still poses a challenge because of the
ecosystem heterogeneity of the city panorama. The presence
of elements such as cars, light poles, and pedestrians, to cite a
few, are the most challenging conditions to accurately identify
trees in pictures, thereby representing a complex task even to
the modern image processing methods.

The recent advances in deep learning techniques for object
detection and segmentation in images have paved the way for
more accurate results even in several circumstances that make
the image analysis a complex task, including the low illumi-
nation conditions and the noisy artifacts. To such an extent,
one can cite the advent of the Convolutional Neural Networks
(CNN) as the well-known successful design in several image
analysis domains, which comprises object classification and
detection, and semantic segmentation as well. Regarding the
latter, one can cite the U-Net [10] architecture as one of the
most utilized CNN designed for object segmentation. Initially
proposed for structure segmentation in medical images, the U-
Net architecture gained attention in other applications, thereby
confirming its robustness in several challenging conditions.
Likewise, Badrinarayanan et al. [11] proposed a similar ar-



chitecture named SegNet for semantic segmentation purposes.
Unlike the U-Net model, the SegNet’s decoder path only
includes the indices of the max-pooling layer obtained by
the encoder path. Consequently, this approach reduces the
network size since the whole feature map is unnecessary for
concatenation in the decoder path.

This paper presents a new approach for tree trunk segmenta-
tion using a deep CNN model based on the U-Net architecture
composed of a residual depthwise convolutional block. The
proposed model reduces the network size required in memory
while providing effectiveness similar to the original U-Net
architecture. Besides the trunk segmentation provided by the
CNN model, this work also proposes refining the obtained
results to remove other regions not belonging to the tree trunk.
Furthermore, the proposed approach employs a further step
regarding the central line extraction of the identified stem. This
last step is conceived to avoid undesirable branches resulting
from skeletonization methods, thus producing a central line
that fits the trunk direction for future estimation of the slope
toward streets or private and public properties.

The suggested architecture relies on the works of Gadosey
et al. [12] and Pandey et al [13]. However, differently from
the first study, our architecture incorporates a residual con-
nection to avoid the gradient vanishing during the model’s
training. Also, we combine two extra convolutional operations
to achieve more fine details from the input image.

The main contributions of this study are threefold:
• To propose a U-Net-based CNN model with reduced size

to support the deployment in real-time applications;
• To propose a simple segmentation refinement with the

connected component analysis; and
• To introduce a central line extraction approach that prop-

erly follows the trunk angle without branches in tip spots
of the binary mask.

The paper is organized as follows: Section II presents the
related works for tree detection in urban landscapes. Section III
describes the proposed U-Net-based model and the steps em-
ployed to refine the segmentation results and extract the trunk’s
central line. Sections IV and V present the methodology
and the results obtained from the performed experiments,
respectively. Lastly, Section VI stresses the conclusions and
future works.

II. RELATED WORKS

As previously mentioned, a small number of studies have
attempted to use digital photographs at the street-level view
for tree detection and measurement of their physical aspects.
Although the well-established analysis still relies on the Light
Detection And Ranging (LiDAR) technology [14]–[18], street-
level images are a cost-effective and non-expensive approach
that gained attention owing to the recent advances in deep
convolutional neural networks.

Teng et al. [19] proposed an image segmentation approach
for identifying urban trees in ground-level images of the city
landscape. The authors presented a skeletonization method to
extract the tree trunk and detect the region above it as the

tree canopy. Wang et al. [20] reported a similar approach that
employs the L*a*b color space for identifying the image pixels
related to the tree.

Branson et al. [21] proposed to use a Faster R-CNN model
for identifying urban trees in images of the Google Street
View (GSV) platform in combination with aerial photographs.
Besides the tree detection, a Siamese CNN model was also
employed for further assessing the differences in urban green
landscapes over time. In a similar study, Laumer et al. [22] also
performed tree detection in GSV images for the subsequent
mapping of the tree geolocations with the corresponding street
addresses previously recorded in earlier inventories.

Seiferling et al. [23] proposed to use computer vision
methods for mapping the tree cover in street-level images. The
proposed method initially performs the object segmentation
by grouping pixels that share similar intensities at the super-
pixel level. Super-pixels with similar features are then grouped
into the same region for further determination of its class,
which includes the tree itself. Afterward, tree cover estimation
is performed using the ratio between the number of pixels
classified as trees and the total number of pixels inside the
whole image. Besides covering the tree inside one view of
the streetscape only, the method also includes the appraisal of
the neighbor images to handle the multiple tree occlusion and
scale variations inside the scene.

Stubbings et al. [24] proposed identifying green areas at
the street-level images through a deep CNN model based on
a pyramid-parsing architecture called Pyramid Scene Parsing
Network (PSPNet). This structure captures both local and
global feature maps from images to further perform semantic
segmentation. Comparing with two other methods used as a
benchmark for green areas segmentation, the PSPNet model
reported superior and accurate results to classify each image
pixel as vegetation or non-vegetation.

Lumnitz et al. [25] proposed a CNN-based approach to
detect and segment urban trees at the ground level of the street
landscape. Using images provided by GSV and Mapillary
platforms, the authors employed a Mask R-CNN for object
detection and the subsequent instance segmentation for deter-
mining the geolocation of each identified tree. After applying
the transfer learning of the Mask R-CNN with the weights
obtained from the COCO dataset, the authors performed a
second training with images of trees from the COCO Stuff
dataset. Lastly, the model performs a fine-tunning procedure
with street-level photographs of the GSV platform.

Despite the outstanding results reported in the mentioned
studies, tree analysis still involves fine details that include
identifying and evaluating other structures instead of the
simple tree segmentation as a whole. Moreover, deep convolu-
tional neural networks have gained attention either in detection
or the pixel-wise classification for semantic segmentation
of urban trees, which increases the ability for fine detail
extraction and better handling in several landscape conditions.



III. PROPOSED APPROACHES

This section describes the proposed pipeline that comprises
the semantic segmentation and the post-processing step em-
ployed to refine the segmented objects and extract the central
line of the trunk. Figure 1 shows the proposed pipeline for the
tree trunk segmentation. The trunk region is manually cropped
according to the dataset setup explained in Section IV-A.

Segmenta on 

re nement

Depthwise U-Net

with residual

learning

Central line 

extrac on

Input image

Trunk region

Input

Output

Fig. 1. Pipeline of the proposed approach.

A. U-Net depthwise

The U-Net model is a CNN architecture composed of encod-
ing and decoding structures whose design delivers the feature
extraction and the subsequent feature map reconstruction for
object segmentation purposes. The encoder, or contracting
path, is proposed for feature map extraction of the input
image through a sequence of convolutions and max-pooling
operations. Subsequently, the decoder takes the feature map
as input for upsampling and further concatenating the restored
map with the corresponding feature map obtained at the
same level of the encoder path. This process produces a U-
shaped architecture with symmetric layers connected level-by-
level. Since it has been adopted in several studies for object
segmentation purposes, the U-Net model was used as the base
architecture for trunk segmentation in this work.

Compared to standard machine learning models, Convo-
lutional Neural Networks provide robustness and remarkable
results in several image analysis tasks. This singular capacity
relies on the ability to extract high-level and fine-grained
features from large image datasets. However, defining the
number of layers in deep CNN architectures still resides a
challenge considering the computational cost to perform the
convolutional operations and issues related to deployment on
devices with storage-limited capacity. The mentioned aspects
involve the number of parameters required to build the model
through multiple layers and standard convolutional kernels
that lead to larger memory space to deploy the CNN model.
Therefore, managing the computational complexity remains
the foremost concern to reduce the architecture size.

The well-established approach to cope with the model
parameter size consists of using the so-called depthwise

convolution operation. Depthwise convolution is a class of
convolutional operation wherein we perform the feature map
extraction through a sequence of single convolutions in each
color channel of the input image. Then, the convolved images
are stacked together and taken as input for a point-wise
convolution to produce a single feature map for one kernel.
This approach aids in reducing the network parameters at
the same time it saves memory space without decreasing
effectiveness and prediction accuracy.

Since the U-Net architecture still relies on standard convo-
lutions in each layer of the encoding and decoding paths, the
network size becomes larger even for a relatively small number
of layers. Therefore, we propose using depthwise convolutions
on both sides of the model to reduce the architecture param-
eters. Figure 2 illustrates the suggested modification, while
Figure 3 shows the convolutional blocks of the model.
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Fig. 2. U-Net-based architecture with depthwise convolutions and residual
connections.

Fig. 3. Convolutional operations of the proposed architecture: a) Convolu-
tional block with combined depthwise convolutions and residual connection;
b) Block composed of double application of depthwise convolutions along
with batch normalization and Rectified Linear Unit (ReLU) activation func-
tion.

As shown in Figure 2, the transposed convolutions are



used to upsampling the feature map obtained at each level
of the contracting path. Transpose convolutions are performed
to reverse the downsampled feature maps attained from the
encoder path. Since further details are lost during the reversal
process, the decoder path also concatenates the upsampled
feature map with the convolutions obtained from the encoder
path.

The convolutional block (Figure 3a) is composed of two
depthwise blocks for feature map extraction of the input tensor.
The depthwise block (Figure 3b) includes two sequences of
depthwise convolution, 1x1 convolution, batch normalization,
and Rectified Linear Unit (ReLU) activation, thus matching the
sequence adopted in the original convolutional block of the U-
Net. As illustrated in Figure 2, the contracting path utilizes
the convolutional block of Figure 3a, which leads to four
depthwise operations to extract additional fine details from
images. Also, we included a residual connection to eschew
the gradient vanishing problem and increase the prediction
effectiveness.

B. Segmentation refinement
Refining the segmentation results consists of removing addi-

tional binary objects adjacent to the identified trunk region. We
used the well-known connected components analysis to find
the different binary regions. In a nutshell, the method seeks
the pixels whose intensities are similar and connected to each
other. In binary images, the black color is often assigned to
the background region, while the target objects receive the
white color. Therefore, the connected component will find
the white pixels within a n connectivity criterium, where n
defines the neighbors of the white pixel under analysis. In
this work, we consider an 8-connectivity pattern inside a 3x3
template centered at the pixel. Then, the pixels assigned to
each connected region receive a unique label for helping the
posterior searching. Afterward, we seek the region whose area
is the largest among the others, which indicates the one related
to the trunk. In the final step, the other binary regions are
removed from the image. Figure 4 illustrates the results of the
proposed refinement approach.

(a) (b) (c) (d)

Fig. 4. Examples of further refinement: a) Input image; b) Semantic
segmentation result; c) Threshold with value 0.5; d) Extra regions removed
through the connected component analysis-based approach.

The first step consists of assigning 0 or 1 to each pixel of the
image obtained from the U-Net depthwise CNN. This process
uses the threshold value 0.5 to assign 1 if I(x, y) ≥ 0.5, and
0 otherwise, where I(x, y) stands for the pixel value at the
(x, y) coordinate of the image I . Afterward, the connected
component-based procedure seeks the region with the largest
area and removes the small region located at the bottom right
of the image (Figures 4c and 4d).

C. Central line extraction

In image processing and analysis, skeletonization is a pro-
cess for extracting the medial axis of binary objects through a
sequence of morphological operations that reduce the regions
to a line while preserving connectivity between its points. De-
spite successfully used in several applications, the well-known
skeletonization methods still suffer from branch formation at
peak regions of the binary objects. Despite the recent progres-
sions in the state-of-the-art works towards the refinement of the
skeleton representation in binary images, border irregularities
also pose a challenge since disturbances and noisy artifacts
are still produced even in straightforward situations, thereby
affecting the extraction of meaningful measures of the target
objects. Therefore, we present a simple approach to extract the
central line of the identified stem. In a nutshell, the method
computes the average of the points located on both sides of
the binary object’s boundaries. Moreover, this process also fills
the gaps in the line by using interpolation of the endpoints of
the nearest disjoint segments, thus producing a smooth line
positioned in the middle of the stem.

In the first step, we derive the right and left contours
of the segmented binary mask of the trunk. Let L and S
be the longest and the shortest contours, respectively, being
L = {l1, l2, ..., lm} and S = {s1, s2, ..., sn} the sets of points
of both boundaries of the mask. Then, the pair of points sj ∈ S
and li ∈ L are both used to determine the central point through
a simple interpolation as follows:

ci = li + (sj − li) ∗ α (1)

where ci is the new point, α = 0.5, i = (1, 2, ...,m) and j =
(1, 2, ..., n), being m and n the size of L and S , respectively.
Figure 5 shows an example of the central line extraction.

(a) (c)(b) (d) (e)

Fig. 5. Central line extraction from the trunk mask: a) Input image; b) Refined
mask; c) Left (blue) and right (orange) contour points of the mask; d) Central
line calculated from the left and right contours; e) Central line after filling
the gaps.

IV. METHODOLOGY

This section presents the dataset and experimental setup
adopted to perform the tests.

A. Dataset

Experiments were conducted over a dataset composed of
patches of tree trunks extracted from images of São Paulo
city, Brazil. The patches were manually delineated through
a bounding box enclosing the entire trunk region, which
comprises its base and the point where the canopy branches
begin. The manual delineations were performed using the



LabelImg software1. This process resulted in 2,290 annotated
trunk regions. Then, we cropped and saved the region inside
the bounding box of each image for the subsequent manual
annotation of binary masks that cover only the pixels of the
tree trunk. In order to match the input size of the CNN models,
all images were resized to a 224x224 resolution.

Due to the time-consuming process required for manual an-
notation, we selected only 801 cropped images for the trunk’s
binary mask generation, performed in the LabelMe software2.
The first experiment involves the cross-validation procedure
considering the split of the whole dataset into 5 folds for the
initial model’s assessment through different training and test
sets configurations. Afterward, the entire dataset was shuffled
and randomly split into training, validation, and test sets with
a proportion of 70%, 15% and 15%, respectively, thereby
leading to 561, 120, and 120 images into the respective divided
groups for the final evaluation of the proposed refinement
procedure.

B. Experimental setup
The proposed U-Net-based model has been implemented

from scratch using Python 3.6 and Tensorflow Keras 2.3.0
without applying the transfer learning procedure. This new
implementation has been necessary to support the depthwise
convolutions and the lack of existing weights to fit the custom
architecture. We performed all the tests in a Tesla c© P4 GPU
with 8 GB of RAM deployed on a computer equipped with
an Intel c© Xeon processor and 93 GB of RAM running the
Ubuntu 16.04 Linux operational system.

This work compared the proposed architecture with the
original U-Net model. Besides, the comparison also includes
a straightforward U-Net-based design with one depthwise
convolution block and no residual connections, thus following
a similar architecture as the one proposed by Gadosey et al.
[12].

For a reasonable comparison, we applied the same hyper-
parameters in all the experiments. The Adaptive Momentum
Estimation (Adam) [26] has been employed to optimize the
network’s learning process with an initial learning rate of
0.0001 and a maximum of 1,000 epochs. The dropout rate of
the proposed architecture is assigned to 0.3. Since the dataset is
small, we also employed the data augmentation to each epoch
of the training step. The image generator procedure includes
the horizontal flip, brightness modification, Gaussian additive
noise, Gaussian filter for smoothing, and histogram matching
randomly applied considering a batch size of 4 images per
training step at each epoch. We also used an early stopping
criterium to avoid overfitting the model and stop the model’s
training procedure if no improvements are attained in the
validation loss after 20 consecutive epochs. The training of
the models involves the use of the binary cross-entropy as the
loss function.

The experiments utilized the precision, recall, Dice Similar-
ity Coefficient (DSC), and Intersection over Union (IoU) as

1http://github.com/tzutalin/labelImg
2http://github.com/wkentaro/labelme

validation metrics for evaluating the model effectiveness. All
the metrics were calculated after binarizing each image at a
threshold value of 0.5.

V. EXPERIMENTS AND RESULTS

Figure 6 depicts the segmentation results obtained from
the proposed U-Net-based model. From Figure 6b, one can
observe the well-behaved results in several landscapes and
adverse conditions. The case shown in the third row, for
instance, illustrates the difficulty regarding the presence of
obstacles in front of the target tree trunk, thus posing a
challenge for numerous applications. However, the proposed
model performed properly even in such a challenging scenario,
thus identifying the tree trunk correctly. Moreover, Figure 6c
also shows the effectiveness of the proposed refinement step,
which leads to binary masks that cover well the tree trunk
in all illustrated examples (Figure 6d). Figure 6e also shows
remarkable results obtained from the central line extraction
method. One can notice the direction of the identified medial
lines that fit well the trunk’s slope in all the illustrated images.

(a) (b) (c) (d) (e)

Fig. 6. Segmentation results obtained from the proposed Depthwise U-Net
architecture with residual connection: a) Input images; b) Output obtained
from the proposed model; c) Binary mask resulting from the refinement
procedure; d) Binary mask overlayed on the input images; e) Central line
(in white) extracted from the binary masks.

Figure 7 shows further examples obtained from the central
line extraction approach. For comparison purposes, we also
applied the well-known skeletonization method proposed in
Zhang and Suen [27] to all masks shown in Figure 7b.
Figure 7c shows results obtained from the central line ex-
traction without applying the filling of disconnected regions.
Considering the image shown in the first line, one can notice



the recovered connections in the bottom part of the central
line, thus confirming the importance of this step. Compared
to the outcomes obtained by the skeletonization method, the
proposed approach showed compatible results with the slope
and the expected central position of the trunk. Furthermore,
the central line extraction also avoided the inherent branches
originated from the skeletonization method (Figure 7e).

(a) (b) (c) (d) (e)

Fig. 7. Results obtained from the central line extraction algorithm: a) Input
RGB images; b) Refined binary mask of the trunk; c) Central line with
unconnected points; d) Gaps filled after interpolating the adjacent end points of
the unconnected regions; e) Results from the skeletonization method proposed
by Zhang and Suen [27].

To better understand the model’s robustness, Table I presents
the loss and the dice coefficient obtained from the test sets of
each fold of the cross-validation procedure. These metrics in-
volve the measurement considering a batch size of 32 samples
at the model’s evaluation step. One can notice the similar and
even superior results of the proposed architecture against the
two U-Net models in almost all folds. Furthermore, the U-
Net-based models outperformed the results obtained from the
SegNet architecture in all the evaluated folds considering the
dice coefficient.

Table II also presents the evaluation metrics calculated from
each architecture after applying the refinement procedure.

TABLE II
AVERAGE METRICS CALCULATED AFTER REFINING THE SEGMENTATION

RESULTS OBTAINED FROM THE TEST SET.

Precision Recall F1-Score IoU
U-Net [10] 0.9368 0.9687 0.9476 0.8087
U-Net Depthwise [12]* 0.9282 0.9550 0.9351 0.8007
Ours 0.9301 0.9673 0.9439 0.8147
SegNet [11] 0.9453 0.9608 0.9480 0.8066
*We employed a similar architecture with transposed convolutions and

batch normalization instead of group normalization.

It is noticeable the similar results obtained by all the archi-
tectures. In all cases, precision, recall and F1-Score achieved

mean scores of more than 92%. Furthermore, Intersection over
Union also showed promising results with more than 80% of
overlapping with the manual delineations. One can notice the
highest Intersection over Union obtained from the proposed
model in comparison to the ones of the baseline architectures.
Also, the proposed model showed similar performance com-
pared to the original U-Net and the SegNet architectures. One
can notice the slight difference considering precision, recall,
and F1-score metrics.

Table III shows the number of parameters of each architec-
ture and the average execution time considering the prediction
for all images of the test set. The prediction process was
performed tenfolds to evaluate the execution time variability
for different runs.

TABLE III
NUMBER OF PARAMETERS AND THE AVERAGE TIME REQUIRED FOR THE

BASELINE MODEL AND EACH DEPTHWISE ARCHITECTURE.

# of parameters Avg. time (in sec)
U-Net [10] 34,536,897 2.29±0.15
U-Net Depthwise [12] 9,517,919 2.24±0.38
Ours 12,403,679 2.95±0.33
SegNet [11] 29,458,949 2.38±0.72

Regarding the network parameters, one can notice the
significant reduction in the size of the depthwise architectures
compared to the baseline CNN models. U-Net Depthwise
with Residual represents almost 1

3 of the original U-Net’s
size and more than 1

2 of the SegNet’s size. The proposed
architecture’s size has a slight increase compared to the U-
Net Depthwise model, which has a single convolutional block
to perform the feature extraction from the input images. In
contrast, the proposed model is composed of two blocks of
depthwise convolutions, which leads to a small number of
additional parameters. However, the rate of increase is nearly
1.3 for the proposed modification, which leads to improving
the evaluation metrics shown in Table II. The execution time is
almost similar for all architectures, considering the execution
on the Tesla P4 GPU.

Figure 8 shows the loss, accuracy and DSC progression in
the training step for each model. The proposed model starts
to stabilize at 20 epochs of training with a slight increase
in the validation loss. However, the early stopping criterium
acts to avoid overfitting since no improvements were obtained
after 40 epochs. Furthermore, accuracy and dice similarity
also presents similar performance between the training and
the validation curves. Compared to the other architectures
(Figures 8a and 8b), one can observe that the depthwise
residual model required fewer epochs to attain stabilization
of the validation loss. While the original U-Net and the U-Net
depthwise required, respectively, 60 and 50 epochs to stabilize,
our model stopped at about 40 epochs with similar behavior
considering the curves of the training progression. One can
notice that the SegNet model required more than 150 epochs
to stabilize and finish the training process.

Figure 9 shows the loss curves obtained from each U-
Net-based architecture considering the 5-folds of the cross-



TABLE I
EVALUATION METRICS CALCULATED FROM EACH FOLD OF THE CROSS-VALIDATION.

U-Net [10] U-Net Depthwise [12]* Ours Segnet [11]
Loss Dice Loss Dice Loss Dice Loss Dice

Fold 1 0.1538 0.9074 0.1841 0.8964 0.1943 0.9037 0.1778 0.8581
Fold 2 0.2261 0.8881 0.1739 0.8884 0.1581 0.8966 0.1913 0.8377
Fold 3 0.1910 0.8718 0.1931 0.8892 0.1673 0.9014 0.1863 0.8505
Fold 4 0.2285 0.8834 0.1684 0.8852 0.1891 0.8794 0.1786 0.8756
Fold 5 0.1551 0.9054 0.1743 0.8948 0.1437 0.9045 0.1737 0.8494
Average 0.1909 0.8912 0.1788 0.8908 0.1705 0.8971 0.1815 0.8543
*We employed a similar architecture with transposed convolutions and batch normalization instead of group normalization.

validation procedure. Despite the use of more epochs to
complete the training of the first fold, the proposed architecture
stabilized with less than 40 epochs in the other folds. In
contrast, the standard and the depthwise without residual
models required more epochs to stop the training. Furthermore,
the curve behavior is similar across all architectures.

The obtained results emphasize the potential of the proposed
approach for real-time applications with reduced network size
and high precision in detecting the tree trunk in several
conditions, thus promoting a relevant contribution to urban
ecosystem management.
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Fig. 8. Loss, accuracy and DSC training curves for each architecture:
a) Original U-Net; b) U-Net with a single depthwise block; c) Proposed
Depthwise U-Net with residual learning; d) SegNet.

VI. CONCLUSIONS AND FUTURE WORKS

Urban ecosystem surveillance continues an innovative topic
of research in the context of intelligent city solutions. In
this sense, this work presented an approach to support the
automatic segmentation of the tree trunk in images of the
urban environment using a U-Net-based model for semantic
segmentation. We proposed reducing the network architecture
through residual connections and depthwise convolutions that
perform separated operations in each channel of the input
image. Also, we employed a post-processing step to handle
the additional segmented elements that do not belong to the
trunk region. Lastly, the proposed approach also used a simple
procedure to obtain the central line of the trunk for future
estimation of its angle. This study only considered the tree
trunk since this structure is initially diagnosed in the fieldwork
operations to evaluate the tree condition.

Experiments conducted over few cropped images of the
trunk region confirmed the effectiveness of the proposed
approach considering the overlapping with the corresponding
manual delineations and the similar results compared to the
ones of the original U-Net architecture. Furthermore, the loss,
accuracy, and Dice Coefficient curves of the tested models also
showed the same behaviors along the epochs of the training
step.

Future works will be conducted to automatically detect and
crop the tree trunk region from the whole picture of the
streetscape. The annotation of more images is also intended to
increase the Intersection over Union and potentially offset the
difference between the training and validation loss function.
Besides, we plan to estimate the tree measurements for future
assessment of the risk of falling, which plays an essential role
in supporting the fieldwork team with several management
tasks.
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