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Abstract—Deep learning techniques have been widely re-
searched and applied to several problems, ranging from rec-
ommendation systems and service-based analysis to medical
diagnosis. Nevertheless, even with outstanding results in some
computer vision tasks, there is still much to explore as problems
are becoming more complex, or applications are demanding
new restrictions that hamper current techniques performance.
Several works have been developed throughout the last decade
to support automated medical diagnosis, yet detecting neural-
based strokes, the so-called cerebrovascular accident (CVA).
However, such approaches have room for improvement, such as
the employment of information fusion techniques in deep learning
architectures. Such an approach might benefit CVA detection as
most state-of-the-art models use computer-based tomography and
magnetic resonance imaging samples. Therefore, the present work
aims at enhancing stroke detection through information fusion,
mainly composed of original and Fourier-based samples, applied
to shallow architectures (Restricted Boltzmann machines). The
whole picture employs multimodal inputs, allowing data from
different domains (images and Fourier transforms) to be learned
together, improving the model’s predictive capacity. As the main
result, the proposed approach overpassed the baselines, achieving
the remarkable accuracy of 99.72%.

I. INTRODUCTION

Artificial Intelligence (AI) has recently been highlighted in
several real-world scenarios, mainly due to its high efficiency
in solving particular tasks, such as digital image classification
and the high connectivity between cyber-physical systems. As
such, different technologies are constantly created and inte-
grated by the search of prominent and autonomous resources,
such as AI-based Computer Vision (CV) systems, which take
advantage of the exponential increase of data.

It is essential to remark that computer vision is closely re-
lated to the human visual system, aiming to produce high-level
representations of the real world and enabling intrinsic features
to conduct detection and classification understandings [1].
Nevertheless, the real world is tough to be parametrized and
poses an arduous task in representing complex applications,
especially when dealing with adverse scenarios, such as lumi-
nance variation, distinct perspective, and image resolution [2].

Nowadays, most AI techniques are based on deep learning
(DL) [3]–[5], which attempts to mimic the human visual
processing and the hierarchical learning of features. Such
an approach is conducted by creating layers of high-level
abstraction responsible for extracting different yet informative
features. Some of DL’s primary researched techniques are
the Convolutional Neural Networks (CNN) [3] and Deep
Boltzmann Machines [5]. The former attempts to model hi-
erarchical information through convolutional filters, where the
latter models the hierarchical information as a causality model,
where few hidden layers extract relevant information. Usually,
deep networks require massive data to provide efficient train-
ing, which occasionally hinders some applications.

Despite that, there have been remarkable advances in Arti-
ficial Intelligence and computer vision techniques, primarily
due to the advance of specialized hardware and Graphics
Processing Units (GPU). Thus, such advances have allowed
the usage of DL-based techniques in a wide range of areas,
such as security monitoring [6], [7] and medical diagnosis [8]–
[10].

Regarding medical applications, an interesting problem
stands for the detection and diagnosis of cerebrovascular
accidents. This lesion damages the cerebral tissue and is
mainly caused due to a blood supply alteration in brain
regions. Additionally, it may permanently impair or reduce
brain functions and even lead to patient death [11]. However,
the main problem does not concern its mortality, as different
and complex sequels accompany it and diminish life’s quality
of the affected patients. A researched conducted by Rangel
et al. [12] concluded that post-accident sequels lead patients
to have difficulty with trivial tasks. Authors have observed
that 49.6% of the patients presented moderate to severe
dependency, while 49.7% appeared to have depressive and
dysphoric feelings. Furthermore, the treatment of those people
represents a cost of billions of dollars per year [11].

A well-performed detection and classification can aid doc-
tors in asserting the patient’s treatment or even when the early
diagnosis is uncertain. The computed tomography (CT) images



occasionally decide the final verdict regarding diagnosis and
treatment. Besides that, an image-based diagnosis is a pow-
erful tool capable of distinguishing the accident type and the
impacted region.

Some recent works have applied Artificial Intelligence to
aid medical diagnosis. Pereira et al. [13] employed such a
technique to classify images of patients with cerebrovascular
accidents. The authors obtained high accuracy rates regarding
cerebrovascular accident detection using CT-based images. On
the other hand, medical images are hard to obtain and harder
to label, which leads to small databases. Thus, the authors also
stated that their dataset (300 images) was relatively small to
take advantage of the employed techniques’ full power.

Even with the significant performance obtained by Pereira
et al. [13] and other related works, most of them use deep
neural networks and complex systems, which may be chal-
lenging to be trained and depend on large volumes of data.
Therefore, the main objective of the proposed work is to detect
and classify cerebrovascular accidents using a small dataset
and less-complex neural networks, such as the Restricted
Boltzmann Machines (RBM). Additionally, a new RBM-based
methodology has been proposed and used throughout this
work, i.e., to employ the frequency information representation
and fusion with the spatial domain. As far as the authors
are concerned, no single combination of these networks with
the Fourier transform or their application on cerebrovascular
accidents tasks is reported to date.

The proposed approach employs information fusion from
different data domains, i.e., it uses different modalities to feed
the classification system. Information fusion uses original CT-
based images and their respective Fourier transforms [14].
Thus, there are both spatial and frequency representations,
allowing the extraction of different patterns and features. At
last, the present work contributes with the following: (i) it
introduces a new framework for classification and tomography
image processing (without convolutional neural networks); (ii)
it proposes the coupling of Fourier transforms and Restricted
Boltzmann Machines; and (iii) it provides an effective and
efficient application for the medical area.

The remainder of this work is structured as follows: Sec-
tion II presents the theoretical background and related works
concerning the researched topics. Section III introduces the
proposed approach, while Section IV presents a brief expla-
nation regarding the employed dataset and the experimental
methodology. Finally, Section V presents the experimental
results and Section VI states the conclusions.

II. THEORETICAL BACKGROUND AND RELATED WORKS

This section presents the theoretical background regarding
Restricted Boltzmann Machines, Fourier transform, and cere-
brovascular accident. Concomitantly, some of the main works
related to the depicted topics are cited.

A. Restricted Boltzmann Machines

Restricted Boltzmann Machines are stochastic neural net-
works based on physical principles of energy, entropy, and

temperature. They are composed of two layers of neurons/units
(visible and hidden), capable of modeling problems through
unsupervised [15] and supervised learning [16].

In short, an RBM represents a bipartite graph with non-
directional connections. Figure 1 describes the architecture
of a Restricted Boltzmann Machine, with the visible layer v
having m units, and the hidden layer h with n neurons. The
real-valued matrix W models the weights (neural connection)
between the visible and hidden neurons, with a size of m×n.

Fig. 1. Standard RBM architecture.

Initially, RBMs were developed using visible and hidden
neurons with binary states sampled from a Bernoulli distri-
bution. Later, Welling et al. [17] and Hinton [18] showed
variations for the neurons that can be employed in an RBM,
such as binomials, rectified linear (ReLU), and Gaussians.
In this work, the binary-based version is used and further
discussed.

Let v and h be the visible and hidden binary units, such
that v ∈ {0, 1}m and h ∈ {0, 1}n. The energy of a Bernoulli
Restricted Boltzmann Machine is modeled as follows:

E(v,h) = −
m∑
i=1

aivi −
n∑
j=1

bjhj −
m∑
i=1

n∑
j=1

vihjwij , (1)

where a and b are the values of the biases (bias) of the
visible and hidden units, respectively. The probability of a
joint configuration (v,h) is calculated as follows:

P (v,h) =
e−E(v,h)∑

v,h

e−E(v,h)
, (2)

where the equation denominator is a normalization factor
known as the partition function, which considers all possi-
ble configurations involving visible and hidden units, being
intractable for high-dimensional spaces, such as images.

Since RBMs are bipartite graphs, the information can flow
non-directional, i.e., from the visible to the hidden layer
and vice-versa, making it possible to formulate the states’
probabilities in a mutually independent way. The Equations 3
and 4 describe the conditional probabilities for each layer of
an RBM:

P (v|h) =
m∏
i=1

P (vi|h) (3)

and

P (h|v) =
n∏
j=1

P (hj |v), (4)



where P (v|h) and P (h|v) represent the probabilities of the
visible layer given the states of the hidden layer, and the hidden
layer probabilities given the visible layer states, respectively.

From the Equations 3 and 4, it is possible to obtain the
probability of activating a single neuron i given the hidden
states and the probability of activating a single neuron j
given the visible states. The Equations 5 and 6 describe these
activations:

P (vi = 1|h) = σ

 n∑
j=1

wijhj + ai

 (5)

and

P (hj = 1|v) = σ

(
m∑
i=1

wijvi + bj

)
, (6)

where σ(·) stands for the logistic function.
In short, the training process of an RBM aims to maximize

the observed probabilities of a P (v) configuration, while it
is necessary to estimate and adjust the values of W, a and
b through the optimization of the likelihood cost function.
Hinton [15] proposed an efficient method for training, using
the input data directly as the probabilities of the visible
neurons, known as Contrastive Divergence (CD). Such an
approach uses Gibbs sampling to infer the hidden and visible
layers through Equations 5 and 6.

In addition to binary neurons, RBMs can supply visible
neurons capable of working with non-binary data (continuous),
helpful in modeling different input types or signals. Thus, the
energy function can be changed as follows:

E(v,h) =

m∑
i=1

(vi − ai)2

2σ2
i

−
n∑
j=1

bjhj−
m∑
i=1

n∑
j=1

vi
σi
hjwij , (7)

where σi and σ2
i represent the standard deviation and variance,

respectively, for each neuron i.
Considering the binary RBM derivatives, the conditional

probabilities of the neurons of the visible layer are depicted
as follows:

P (vi = 1|h) ∼ N

 n∑
j=1

wijhj + ai, σ
2
i

 . (8)

It is easy to notice that standardized data (σi = 1) leads to
a simpler and less complex Equation 8.

B. Fourier Transform

The Fourier transform is a powerful mathematical tool
dated from the mid-1800s. Its postulation indicates that any
periodic function can be expressed as a sum of sines and
cosines of different frequencies, each one weighted by a
different coefficient, regardless of the function complexity.
If such function is not periodic, it is still possible to apply
the decomposition in sines and cosines, but from the integral

under the curves. With the computing advent and technological
advances, the fast Fourier transform (FFT) was developed [19].

The Fourier transform can be applied in continuous or
discrete domains, where the latter enables efficient approxi-
mations computationally fast for calculations. The FFT allows
several manipulations of digital signals, mainly in images,
such as the application of numerous filters in the frequency
domain [19]. In short, the DFT is applied to a given D-
dimensional array producing a complex array with the same
dimension, in addition to the magnitude (or module) and phase
angle. Mathematically, the discrete Fourier transform (DFT) is
defined for two dimensions, for example, as follows [19]:

F (u, v) = R(u, v) + jI(u, v)

= |F (u, v)|ejφ(u,v),
(9)

where R and I stand for the real and imaginary components,
respectively, u and v represent the two-dimensional matrix
coordinates, and φ is the phase angle. The magnitude and
phase angle of the input signal are defined by Equations 10
and 11, respectively:

|F (u, v)| = [R2(u, v) + I2(u, v)]1/2 (10)

and

φ(u, v) = arctan

[
I(u, v)

R(u, v)

]
. (11)

C. Cerebrovascular Accident

A cerebrovascular accident, commonly known as stroke,
is characterized by an injury that abruptly strikes the brain
tissue. It is mainly caused by changes in the blood supply to
a certain region of the brain, resulting in loss or reduction of
its functions. The stroke can be classified into Ischemic (most
common), characterized by the blockage of a vessel respon-
sible for brain irrigation, and Hemorrhagic, characterized by
the rupture of a blood vessel in or around the brain. Figure 2
depicts such differences.

Fig. 2. Stroke types representation. Adapted from:
https://abavc.org.br/index.php/sobre-o-avc/

A stroke can occur early due to several risk factors. These
are categorized as non-modifiable and modifiable. The first
covers age, sex, race, and ethnicity, while the latter factors
are related to clinical conditions, such as heart disease and



diabetes mellitus, in addition to lifestyle factors, such as
physical inactivity, obesity, malnutrition, tobacco use, and al-
cohol consumption. Stroke prevention and subsequent sequelae
development are closely related to the earlier identification and
control of modifiable risk factors, which play a significant role
in such diagnosis. The diagnosis involves a detailed medical
history, physical and neurological exams, and brain imaging
tests [20], making early assumptions difficult.

Millions of people worldwide are affected by strokes every
year, where a highly expressive amount ends up dying [11].
However, the biggest stroke-related problem goes beyond mor-
tality, i.e., many survivors have lifelong post-stroke sequelae
that are varied and complex. As part of these sequelae, so
many patients develop difficulties in trivial daily activities,
showing degrees of moderate and severe dependencies for
such tasks [12]. In addition to the related work developed
by Pereira et al. [13], Medicine has had the support of
Artificial Intelligence to assist diagnosis and to detect brain
abnormalities by images, such as hemorrhages, thrombosis,
minor cranial fractures, and stroke. Such applications generally
use images from computed tomography or magnetic resonance
imaging (MRI).

D. Related Works

The first work to deal with multimodal Boltzmann Machines
was conducted by Srivastava and Salakhutdinov [21], where
they used Deep Boltzmann Machines (DBM) to learn several
modalities of input data, such as images and text, to compose
larger and more robust models. The work carries out extensive
experiments and shows that the addition of more than one
type of data can favor the learning of Boltzmann Machines
considering image classification and image/text retrieval tasks.

Similarly, Wang and Ji [22] used DBMs to handle mul-
timodal data, yet in recognizing events in security videos.
The proposed model integrates into levels, attributes, seman-
tics, and high-level contexts, being trained with approximate
learning based on mean-field, hence, allowing it to be used
directly to infer classes of events through Gibbs sampling.
The work was evaluated in two surveillance databases with
videos extracted from real environments, reaching promising
results. However, the authors found a high complexity to
achieve contextual interactions, and they had to use several
auxiliary techniques for extracting attributes such as SIFT
(Scale-Invariant Feature Transform), BOW (Bag-Of-Words),
and STIP (Spatial-Temporal Interest Points).

Regarding Fourier transform-based deep learning, Sharma
et al. [23] proposed using discrete Fourier transforms to
predict the rain effect in images with the DFT coefficients
as input of a deep convolutional neural network, and further
remove such an effect from the frequency domain. Ryu et
al. [24] proposed a new sampling layer (pooling layer) based
on the discrete Fourier transform for convolutional neural
networks. The DFT-based sampling replaced the traditional
sampling layer (maximum/average) between convolution and
fully-connected layers to retain the translation invariance and
shape preservation.

Another practical application of the Fourier transform was
the digital coloring of high definition infrared images through
deep learning [25]. The authors showed it is possible to
use unsupervised deep learning coupled with FFT to map
images in the infrared spectrum to high-resolution images for
histological stains in which there is an enormous difficulty
acquiring categorized data.

Concerning AI-based medical diagnosis, Pereira et al. [13]
employed convolutional neural networks to detect and classify
images of patients with/without stroke. The authors obtained
relatively high accuracy rates regarding stroke classification
using CT-based images. However, medical images are hard to
obtain and harder to label, which may lead to small databases,
as [13] pointed. Thus, the authors also stated that their dataset
(300 images) was relatively small to take advantage of the
employed CNNs’ power.

Pedemonte et al. [26] proposed a modified convolutional
network (YNet) that used magnetic resonance images as
training data based on weakly-supervised learning. The study
aimed to segment the images and detect strokes in patients
for the correct targeting of treatment therapies. The work was
successful in the task; however, the proposed model has a
complex architecture and consumed much training time. Lee
et al. [27] developed a deep yet comprehensible learning
system capable of detecting acute intracranial hemorrhage
and five subtypes with unenhanced CT scans. The authors
used a small dataset (904 samples) for training the model,
which achieved performance similar to specialist radiologists
in two independent test datasets containing 200 and 196 cases,
respectively. Such a system uses attention maps to understand
better the decisions.

Finally, Bacchi et al. [28] used a promising approach to
detect ischemic stroke thrombolysis, where they applied two
neural networks, i.e., a CNN to process computed tomography
images and a 3-layer perceptron network to treat structural
data from medical guides (age, gender, etc.). The results were
promising and showed an exciting line for the development of
robust tools for medicine.

III. FOURIER-BASED MULTIMODAL RESTRICTED
BOLTZMANN MACHINES

This work proposes to represent information in different
domains through the Fourier transform. We argue that the use
of information fusion for the training of Restricted Boltzmann
Machines can successfully be applied to the problem of
stroke detection and classification of their types (ischemic
and hemorrhagic). Additionally, these networks have been
chosen due to their simplicity and lack of work involving the
researched topics.

Information fusion aggregates data from different domains
and is often denoted as multimodal due to the difference in the
aggregated distributions. Multimodality can be used with N
data types, such as bi and tri-modal. Concerning the proposed
work, the data is composed of original computed tomography
images and their respective Fourier transforms, where the



latter is composed of two different components: magnitude
(Equation 10) and phase angle (Equation 11).

Let MultFRRBM (Multimodal Fourier-based RBM) denotes
the proposed approach, where its variations MultFRRBM-P,
MultFRRBM-M and MultFRRBM-PM, denote which compo-
nents are used to compose the multimodality1. Formally, data
entry representations can be defined as follows: let l be an
image with spatial components (x1, x2) ∈ <2. Let its 2-D
Fourier transform be denoted by F , with module |F (x1, x2)|
and phase angle φ(x1, x2) defined by Equations 10 and 11,
respectively.

Given the three possible MultFRRBM architectures, they are
trained under the standard unsupervised learning approach [15]
and fine-tuned for the classification task through an additional
Softmax layer, which receives the activations of the layers
hidden h1 and h2 for two types of data, or h1, h2 and h3 for
three types of data. Figure 3 illustrates a MultFRRBM-P with
two entries, where the first RBM (GaussianRBM) receives the
original CT image and the second (FourierRBM) receives the
phase angle from the DFT applied to the image.

Fig. 3. MultFRRBM-P architecture with two types of inputs, i.e., original
images and the phase angle of the DFT.

In this work, the Multimodal RBMs address the problem
employing Gaussian visible units, i.e., image pixels as con-
tinuous values, for the original grayscale images. Initially,
one or more Gaussian-based RBMs are used to process the
DFT data, i.e., if the final architecture uses the phase angle
(MultFRRBM-P), the data is normalized by a standard Gaus-
sian and fed to the next RBM. The same process occurs for
RBMs with magnitude (MultFRRBM-M), where the magni-
tude of the frequency spectrum is normalized by a standard
Gaussian and fed to another Gaussian RBM. Finally, when
both DFT components are used (MultFRRBM-PM), phase and
magnitude are normalized and fed into two Gaussian simul-
taneously to a base RBM. Figure 4 illustrates the processing
described.

1P stands for the phase, M stands for the magnitude, and PM stands for
both.

Fig. 4. Scheme of the transformation applied for entry into multimodal
models.

Therefore, the proposed approach aggregates information
from different domains, i.e., the spatial component originated
from the original images, and the frequency originated from
the components of the Fourier transform. Additionally, the
employed multimodality enables the analysis of which con-
figuration is most suitable for the problem in question and
gives greater flexibility to the application.

IV. EXPERIMENTAL METHODOLOGY

This section presents an overall description of the employed
dataset, as well as a brief explanation of how the proposed
approach was modeled, followed by the experimental setup.

A. Dataset

Pereira et al. [13] proposed the employed dataset, which
consists of 25 CT scans of the brain, comprising patients2 with
(a) healthy brain, (b) ischemic stroke, and (c) hemorrhagic
stroke. The total number of images accounts for 300, where
100 depicts healthy brains and 200 a cerebrovascular accident
(100 hemorrhagic and 100 ischemic). In addition, they are
composed of irregular patterns, irregular lighting, and different
structural characteristics.

Furthermore, Pereira et al. [13] used two additional pre-
processing methodologies to image generation, image segmen-
tation to extract only the brain, and brain images generated
from the radiological density maps (tissue density atribute
map); however, less pre-processing might avoid possible de-
lays in the system in real-world applications. Additionally,
their experimental results showed that these pre-processing
methodologies did not improve the CNNs performance. Thus,
this work only considers the original grayscale images.

Each original image has a resolution of 512×512 pixels, yet,
they have been resized to 50× 50 to diminish the number of
computational resources needed and the RBMs training time.
Each image has been grayscaled and normalized according
to a standard Gaussian distribution, i.e., zero mean and unit
variance. Figure 5 illustrates some samples of CT-based scans
from a healthy brain, hemorrhagic stroke, and ischemic stroke,
respectively.

2Patients’ identification have been omitted for ethical reasons.



Fig. 5. Tomography of a brain: healthy, with hemorrhagic stroke, and with
ischemic stroke, respectively.

B. Experimental Setup

The experimental setup comprises four different RBM ar-
chitectures, yet with the same training process, i.e., networks
trained with the Contrastive Divergence, and with an equal
number of epochs for each RBM that composed the multi-
modal model. The baseline architectures are the Convolutional
Neural Networks, CNN1, and CNN2, proposed by Pereira et
al. [13], while the RBM corresponds to a pure Gaussian-based
RBM, and the previously mentioned multimodal variants, i.e.,
MultFRRBM-P, MultFRRBM-M, and MultFRRBM-PM. The
hyperparameter configuration of these architectures is depicted
by Table I.

The values described by Table I correspond to empirically
chosen hyperparameters, which were selected in preliminary
experiments. Also, the number of hidden neurons is based
on the anchor model (GaussianRBM), which showed a good
performance with 2, 000 units. Such a value is the maximum
amount of neurons for all proposed architectures, hence pro-
viding a fair comparison between architectures that use one or
more RBMs. On the other hand, both learning rates and mo-
mentums have been chosen to provide smoother convergences
(lower values), while 50 training epochs and mini-batches of
size equals to 10 complements a thorough learning procedure.

Considering the employed dataset, we opted to follow the
methodology proposed by Pereira et al. [13], which provided
two distinct data configurations: a half-and-half split between
training and testing sets (50/50) and a quarter-third of train-
ing and testing splits (75/25). Additionally, the experiments
have been evaluated throughout 15 independent executions to
reduce the models’ stochasticity, to remove any virtual split-
based data bias and to provide enough executions to conduct
a statistical test, i.e., Wilcoxon signed-rank test [29] with 5%
of significance.

Regarding the last adjusting step (fine-tuning), we added
a Softmax layer on the top of the RBMs, trained with an
Adam [30] optimizer using a learning rate of 0.00001 for
RBMs and 0.001 for the Softmax. This additional classifica-
tion layer had its hyperparameters empirically chosen, while
it was trained for 50 epochs using mini-batches with a size
equal to 60. Finally, the reported metric stands for the same
used by Pereira et al. [13], which is the standard accuracy.

V. EXPERIMENTS

Table II depicts the mean results and their respective stan-
dard deviation obtained from the 15 independent runnings,

considering both data splits, i.e., 50/50 and 75/25. Addi-
tionally, the bolded cells represent statistically similar results
according to the Wilcoxon signed-rank test with a p-value of
5%. Finally, the result that achieved the highest mean for each
split is underlined.

Still glancing at Table II, one can observe that all RBM-
based models achieved higher accuracy than the CNNs, con-
sidering both data splits. Such results are remarkable as non-
convolutional models obtained a better recognition rate in such
an important task. Additionally, the employed RBM models
have minimal image pre-processing and low architecture com-
plexity, with at most 2, 000 hidden neurons.

Generally speaking, the best results were the GaussianRBM
in the 50/50 split, achieving almost 7% more performance
than the best convolutional model CNN1. Considering the
same split, the multimodal models could not perform as well as
the unimodal one, indicating that the multimodality might need
more training data; however, their results were still superior
to the ones obtained by CNN1 and CNN2.

Regarding the second split (75/25), there has been a sig-
nificant improvement in the multimodal models, where all ap-
proaches obtained a mean accuracy higher than 99%. Amongst
these models, the MultFRRBM-P stood out, achieving 99.72%
and surpassing both unimodal and baseline models. Addi-
tionally, it had the lowest standard deviation, while every
other RBM-based model had better mean accuracy and lower
standard deviation than the CNNs.

It is worth noticing that MultFRRBM-PM models obtained
the lowest mean accuracy among the tested RBM- based
models, which led us to believe in the following hypotheses:
(i) the magnitude component aggregates less information than
the phase component, which can be observed by comparing
both MultFRRBM-P and MultFRRBM-M models; and (ii) the
combination of magnitude and phase components can generate
models that may require more data for training. Additionally,
Figures 6 and 7 illustrate the fine-tuning learning procedure,
where we can highlight an instability of the MultFRRBM-PM
when compared to other models, as shown in the regions with
the zoom at the end of the fine-tuning epochs.

Additionally, the number of parameters from the networks
was analyzed, to complement a fine piece of information,
which gives us the direct comparison between models and
enables valuable insights. Such values were calculated based
on the models’ description in this work for the RBM-based,
and based on Pereira et al. [13] for the CNNs. Table III shows
the number of parameters for the proposed approach and the
baseline architectures, as well as the approximated number
of such parameters (to visualization simplicity), and the ratio
between the RBM-based models and CNN baselines, which is
the parameters number quotient regarding the architectures.

From Table III, one can notice that RBM-based models,
i.e., the GaussianRBM and its multimodal versions, have
significantly more parameters than CNN1, almost 43× (here,
“×” means times). However, such a greater number was
not a barrier for stroke detection and classification since all
RBM models outperformed the results from CNN1. On the



TABLE I
HYPERPARAMETER CONFIGURATION FOR RBM-BASED MODELS.

Architecture # Hidden Neurons Learning Rate Momentum

GaussianRBM 2, 000 0.0001 0.5

MultFRRBM-P 500; 1, 500 0.001; 0.0001 0.9; 0.5

MultFRRBM-M 500; 1, 500 0.001; 0.0001 0.9; 0.5

MultFRRBM-PM 250; 250; 1, 500 0.001; 0.001; 0.0001 0.9; 0.9; 0.5

TABLE II
MEAN ACCURACY AND ITS RESPECTIVE STANDARD DEVIATIONS FOR THE

TEST SET CONSIDERING BOTH DATA SPLITS.

Architecture 50/50 75/25

GaussianRBM 99.66± 0.52 99.66± 0.52

MultFRRBM-P 98.76± 1.58 99.72± 0.40

MultFRRBM-M 98.53± 1.70 99.49± 0.60

MultFRRBM-PM 97.94± 1.66 99.32± 0.71

CNN1 [13] 93.46± 16.54 97.20± 2.45

CNN2 [13] 83.55± 13.09 77.33± 22.24
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Fig. 6. Mean accuracy over the test set, considering the 50/50 split.

TABLE III
PARAMETERS ANALYSIS OVER THE EMPLOYED MODELS.

RBM-based CNN1 [13] CNN2 [13]

Parameters 5, 006, 000 116, 874 60, 954, 656

Approximated ≈ 5M ≈ 117K ≈ 61M

Ratio − ≈ 42.83× ≈ 0.08×

other hand, the RBM-based ones have 0.08× the number
of the total parameters of CNN2, which is an impressive

0 10 20 30 40 50
Epochs

60

65

70

75

80

85

90

95

100

M
ea

n 
Ac

cu
ra

cy

99.25
99.50
99.75

MultFRRBM-P
GaussianRBM
MultFRRBM-M
MultFRRBM-PM

Fig. 7. Mean accuracy over the test set, considering the 75/25 split.

value, overpassing such CNN in fewer parameters and higher
accuracy overall. Finally, one can highlight that convolution-
based networks are far more sensitive to data volume, and
RBM-based models can be robust where less data is provided.

VI. CONCLUSION

This work explores the use of multimodal data in the context
of Restricted Boltzmann Machines applied to the cerebrovas-
cular accident classification task. The employed multimodality
used the Fourier transform to provide two additional data
distributions, i.e., the magnitude and the phase angle of the
transform components.

We argue that the proposed approach can achieve state-
of-the-art results and surpasses the previously approaches
regarding the experimental tests. Every proposed model has
been superior to the baselines proposed by Pereira et al. [13],
which led us to the assumption that the evaluated task does not
require complex and convolving models nor large volumes of
data. Another point that should be highlighted is the potential
of multimodal inputs in RBM-based models, especially when
combined with the power of the Fourier transform. According
to Table II, it is clear that the phase angle contributed more to
the model discriminative power than the magnitude, indicating
that such an approach is viable and should be more explored.

Finally, regarding future works, we aim to deeply study
the possibility to make an auto-data-augmentation with the



employed networks, as suggested by Roder et al. [31], in
which the authors generated synthetic images from the original
ones with RBMs to increase the data volume, proving to
be a promising approach to performance improvement in the
medical domain. Also, the authors intend to use convolutional
RBMs rather than RBMs.
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