
A New Grammar for Creating Convolutional Neural
Networks Applied to Medical Image Classification

Cleber A.C.F da Silva, Péricles B.C. Miranda, Filipe R. Cordeiro,
Department of Statistics and Informatics, Federal Rural University of Pernambuco (UFRPE), Recife, Brazil

{cleber.cabral, pericles.miranda, filipe.rolim}@ufrpe.br

Abstract—In the last decade, the adoption of Deep Convolu-
tional Neural Networks (CNNs) has been successfully applied to
solve computer vision tasks, such as image classification in the
medical field. However, the several architectures proposed in the
literature are composed of an increasing number of parameters
and complexity. Therefore, finding the optimal trade-off between
accuracy and model complexity for a given data set is challeng-
ing. To help the search for these suitable configurations, this
work proposes using a new Context-Free Grammar associated
with a Multi-Objective Grammatical Evolution Algorithm that
generates suitable CNNs for a given image classification problem.
In this structure, the new grammar maps every possible search
space for the creation of networks. Furthermore, the Multi-
Objective Grammatical Evolution Algorithm used optimizes this
search taking into account two objective functions: accuracy
and F1-score. Our proposal was used in three medical image
datasets from MedMNIST: PathMNIST, OCTMNIST, and Or-
ganMNIST Axial. The results showed that our method generated
simpler networks with equal or superior performance from
state-of-the-art (more complex) networks and others CNNs also
generated by grammatical evolution process.

Index Terms—Grammatical Evolution, Deep Neural Networks,
Multi-Objective Optimization

I. INTRODUCTION

The area of computer vision has attracted a lot of attention
in the last decade due to how Convolutional Neural Networks
(CNNs) have added performance in solving problems such as
image classification and object detection [1], acting in different
application areas [2]. Several CNN architectures have been
proposed in the literature in the last years, with an increasing
number of parameters, depth, and complexity. Nonetheless,
choosing the optimal architecture and its respective parameters
is a challenging and time-consuming task due to the diver-
sity of possible arrangements of its structure. State-of-the-art
(SOTA) CNNs, like ResNet-152 [3] have 60 million trainable
parameters. However, they have been originally proposed to
achieve the highest performance on large-scale data sets, such
as ImageNet [4], which has millions of images and thousands
of classes. For small data sets, which specific characteristics,
such as in medical data, a smaller model with fewer parameters
might be the best option and achieve the same results. The
challenge is how to find the best model and parameters for a
given data set.

Frank and Carbin [5] demonstrated that it is possible to
obtain, through pruning techniques, sub-nets with a reduced
number of parameters without compromising the accuracy of
the model. However, pruning techniques have some limita-

tions, such as the fact that the final solution depends directly
on the original CNN and the sequence of its layers.

To solve this problem, researchers have been adopting
the automation of network design combined with optimiza-
tion. Some works have optimized these CNNs using Neuro-
Evolution [6] and Genetic Algorithms [7]. Nonetheless, the
results obtained in [8]–[12] showed that Grammatical Evo-
lution (GE) is a promising approach for the optimization of
CNNs. GE is a Genetic Programming (GP) algorithm that
uses context-free grammars to evolve programs (in our case,
CNNs). The grammar can incorporate knowledge about the
problem domain to guide the GE search better, avoiding the
syntactic error of the generated programs [13]. Thus, GE has
potential advantages to improve algorithm design, to represent
and involves more complex architectures [13].

Aiming to use the potential of GE, this article proposes
the use of a new Grammar combined with a Multi-Objective
Evolutionary Algorithm for the optimization of CNN archi-
tectures. The contributions of this work are three: (1) we
created a new Context-Free Grammar for mapping CNNs
architectures that allows the addition of regularization layers
(absent in most related works), (2) we implemented a Multi-
Objective Search to optimize these architectures, and finally,
(3) we applied this optimization process to a recently pub-
lished medical imaging dataset. The best architectures found
were compared to state-of-the-art CNNs (deeper and more
complex) and others networks generated by grammars. Their
efficiency was evaluated according to the accuracy and F1-
score values obtained after testing the CNNs. The training and
testing of the networks were carried out using three medical
imaging datasets that compose MedMNIST [14]: PathMNIST,
OCTMNIST, and OrganMNIST Axial. The results showed
that our proposal generated competitive and low complexity
CNN models compared to other state-of-the-art networks and
CNNs generated by others grammars.

The article is organized as follows: Section II introduces
the basic concepts for a better understanding of this work.
Section III reports related works found. In Section IV, we
present the proposed work. The experimental environment and
methodology are presented in Section V. Section VI discusses
the experimental results, and finally Section VII contains the
conclusion and future work of the study.

II. BACKGROUND

In this section, we will present the fundamental concepts of
Convolutional Neural Networks, Grammatical Evolution, and
Multi-Objective Optimization.

A. Convolutional Neural Networks

CNNs are made up of multiple layers [2], where each is
responsible for a specific task, processing data from previous
layers. The way these layers are arranged and their respective
types act directly on how CNN will perform. There are usually
three types of layers most popularly used: convolutional layers,
pooling layers, and fully connected layers. Convolutional
layers act as a composition of filters that identify the main
characteristics of a given input. Pooling layers implement the
data dimensionality reduction operation, focusing on reducing
the number of trainable network parameters where, generally,
pooling layers follow convolutional layers. Finally, the fully
connected layers are nothing more than the neural network
itself. They interconnect a series of neurons that receive the
data processed by the previous layers and make their respective
classifications. There are others types of layers responsible
for the regularization of the network training process, which
are the batch normalization layers and dropout layers. Batch
normalization layers are responsible for normalizing the input
between layers. They are usually found between the convolu-
tional and pooling layers. Dropout layers are adopted to avoid
overfitting in the model, randomly disabling the percentage of
neurons present in the network. They are commonly used after
pooling layers or fully connected layers.

B. Grammatical Evolution

Grammatical Evolution (GE) [15] is an alternative for
performing the difficult task of creating optimized CNNs. GE
is a Genetic Programming algorithm [16] that uses Context-
Free Grammar to evolve certain programs of varying lengths
[17]. It is composed of three components: a search engine, a
grammar, and a mapping process.

The search engine uses the principles of evolutionary algo-
rithms to iteratively evolve possible solutions. Each solution
is represented by a genotype (generally a binary array of
varying lengths), containing the individual’s information. Each
compartment of this array is called a codon and can receive 8-
bit numeric values. During the execution of the search engine,
each genotype is evaluated through its fitness value. In our
case, the genotype must be converted into a phenotype, an
executable program that is CNN itself, to have the aptitude
evaluated. This conversion is done by the mapping process
that uses a Context-Free Grammar in the Backus-Naur Form
(BNF) [17].

The Context-Free Grammar is represented by a tuple
{N,T, P, S}, where N is the set of non-terminals, T the set
of terminals, P the set of rules of production, and S the
initial symbol. The production rules have the form x |= y,
where x ∈ N and y ∈ {T ∪ N} and there is a set of
possibilities for x, each of the possible ones productions is
delimited by the disjunctive symbol ‘|’ [18]. Figure 1 shows an

example of a context-free grammar that generates arithmetic
expressions, where a possible grammar-generated individual
would be x∗(x+x). Thus, we can generate a whole population
where individuals are valid according to what was described
in the grammar.

N = {〈exp〉, 〈var〉, 〈op〉}
T = {x,+,−, /, ∗}
P = {〈exp〉 |= 〈var〉 | (〈exp〉〈or〉〈exp〉)

〈op〉 |= + | - | / | *
〈var〉 |= x}

S = 〈exp〉

Fig. 1. Example of a Context-Free Grammar.

C. Multi-Objective Optimization

Multi-Objective Optimization (MOO) problems have more
than one objective function to be optimized. For a given
candidate solution search space, S, MOO algorithms aim
to find solutions that best satisfy all conflicting objectives
(~f = (f1, f2, ..., fn)) at the same time, where n is the number
of goals. Each candidate solution within S can be defined as a
vector of decision variables (~x = (x1, x2, ..., xk)), where k is
the number of decision variables. For fitness evaluation, each
solution is provided as input for each objective function within
~f , where it returns the respective fitness value. Therefore,
~f(~x) = (f1(~x), f2(~x), ..., fn(~x)) represents a vector of all
fitness values belonging to the solution vector ~x.

Unlike single-objective optimization, in MOO each quality
of the solution is determined by a vector of fitness values
instead of a single value. Thus, the solutions are usually
compared to each other through the Pareto Dominance [19].
Given two vectors ~x, ~y ∈ Rn, ~x dominates ~y (denoted by
~x ≺ ~y) if ~x surpasses ~y by at least one goal and ~x is not
worse than ~y in any other goals. ~x is not dominated if there is
no solution ~xi in the current population, such that ~xi ≺ ~x. All
non-dominated solutions within the objective space are known
as the Pareto Front.

III. RELATED WORKS

Using algorithms based on grammars is not a new approach
[15], [17], as well as its use in the construction of neural
networks [20], [21]. However, over time, optimizing CNNs
became a laborious task, and recently different studies used
the grammatical evolution technique to accelerate this process.

Soltanian et al. (2013) [11] applied grammar-based evolu-
tionary algorithms linked to generating MLPs. The networks
were optimized, seeking to maximize accuracy over four
datasets (Breast cancer, Heart-Cleveland, Ionosphere, and Iris)
and achieved results superior to other techniques.

Assunção et al. (2018, 2019) [8], [22] used Neuro-Evolution
to propose DENSER (Deep Evolutionary StructurEd Repre-
sentation), which combines the use of evolutionary algorithms
with the Dynamic Structured Grammatical Evolution (DSGE).

DENSER was used to generate valid CNNs seeking to op-
timize them by maximizing the accuracy (mono-objective)
in four datasets: MNIST, FashionMNIST, CIFAR-10, and
CIFAR-100. The results showed that the technique is quite
promising, producing CNNs competitive with state-of-the-
art networks in the literature. However, the grammar used
in the process does not allow some regularization layers to
be added to networks (e.g., dropout layers). Another point
to be highlighted is that this grammar adds many CNN
configuration parameters to its structure (e.g. stride, kernel
size, number of filters, and values between ranges), thus the
number of terminal combinations grows, greatly increasing the
process search space, where it may cause the algorithm to not
converge.

Diniz et al. (2018) [9] also used the evolutionary princi-
ples associated with context-free grammar to optimize neural
networks. Its grammar represented topologies that contained
convolutional, pooling, and fully connected layers. The associ-
ated genetic algorithm also sought to optimize the networks by
maximizing accuracy, but only in one dataset, the CIFAR-10.
The results showed that the method is promising, generating
light and low complexity architectures. However, its grammar
did not allow the addition of some regularization layers (e.g.,
dropout, batch normalization) to the network design, and seeks
only the accuracy maximization. In addition, the grammar used
generates a very small search space, with only 54 possible
individuals.

Suganuma et al. (2017) [23] used an evolutionary algorithm
associated with Cartesian Genetic Programming (CGP) to
generate CNNs according to a fixed structure. Its structure
allowed six types of layers to be added to the model (convo-
lutional layers, max-pooling, average pooling, sum, concatena-
tion, and ResBlocks). The tests were performed on the CIFAR-
10 and CIFAR-100 datasets, and the evolutionary algorithm
was guided to seek the maximization of accuracy. The results
showed that the technique is promising, generating models that
are competitive with state-of-the-art networks. Although, the
method did not allow the addition of regularization layers to
the model and guided the evolutionary algorithm in a single-
objective process.

In our later work (Da Silva et al. (2021) [12]) we used a
process for creating and optimizing CNNs similar to the cur-
rent one, maximizing accuracy and F1-score through NSGA-
II. The tests were performed on the CIFAR-10 dataset. The
grammar used can generate a search space with 2592 different
individuals and allowed the creation of CNNs competitive with
state-of-the-art networks and other networks also generated
by grammars. However, when performing a more critical
analysis, we realized that the associated grammar has a lim-
itation regarding the arrangement of convolutional and batch
normalization layers, where they tend to be repeated between
convolutional blocks, limiting these layers’ diversity. Thus, the
grammar proposed in this work seeks to solve this problem.

This work proposes a novel context-free grammar associated
with an evolutionary algorithm focused on maximizing two
goals: accuracy and F1-score, while related works focus on

single-objective optimization. The grammar is composed of
layers that add high relevance to the resolution of classi-
fication problems and allow the addition of regularization
layers, absent from many of the related works. Furthermore,
our grammar generates a search space with 6426 different
individuals and avoids a possible non-convergence due to an
infinite number of possibilities that can be seen in Assunção
et al.. In addition, our new grammar manages to generate the
same individuals present in the grammars of Diniz et al. [9]
and Da Silva et al. [12], thus, those grammars’ search spaces
are contained in our grammar.

Another important point is the fact that our grammar adds
more granularity options in the construction sequence of
convolutional blocks, ranging from 1 to 3, with each one
being able to have particular configurations. In addition, our
proposal applied the techniques described in a dataset of
medical images, the MedMNIST [14], a point that was not
performed by any other related work. This dataset has just
been published and the accuracy and F1-score data obtained
in this research can serve as a comparison for future works.
Table I presents the comparative table between our proposal
and the others mentioned above.

TABLE I
COMPARISON BETWEEN RELATED WORKS AND THE PROPOSED

TECHNIQUE.

Reference Grammar Algorithm Dataset(s)
Soltanian et
al. [11]

Multi-Layer Perceptron and
arithmetic operators.

GA Breast
cancer, Heart-
Cleveland,
Ionosphere
and Iris

Assunção et
al. [8], [22]

Convolutional layers, max pool-
ing, fully connected, softmax,
batch normalization, pooling
type, activation functions and
learning rate.

GA CIFAR-10,
CIFAR-100,
MNIST and
FashionM-
NIST.

Diniz et al.
[9]

Convolutional, max pooling and
fully connected layers.

NSGA-II CIFAR-10

Suganuma
et al. [23]

Convolutional layers, max pool-
ing, average pooling, sum, con-
catenation and ResBlocks.

CGP CIFAR-10
and CIFAR-
100.

Da Silva et
al. [12]

Convolutional layers, max pool-
ing, dropout, fully connected,
batch normalization and learn-
ing rate.

NSGA-II CIFAR-10

Proposal Convolutional layers, max pool-
ing, dropout, fully connected,
batch normalization and learn-
ing rate.

NSGA-II PathMNIST,
OCTMNIST
and
OrganMNIST
Axial.

IV. PROPOSAL

This work proposes a new Context-Free Grammar associ-
ated with a Multi-Objective Evolutionary Algorithm for the
generation of CNNs that can solve classification problems in
a medical image dataset.

A. Context-Free Grammar

Figure 2 shows the grammar, in Backus-Naur (BNF) format,
proposed for the creation of CNNs. It consists of a total of 15
tags and its permutations allow the creation of a search space
with 6426 different individuals.

The tag 〈cnn〉 defines the entire structure of the CNN,
containing the convolution blocks, the data flattening layer, the
fully connected layers, and, finally, the learning rate. The tag
〈blocks〉 represents the convolutional blocks of the network. It
is defined by 〈nblocks〉〈block〉, where 〈nblocks〉 is the number
of times the 〈block〉 tag will repeat in the network , which
varies from 1 to 3 according to line 14. Continuing on, the
tag 〈block〉 defines the set of convolutive layers, 〈convs〉,
followed or not by the layer of pooling 〈pooling〉. In line 4,
the convolutional block is defined, composed of 1, 2, or 3
convolutional layers. Each convolutional layer, line 5, may or
may not be followed (represented by the symbol λ) by batch
normalization layers 〈bnorm〉 (line 9). The tag 〈pooling〉 shows
that pooling layers can be followed by dropout layers or not.
The tag 〈flatten〉, defines the data flattening layer. Continuing,
the tag 〈fc〉 defines the fully connected layers that may or
may not exist in the grammar. If they exist, they can have
four values of the number of neurons and can repeat 1 or 2
times, according to the tag 〈nfcs〉. Also, fully connected layers
may or may not be followed by dropout layers. More details
are described in line 8. Finally, the tag 〈lr〉 defines the learning
rate at which the CNN will be optimized, which can take three
values as defined in line 12.

〈cnn〉 |= 〈blocks〉〈flatten〉〈fc〉〈lr〉 (1)

〈blocks〉 |= 〈nblocks〉〈block〉 (2)

〈block〉 |= 〈convs〉〈pooling〉 (3)

〈convs〉 |= 〈conv〉 | 〈conv〉〈conv〉 | 〈conv〉〈conv〉〈conv〉 (4)

〈conv〉 |= (Conv〈bnorm〉), (5)

〈pooling〉 |= (MaxPool〈dropout〉), | λ (6)

〈flatten〉 |= (Flatten), (7)

〈fc〉 |= (Fc〈nfcs〉〈units〉〈dropout〉), | λ (8)

〈bnorm〉 |= BNorm | λ (9)

〈dropout〉 |= Dropout | λ (10)

〈lr〉 |= (Lr〈rates〉) (11)

〈rates〉 |= 0.01 | 0.001 | 0.0001 (12)

〈units〉 |= 64 | 128 | 256 | 512 (13)

〈nblocks〉 |= 1 | 2 | 3 (14)

〈nfcs〉 |= 1 | 2 (15)

Fig. 2. Context-Free Grammar in Backus-Naur (BNF) syntax used in the
study.

As can be seen, the proposed grammar is flexible. It allows
the creation of small to large networks, from those with only
convolutional layers to more complex ones with convolutional,
pooling, batch normalization, dropout, and fully connected
layers. The grammar allows tags like 〈convs〉, 〈nblocks〉 and
〈nfcs〉 to be altered to generate deeper, and therefore more
complex, networks. Some important parameters in the con-
struction of CNNs remained fixed, such as activation function,
padding, stride, and the number of convolutional filters. In the
convolutional layers, the activation function used was ReLU
because it has low computational power and still presents good
results compared to others such as sigmoid and hyperbolic
tangent [24]. The pooling layers have been set to the maximum
type, thus highlighting the most important aspects of the

images. The optimizer used in training was Adam for bringing
fast and satisfactory results compared to other optimizers [25].
The optimizer’s learning rate comes from the tag 〈lr〉 present
in the grammar. The error function used was the Categorical
Cross-Entropy [26]. The CNN models were configured to be
trained in 70 epochs with a batch size of 128. More details
about these parameters can be seen in Table II.

TABLE II
CNN FIXED PARAMETERS.

Parameter Value
Kernel size 3 x 3
of filters Starts with 32;

duplicates for every two convolutions.
Stride 1

Pooling size 2 x 2
Dropout rate 0.25 after pooling layers;

0.50 after fully connected layers.
Activation function ReLU for convolutions;

Softmax for the last model layer.
Optimizer Adam

Loss function Categorical Cross-Entropy
of epochs 70
Batch size 128

Early stopping monitor=val accuracy, mode=max
patience=10, baseline=0.5

B. Multi-Objective Evolutionary Algorithm

According to Neto et al. [7] finding CNN models with a
good balance between accuracy, generalization, and precision
is a challenging task. Thus, it is not suitable to optimize CNNs
using only single-objective optimization algorithms due to the
several aspects that must be considered when choosing the
ideal CNN. Therefore, we decided to adopt the use of a widely
used Multi-Objective Evolutionary Algorithm (MOEA), the
NSGA-II [27]. This algorithm has achieved good performance
compared to other multi-objective optimizers [9].

NSGA-II is a MOEA with a strong elitist strategy. Its
pseudocode can be seen in the Algorithm 1, where initially,
before the iterative process, a new population P with size N ′ is
randomly generated. Each individual has their aptitude values
evaluated and, after that, they are sorted based on the Pareto
order (lines 1-3). Once this is done, the selection, crossing,
and mutation operators are applied, generating a new offspring
population. The iterative process is started, and for each
generation, the algorithm classifies individuals according to
non-dominance, thus producing some Pareto fronts (lines 7 and
8). A classification based on Agglomeration Distance (AD) is
performed upfront to promote diversity. The AD represents
the distance between a solution and its neighbors. Since each
solution has its distance assessed, they are ranked descending.
This strategy aims to benefit border solutions placed in regions
of the search space with fewer neighbors.

In line 11, the output of the classification procedure is used
by the selection method. High DA solutions are selected on
the lower front and provided for evolutionary operators (row
12). In selection, a binary tournament is used. Individuals are
selected from the lower front, and, in the case of equal fronts,
the solution with the highest AD is chosen. After that, the

Algorithm 1: NSGA-II pseudocode.
Input: N ′, g, fk(X) . N ′ members evolved in g generations to solve
fk(X)

1: Generate a random population P with size N ′

2: Evaluates objectives values;

3: Assigns a ranking (level) based on the ordered Pareto front

4: Generates a daughter population: Selection, Crossover and Mutation

5: for i← 1 to g do
6: for each Parent and child in P do
7: Assigns a ranking (level) based on the ordered Pareto front

8: Generate undominated solution sets

9: Determines Agglomeration Distance

10: Internal loop adding solutions for the next generation starting from
the front first up to N ′ individuals

end
11: Select points on the lower front and with high agglomeration distance

12: Generates the next generation: Selection, Crossover and Mutation
end

13: return The best Pareto front

crossover and mutation operators are employed, and a new
generation is created. This process continues until the stop
criterion is met. The NSGA-II output is the best Pareto front
found. In this work, NSGA-II is adopted to optimize CNNs
architectures by maximizing two objective functions: accuracy
and F1-score.

1) Accuracy: It is the total hit rate of the classifier used,
regardless of the classes in the example. This variable is ob-
tained through the expression Accuracy = TP+TN

TP+FP+FN+TN ,
where TP and TN mean true positive and negative, and FP
and FN mean false positive and negative. Accuracy is one of
the most common metrics for evaluating the performance of
an algorithm in classification tasks. However, it is commonly
used when the distribution of classes is similar when TP and
TN are more important. However, most real-life datasets are
unbalanced. Therefore, we chose an additional metric to assess
the quality of candidate solutions.

2) F1-score: It is the harmonic mean between the sensi-
tivity (Recall = TP

TP+TN) and the precision (Precision =
TP

TP+FP). It is primarily used to compare the performance
between two classifiers. The relationship between Recall and
Precision is that F1-score only has high values if both metrics
also have high values. In cases where the datasets do not have
a balanced distribution of classes or have a large overlap of
examples from different classes, F1-score is the best metric to
assess the ranking of models. The F1-score is obtained through
the expression F1score =

2×Recall×Precision
Recall+Precision .

V. METHODOLOGY

This section presents the data set used in the experi-
ments, details on the methodology and configurations adopted,
comparative methods, and the metrics used to evaluate the
solutions. All experiments were run using the Google Colab 1

environment with the use of TPU enabled. The language used
to implement the proposed approach and comparative methods
was Python™.

1https://colab.research.google.com/

A. Dataset

The dataset used in the experiments was MedMNIST [14],
which is a collection of ten subsets of pre-processed medical
images released under the Creative Commons license. All
images are set to the dimension of 28 × 28 pixels. From
these ten subsets, we chose three of them: the ones with
more training, validation, and testing data, in addition to being
divided into multiple classes necessary for the classification
task. They are PathMNIST, OCTMMNIST, and OrganMNIST
Axial. Figure 3 shows examples of images contained in the
datasets.

1) PathMNIST: Set composed of histological images of
colorectal cancer stained with hematoxylin and eosin. Nine
tissue types are involved, resulting in a multi-class classifi-
cation task. Images are 3 × 28 × 28 in size. In total, there
are 89, 996, 10, 004 and 7, 180 training, validation and testing
images, respectively.

2) OCTMNIST: Set composed of Optical Coherence To-
mography (OCT) images valid for retinal diseases. Images are
divided into four classes, leading to a multi-class classification
task. Images are 1×28×28 in size. In total, there are 97, 477,
10, 832 and 1, 000 training, validation and testing images,
respectively.

3) OrganMNIST Axial: Set composed of 3D computed to-
mography images of the Liver Tumor Segmentation Reference
(LiTS). 3D images are transformed into grayscale and recalled
in planes, in this case, the axial plane. Images are 1×28×28
in size. In total, there are 34, 581, 6, 491, 17, 778 training,
validation and testing images, respectively. In this work, we
are not using the data augmentation technique on training the
images.

pathmnist

octmnist

organmnist_axial

Fig. 3. Examples of images contained in the datasets.

B. Setup Experimental

For the grammatical evolution execution, we use the
PonyGE2 framework [28]. To build and execute the convolu-
tional neural networks, we use the open-source library Keras
[29]. In addition, for data normalization and assistance in the
training process, we used the Scikit-Learn library [30].

The multi-objective evolutionary algorithm was configured
with the following parameters: the process was performed on

a population of 50 individuals through 30 generations. The
selection operator adopted was the Binary Tournament (of size
2), native to NSGA-II. For the crossing of individuals, we used
the One Point Crossover operator, with a probability of 75%.
The mutation operator used was the Int Flip Per Codon, with
a probability of 1%. Table III summarizes the parameters used
in the evolutionary algorithm.

TABLE III
EVOLUTIONARY ALGORITHM PARAMETERS.

Parameter Value
Number of generations 30

Population size 50
Mutation operator Int Flip Per Codon
Crossover operator One Point Crossover

Mutation rate 0.01
Crossover rate 0.75

Tournament size 2
Elite size 1

Selection Algorithm nsga2 selection
Replacement Algorithm nsga2 replacement

In CNN’s training, the individuals were trained throughout
70 epochs with a batch size of 128. To identify individuals
that produce bad networks and thus stop their training, we
apply the early stop configuration available in Keras to identify
such networks. The fitness values were monitored, and when a
network, in the first ten epochs, does not reach a proficiency of
at least 50% in its metrics, its training process is interrupted.
This early stop procedure was defined empirically.

C. Comparative Methods
After executing the process for each dataset, the NSGA-

II returns a Pareto front that can contain one or more non-
dominated solutions. In our case, in all datasets, the Pareto
front returned only one individual who was not dominated by
any other network. To carry out the comparison, we selected
this individual from these Pareto fronts for each associated
dataset. We will call these networks PathMNIST Proposal,
OCTMNIST Proposal and OrganMNIST Proposal for the
PathMNIST, OCTMNIST and OrganMNIST Axial datasets,
respectively. The layer arrangement of each generated CNN
can be seen in Table IV.

Each selected CNN was compared with six different net-
works, four available in in Keras’s applications module: 1)
InceptionV3 [31], 2) ResNet50V2 [32], 3) EfficientNetB1 [33]
and 4) DenseNet169 [34]; and two approaches that create
CNNs through an optimization process associated with a
grammar: Diniz et al. [9], and Da Silva et al. [12]. The CNNs
generated through an optimization process were obtained from
the execution of the evolutionary process associated with their
respective grammars, under the same parameters used in the
proposal process. These grammars were chosen due to the ease
of implementation and reproduction of their processes.

All these CNNs had their performances compared in terms
of accuracy and F1-score and were trained for 100 epochs
(without the early stop criterion) under the same parameters,
the same training/validation/test ratio, batch size of 128, op-
timizer Adam [25] and learning rate of 0.001. The images

TABLE IV
CNN LAYER STRUCTURE GENERATED FOR EACH DATASET.

PathMNIST Proposal OctMNIST Proposal OrganMNIST Proposal

Conv(32)
Conv(32)
Conv(64)
MaxPool

Dropout(0.25)

Conv(32)
Conv(32)
Conv(64)

Batch Normalization
MaxPool

Dropout(0.25)

Conv(32)
Batch Normalization

Conv(32)
MaxPool

Dropout(0.25)

Conv(64)
Conv(128)
Conv(128)
MaxPool

Dropout(0.25)

Conv(64)
Conv(128)
Conv(128)

Batch Normalization
MaxPool

Dropout(0.25)

Conv(64)
Batch Normalization

Conv(64)
MaxPool

Dropout(0.25)

Conv(256)
Conv(256)
Conv(512)

Batch Normalization
MaxPool

Dropout(0.25)

Conv(128)
Batch Normalization

Conv(128)
MaxPool

Dropout(0.25)

Flatten Flatten Flatten
Dense(128)

Dropout(0.5)
Dense(64)

Dropout(0.5)
Dense(64)

Dropout(0.5)
Dense(’softmax’, 9) Dense(’softmax’, 4) Dense(’softmax’, 11)

Adam(lr=0.001) Adam(lr=0.001) Adam(lr=0.0001)

trained by the networks coming from Keras had to be resized
to a minimum size acceptable by all, which in this case was
75×75 pixels. Each CNN, for each dataset, was run 10 times
to produce the mean and standard deviation of the collected
metrics.

VI. RESULTS

The results obtained can be seen in Table V. Columns 3 and
4 bring the means and standard deviations for the accuracy
metrics and F1-score, for each CNN and respective dataset.
Besides, columns 5 to 8 present the number of layers, number
of parameters, networks’ size in Megabytes, and the total
training time for each network are listed.

We can see that the proposal performed better, for accuracy
and F1-score, than the other networks in the PathMNIST
dataset. In the other two datasets, the winning CNN was
DenseNet169 [34], followed by the proposal and Da Silva et
al. [12]. Our proposal also beat the other networks generated
by grammars. Thus, we can highlight the improvement of our
grammar in relation to our previous work, Da Silva et al., in
generating more specialized individuals.

It is important to highlight that despite the proposed CNNs
are in second place; they present very competitive results
associated with a minimalist design. The proposed networks
for PathMNIST, OCTMNIST, and OrganMNIST respectively
present 91.38%, 79.04%, and 97.14% less trainable parameters
compared to the DenseNet169 network. Furthermore, they are
more compact in size (MB), have fewer layers, and have
a shorter training time. In this way, these produced models
can also be used in contexts where memory savings are an
important requirement.

To complement the previous analysis, we evaluated the
statistical significance of the results to make a fair comparison
among the CNNs. The null hypothesis is that there is no
statistical difference between the averages of the five networks
for each dataset and each metric, accuracy, and F1-score. We
used the non-parametric test of Friedman with a significance
level of α = 0.05, where the null hypothesis was rejected, in

TABLE V
COMPARATIVE PERFORMANCE ANALYSIS BETWEEN THE PROPOSED TECHNIQUE AND STATE-OF-THE-ART METHODS IN THE THREE DATASETS.

Dataset CNN Accuracy F1-score # of layers # of parameters Size (MB) Time (s)

PathMNIST

Proposal 0.9023 (±0.0101) 0.9015 (±0.0104) 15 1,091,113 12.56 1332.90 (±57.08)
DenseNet169 [34] 0.8718 (±0.0180) 0.8709 (±0.0180) 169 12,657,865 146.44 6074.60 (±197.25)
EfficientNetB1 [33] 0.7926 (±0.0480) 0.7921 (±0.0483) 116 6,586,768 76.48 3606.00 (±85.14)
InceptionV3 [31] 0.8563 (±0.0431) 0.8557 (±0.0428) 159 21,821,225 250.78 3892.90 (±47.87)
ResNet50V2 [32] 0.7629 (±0.1300) 0.7622 (±0.1301) 50 23,583,241 270.42 3002.30 (±124.47)
Diniz et al. [9] 0.8095 (±0.0225) 0.8086 (±0.0226) 8 33,833 0.43 1233.10 (±74.95)
Da Silva et al. [12] 0.8913 (±0.0080) 0.8909 (±0.0088) 15 1,091,113 12.56 1326.30 (±59.99)
p-value 3.60× 10−10 3.83× 10−10

OCTMNIST

Proposal 0.7595 (±0.0292) 0.7623 (±0.0297) 23 2,649,892 30.44 1446.00 (±54.72)
DenseNet169 [34] 0.7652 (±0.0304) 0.7697 (±0.0309) 169 12,643,268 146.28 6129.10 (±116.98)
EfficientNetB1 [33] 0.7448 (±0.0130) 0.7473 (±0.0132) 116 6,579,783 76.40 3699.40 (±58.20)
InceptionV3 [31] 0.7274 (±0.0181) 0.7308 (±0.0183) 159 21,810,404 250.67 4223.20 (±113.96)
ResNet50V2 [32] 0.7445 (±0.0219) 0.7489 (±0.0210) 50 23,566,724 270.24 3057.80 (±77.88)
Diniz et al. [9] 0.6752 (±0.0136) 0.6781 (±0.0136) 6 78,244 0.93 1308.10 (±92.43)
Da Silva et al. [12] 0.7585 (±0.0114) 0.7616 (±0.0115) 21 1,895,140 21.81 1463.30 (±65.65)
p-value 3.60× 10−10 1.09× 10−9

OrganMNIST Axial

Proposal 0.9283 (±0.0070) 0.9283 (±0.0070) 20 361,835 4.24 596.80 (±10.86)
DenseNet169 [34] 0.9374 (±0.0026) 0.9372 (±0.0026) 169 12,654,923 146.41 2363.90 (±99.13)
EfficientNetB1 [33] 0.9062 (±0.0205) 0.9063 (±0.0204) 116 6,588,750 76.51 1567.10 (±12.99)
InceptionV3 [31] 0.9105 (±0.0286) 0.9106 (±0.0284) 159 21,824,747 250.85 1728.70 (±39.64)
ResNet50V2 [32] 0.9132 (±0.0568) 0.9132 (±0.0567) 50 23,581,067 270.41 1290.00 (±37.94)
Diniz et al. [9] 0.8727 (±0.0056) 0.8725 (±0.0055) 8 34,411 0.43 572.50 (±28.29)
Da Silva et al. [12] 0.9222 (±0.0071) 0.9222 (±0.0070) 23 548,139 6.39 684.70 (±32.35)
p-value 3.52× 10−10 4.22× 10−10

both metrics in all datasets, as can be seen in Table V. The
rejection of the null hypothesis indicates that at least one result
is statistically different from the others. Thus, to identify the
groups of results that present statistical similarity in multiple
comparisons, we apply the post hoc Nemenyi to obtain the
average ranks and thus calculate the Critical Difference (CD)
value of the results. Figure 4 shows the comparison of these
results through a graphical representation called CD Diagram.

For the PathMNIST dataset, our proposal obtained data
statistically equal to the Da Silva et al., DenseNet169 and In-
ceptionV3 networks, surpassing the EfficientNetB1, ResNetV2
and Diniz et al. networks. For the other two datasets, the
graphs show that the networks generated by our approach are
statistically equal to the first placed network, DenseNet169.
Thus, these graphs indicate that in all data sets, both in
accuracy and in F1-score, the Proposed networks reached data
statistically equal to the first placed. Therefore, our proposed
grammar becomes an interesting alternative for constructing
competitive and low-complexity CNN models for image clas-
sification problems.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we propose a new grammar for creating convo-
lutional neural networks applied to medical image classifica-
tion, associated with a multi-objective evolutionary algorithm
for CNN optimization, based on two metrics: accuracy and
F1-score. The proposed approach was assessed in medical im-
ages from three datasets present in MedMNIST: PathMNIST,
OCTMNIST, and OrganMNIST Axial. The discovered CNNs
were compared to four other state-of-the-art networks in the
literature and two networks also generated by a grammatical
evolution approach, applied to the same classification prob-
lems. The results showed that our generated models reached
a prominent position both in accuracy and in F1-score in

all datasets, being equivalent to networks like DenseNet169
when compared statistically. However, our networks used
about 91.38%, 79.04% and 97.14% (PathMNIST Proposal,
OCTMNIST Proposal and OrganMNIST Proposal, respec-
tively) less parameters compared to DenseNet169, showing
that our models are effective and efficient, with a simpler
architecture, and consuming less computational power and
training time.

Our work also showed that the networks generated by the
proposed new grammar also beat the other networks generated
through the aforementioned grammatical evolution process.

As future work, we plan to update the grammar, adding
other regularization settings. We also intend to add other
important metrics that help in the convergence of the multi-
objective algorithm.

REFERENCES

[1] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
M. Pietikäinen, “Deep learning for generic object detection: A survey,”
International journal of computer vision, vol. 128, no. 2, pp. 261–318,
2020.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[5] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” arXiv preprint arXiv:1803.03635, 2018.

[6] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy et al., “Evolving deep
neural networks,” in Artificial Intelligence in the Age of Neural Networks
and Brain Computing. Elsevier, 2019, pp. 293–312.

[7] G. Neto, P. B. Miranda, G. D. Cavalcanti, T. Si, F. Cordeiro, and
M. Castro, “Layers sequence optimizing for deep neural networks
using multiples objectives,” in 2020 IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2020, pp. 1–8.

Accuracy F1-score

1 2 3 4 5 6 7

Proposal
Da Silva et al.
DenseNet169

InceptionV3
Diniz et al.
ResNet50V2
EfficientNetB1

CD
Dataset: pathmnist, Metric: accuracy, CD: 2.848

1 2 3 4 5 6 7

Proposal
Da Silva et al.
DenseNet169

InceptionV3
Diniz et al.
ResNet50V2
EfficientNetB1

CD
Dataset: pathmnist, Metric: f1_score, CD: 2.848

1 2 3 4 5 6 7

DenseNet169
Proposal

Da Silva et al.
ResNet50V2

EfficientNetB1
InceptionV3
Diniz et al.

CD
Dataset: octmnist, Metric: accuracy, CD: 2.848

1 2 3 4 5 6 7

Proposal
DenseNet169
Da Silva et al.
EfficientNetB1

ResNet50V2
InceptionV3
Diniz et al.

CD
Dataset: octmnist, Metric: f1_score, CD: 2.848

1 2 3 4 5 6 7

DenseNet169
Proposal

ResNet50V2
Da Silva et al.

InceptionV3
EfficientNetB1
Diniz et al.

CD
Dataset: organmnist_axial, Metric: accuracy, CD: 2.848

1 2 3 4 5 6 7

DenseNet169
Proposal

ResNet50V2
Da Silva et al.

InceptionV3
EfficientNetB1
Diniz et al.

CD
Dataset: organmnist_axial, Metric: f1_score, CD: 2.848

Fig. 4. Critical Difference diagrams for Friedman-Nemenyi statistical test.

[8] F. Assunção, N. Lourenço, P. Machado, and B. Ribeiro, “Evolving the
topology of large scale deep neural networks,” in European Conference
on Genetic Programming. Springer, 2018, pp. 19–34.

[9] J. B. Diniz, F. R. Cordeiro, P. B. Miranda, and L. A. T. da Silva,
“A grammar-based genetic programming approach to optimize convolu-
tional neural network architectures,” in Anais do XV Encontro Nacional
de Inteligência Artificial e Computacional. SBC, 2018, pp. 82–93.

[10] R. H. R. de Lima, A. Pozo, and R. Santana, “Automatic design of
convolutional neural networks using grammatical evolution,” in 2019 8th
Brazilian Conference on Intelligent Systems (BRACIS). IEEE, 2019,
pp. 329–334.

[11] K. Soltanian, F. A. Tab, F. A. Zar, and I. Tsoulos, “Artificial neural
networks generation using grammatical evolution,” in 2013 21st Iranian
Conference on Electrical Engineering (ICEE). IEEE, 2013, pp. 1–5.

[12] C. A. da Silva, D. C. Rosa, P. B. Miranda, F. R. Cordeiro, T. Si,
A. C. Nascimento, R. F. Mello, and P. S. de Mattos Neto, “A multi-
objective grammatical evolution framework to generate convolutional
neural network architectures,” in 2021 IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2021, pp. 2187–2194.

[13] M. O’Neill and C. Ryan, “Grammatical evolution by grammatical
evolution: The evolution of grammar and genetic code,” in European
Conference on Genetic Programming. Springer, 2004, pp. 138–149.

[14] J. Yang, R. Shi, and B. Ni, “Medmnist classification decathlon: A
lightweight automl benchmark for medical image analysis,” 2021.

[15] M. O’Neill and C. Ryan, “Grammatical evolution,” IEEE Transactions
on Evolutionary Computation, vol. 5, no. 4, pp. 349–358, 2001.

[16] J. Koza, J. Koza, and J. Rice, Genetic Programming: On the
Programming of Computers by Means of Natural Selection, ser.
A Bradford book. Bradford, 1992. [Online]. Available: https:
//books.google.com.br/books?id=Bhtxo60BV0EC

[17] C. Ryan, J. J. Collins, and M. O. Neill, “Grammatical evolution:
Evolving programs for an arbitrary language,” in European Conference
on Genetic Programming. Springer, 1998, pp. 83–96.

[18] G. Pappa and A. Freitas, “Evolving rule induction algorithms with
multi-objective grammar-based genetic programming,” Knowl. Inf. Syst.,
vol. 19, pp. 283–309, 06 2009.

[19] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-
objective optimization: A short review,” in Evolutionary Computation,
2008. CEC 2008.(IEEE World Congress on Computational Intelligence).
IEEE Congress on. IEEE, 2008, pp. 2419–2426.

[20] I. Tsoulos, D. Gavrilis, and E. Glavas, “Neural network construction and
training using grammatical evolution,” Neurocomputing, vol. 72, no. 1-3,
pp. 269–277, 2008.

[21] F. Ahmadizar, K. Soltanian, F. AkhlaghianTab, and I. Tsoulos, “Artificial
neural network development by means of a novel combination of
grammatical evolution and genetic algorithm,” Engineering Applications
of Artificial Intelligence, vol. 39, pp. 1–13, 2015.

[22] F. Assunção, N. Lourenço, P. Machado, and B. Ribeiro, “Denser: deep
evolutionary network structured representation,” Genetic Programming
and Evolvable Machines, vol. 20, no. 1, pp. 5–35, 2019.

[23] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programming
approach to designing convolutional neural network architectures,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
2017, pp. 497–504.

[24] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, vol. 15, 2011, pp. 315–323.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

[26] Z. Zhang and M. R. Sabuncu, “Generalized cross entropy loss for
training deep neural networks with noisy labels,” 2018.

[27] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolu-
tionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[28] M. Fenton, J. McDermott, D. Fagan, S. Forstenlechner, E. Hemberg,
and M. O’Neill, “Ponyge2: Grammatical evolution in python,” in
Proceedings of the Genetic and Evolutionary Computation Conference
Companion. ACM, 2017, pp. 1194–1201.

[29] F. Chollet et al., “Keras,” https://keras.io/, 2015, accessed: 2019-06-12.
[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[31] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in European conference on computer vision. Springer, 2016,
pp. 630–645.

[33] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International Conference on Machine
Learning. PMLR, 2019, pp. 6105–6114.

[34] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

