
Combination of Optical Character Recognition
Engines for Documents Containing Sparse Text and

Alphanumeric Codes
Iago Lourenço Correa, Paulo Lilles Jorge Drews-Jr and Ricardo Nagel Rodrigues

Center for Computational Science - C3
Federal University of Rio Grande (FURG)

Rio Grande - RS, Brazil
Email: iago.correa@outlook.com, paulodrews@furg.br, ricardonagel@gmail.com

Abstract—Many companies that buy machines, parts, or tools
retain documents such as notes, receipts, forms, or instruction
manuals over the years, and they may find themselves in need
of digitizing these accumulated documents. Thus, when using
optical character recognition (OCR) systems in these documents,
it is possible to note that these systems can present two main
difficulties. The first is to locate the sparse text in a non-
continuous way, and the second is to match words that are closer
to codes and less to words in human language. Although there
are many works in the literature about sparse texts, such as
forms and tables, there is usually not much concern about the
issue with codes in which one can not rely on dictionaries or
even both problems together. Therefore, to correct this issue
without having to search for extensive databases or conduct
training and development of new models, this work proposed
to take advantage of pre-trained models of OCR such as from
the Tesseract engine or the Google Cloud’s Vision API. In order
to do so, we proposed the exploration of combination strategies,
including a new one based on median string. The experimental
results achieved up to 3.09% improvement in character accuracy
and 1.16% in word accuracy in comparison to the best individual
performances from the engines when our method based on string
combination was adopted.

I. INTRODUCTION

Optical character recognition (OCR) systems can transform
text in image format to data that can be processed by a
machine. One of the first OCR systems was developed in the
40s [1], but there are still open problems in the character recog-
nition field. For example, the recognition of text from visual
structures such as tables and boxes [2], or the recognition of
handwritten characters in different daily scenarios [1]. But not
only that, other problems can be found.

Many companies that buy machines, parts, or tools retain
documents such as notes, receipts, forms, or instruction man-
uals over the years, and they may find themselves in need of
digitizing these accumulated documents. But when using OCR
systems for recognizing these documents, it is possible to note
that they present two main difficulties. The first is to locate
the sparse text in a non-continuous way, and the second is to
recognize words that are closer to codes and less to words of
the human language.

In documents with sparse text, grammar rules can not be
applied and it is common to find visual structures that usually

can confuse the OCR, such as tables, graphics, boxes, or
headers. Besides that, alphanumeric identification codes can
also be found. That kind of code does not configure a word
that would normally be in a post-processing method based
on a dictionary. It is a code composed of a combination
of alphabetical characters and numbers, such as “SP01” or
“EZ10HD05”.

In this context, this work proposes to take advantage of
several pre-trained models of OCR such as from the Tesseract
engine or the Google Cloud’s Vision API, for example, in doc-
uments that resemble the ones discussed before, with sparse
text and alphanumeric codes. In order to do so, this work
presents a new method based on combination strategies, along
with their validation and comparison to individual results. The
strategies explored are the majority voting, ranking, and the
median string, which was proposed by Kohonen [3] and is
newly proposed in the context of OCR engines combination
in this work.

The work is structured in four sections. First, Section II
presents the main references for this work. Then, Section III
presents the proposed methodology. Section IV presents the
results for the different experiments conducted. And finally,
there are the conclusions of this work.

II. RELATED WORK

In reason of the development of knowledge in the fields
of pattern recognition many different approaches have been
explored in OCR systems. Currently, the state of the art
is given by the adoption of deep neural networks, but it
is possible to note that different models can stand out in
different contexts [1]. Even so, some works adopting combina-
tion strategies can be found. Those combinations are usually
presented in two different levels: feature level, and decision
level [4]. In the feature level combination, a feature extractor
model is adopted before the final classification into a character.
And in the decision level, the combination happens in the class
selection level, i.e. when all the systems to be combined are
already decided for one class each. In this work, decision level
combinations are adopted.

In the domain of recognizing characters from a video,
Petrova et al. [5] present a weighted combination of the



recognition from different frames from a video. The weights
adopted are a focus estimation of the image and an a-posteriori
recognition confidence, and with this methodology, the results
indicate improvement in the recognition of text in videos.

In the recognition of handwritten Devanagari numerals,
Singh et al. [6] propose a feature extraction approach based on
Information theory measures, followed by the decision level
combination between different multilayer perceptrons. For the
decision level combination, it was adopted three different
approaches: majority voting, decision templates, and Dempster
Shafer [7], in which, the last one achieved the best results. The
Dempster Shafer combination approach was not adopted in
this work because it requires the probability for each possible
class, information that is not available for all OCR engines.

Looking for a way to combine the capabilities from different
OCR systems, Boiangiu et al. [8] propose the combination of
different OCR outputs through a voting system. In their work,
the same image is pre-processed with different techniques
generating different pre-processed images which are then
processed in the OCR system. The outputs for those differ-
ent techniques are combined. Their proposed methodology
achieved improvement between 4% and 5% of accuracy in
the recognized text.

Petrescu et al. [9] present the combination for the output
of two OCR engines, the Tesseract and the Asprise. For this
combination, it is adopted two different weights in voting.
The first one is the confidence given by the engines and the
second one is obtained through an accuracy calculated in a
document that is similar to the one that is being processed, i.
e. it is needed to have annotated documents. The experiment
conducted by them, indicated improvement in comparison to
the isolated classifiers. Similarly, Dannélis et al. [10] also
present the combination of the output for two OCR engines,
the Tesseract and the ABBYY Finereader, to improve the text
identification in historical documents and newspapers in a
Swedish library. In their work, the combination is given by
selecting the words in the outputs with greater confidence.

Searching for improvement in text from the 15th and 16th

centuries, Reul et al. [11] propose the combination of different
models from the OCRopus engine. In their work, a dataset
is divided into subsets that are used to retrain the model
from OCRopus, the outputs obtained from those models are
combined through voting weighted by the models confidence.
With this methodology, it was obtained a reduction of 50% of
errors in the text identification.

As noted by Zeni and Jung [12] in the problem of automatic
license plate recognition, no grammatical or semantic informa-
tion relates the characters from the plate, so it is a different
problem from the generic OCR problem. In their work, they
proposed a weakly supervised model that achieved competitive
results in character detection. In the same problem for license
plates, Montazzolli and Jung [13] proposed an end-to-end deep
learning that correctly recognized all the characters of a license
plate in 63.18% of the test set. Also, concerning alphanumeric
codes with no semantic or grammatical information, Han et
al. [14] propose the adoption of a CNN model for character

identification in cables surface achieving average recognition
rate of 92.6% when number ‘0’ is considered equal to the
letter ‘O’ and ‘1’ is equal to the letter ‘I’ .

Finally, although there are some works concerning al-
phanumeric codes and many works that focus on the sparse
text issue [2] [15], there are few works that tackle both
problems. Hence, adopting combination strategies to correct
these problems can be beneficial, especially given its ease of
implementation, without training any new model. Also, the
median string concept is newly proposed to combine different
OCR engine outputs in this work.

III. METHODOLOGY

This work proposes the combination of OCR engines
to enhance the individual performance of those. Thus, an
improvement in the recognition of characters in documents
with sparse text and alphanumeric codes is expected. In this
Section, OCR engines, our method based on combination
strategies, and finally, the validation data are presented.

A. OCR Engines

This work investigates some OCR engines freely available
under the Apache License 2.0. Besides these engines, some
results were also generated adopting the Google Cloud Vision
OCR1.

The Tesseract2 [16] was one of the first OCR engines with
open-source code since 2005 and it is one of the oldest OCR
engines that is still under development [17]. Therefore, it is
a mature system that is vastly known and was adopted in
many different works, such as in [9] and [10]. Its most recent
stable version 4.1.1 was launched on December 26th, 2019,
and it works based on a long short-term memory network
(LSTM) since its version 4.0.0 launched in 2016. In this
work, the results were also analyzed for other two different
Tesseract versions: 3.05 (legacy version, it does not adopt
LSTM models) and 5.0.0 (alpha version). Since this work
searches for the combination of OCR systems, it is expected
that better results could be achieved with the adoption of the
the different Tesseract versions in the same combination.

The OCRopus3 engine initially was a set of tools for OCR
based on the Tesseract, however, since 2010 the OCRopus
OCR adopted a LSTM model [17]. Currently, its implementa-
tion consists of a collection of software to analyze documents,
besides binarization, layout analysis, error measurement, and
confusion matrix calculations functions for example. The
kraken4 engine started in 2015 as a fork from OCRopus
and currently its implementation have changed enough to not
be considered only a ramification. Its character recognition
is based on a RNN model. The Calamari5 engine has been
developed since 2018, based on the OCRopus and kraken, but
backed up by TensorFlow6 [17]. This engine was projected

1https://cloud.google.com/vision/docs/ocr?hl=pt-br
2https://github.com/tesseract-ocr/
3https://github.com/tmbarchive/ocropy
4http://kraken.re/
5https://github.com/Calamari-OCR/calamari
6https://www.tensorflow.org/



to work through command lines, and the system adopts the
segmentation codes from OCRopus.

Finally, the Google company has a line of products and
services towards machine learning, which includes a compu-
tational vision API in the cloud, the Google Cloud’s Vision
API. Also, included in the API services, there is an OCR
system. Different from the other engines of this work, it is
not possible to train a model with your data. Besides that,
it is not an open-source project, its free usage is limited to
1000 images per month. Hence, it is interesting to analyze its
capacity in comparison to open-source OCR engines. Due to
its usage limitation, in this work, the Google Vision OCR was
just applied in one of two adopted datasets.

B. Combination-based method
According to Mohandes et al. [4], the combination of

classifiers can be achieved at different levels, with no single
strategy being the best. Thus, different strategies of combi-
nation between the OCR systems have been presented and
evaluated.

The first combination strategy follows the idea from Pe-
trescu et al. [9], in which confidence values from the engines
weight the different outputs, ranking them. Following the work
from Singh et al. [6] and Xu et al. [18], the majority voting
was explored. And in the end, it was also explored the median
string calculation proposed by Kohonen [3], which has not
been explored before for the purpose of combining OCR
engines.

Although there are many works in the literature about
the combination in different levels, many of them recently
have been adopting feature level combination i.e. with one
classifier as a feature extractor and the other for the character
recognition. This approach does not fit for the combination
of closed systems such as OCR engines, where there are
one input image and the final output, being only possible the
combination at the decision level [4].

The proposed method is divided in three steps:
1) Segmentation: The images from the chosen datasets

are complete documents, containing many lines of text not
continuously. Therefore, if each OCR engine segment the
images, different text regions may be found, making it harder
to compare those regions due to a possible lack of equivalency.
For that reason, the combination experiments between the
OCR systems were performed utilizing line-level segmented
images as input. Yet, the engines still perform segmentation
at word and character levels.

Therefore, considering the fact that the Tesseract has a
parameter that changes the segmentation mode, the psm, in
the experiments, it was evaluated the possibility to combine
different outputs from the Tesseract for different segmentation
modes. The possible values for the psm parameter are in Table
I with their respective meaning. In this work, the values 0 and 2
are not utilized, because those modes do not perform character
recognition.

2) Character Alignment: For a same image, different en-
gines may have different size outputs because the engines
segment the characters differently. Therefore, in one image

containing one character, it can be wrongly recognized as
two characters or even none, for example, where it should
be identified as an “m” it can be identified as “rn”. So, to
combine the outputs from different OCR systems, all outputs
must be aligned at a character level to identify and match those
gaps generated by mistakenly identified characters.

Therefore, as a way to match those gaps generated by
segmentation in different engines, we adopted a sequence
alignment strategy. Through the alignment, identical characters
tend to be aligned and the difference between the outputs
from the OCR systems can be managed accordingly. As
presented before, considering that the dataset is composed of
full documents with many text lines, not only characters, it is
expected the alignment to be beneficial.

The alignment task follows the method proposed by Katoh
et al. [19] that aligns multiple character sequences based on
fast Fourier transform7. For the adoption of this implementa-
tion, spaces between words were treated as a special character,
because the input for the engines were text lines, not words.
In Figure 1 one text line segmented from SROIE dataset is
illustrated. Table II presents the outputs for three different
OCR engines for that image as it is and aligned, where the
symbol Ø denotes one gap where no character is expected. It
can be observed, that more characters are matched after the
alignment. Also, the adoption of the alignment makes it easier
to combine different size strings, because it defines where gaps
can be located and which character is compared to which.

Fig. 1. Example of a segment from a document of the SROIE dataset.

3) Combinations: Regarding the last step, three different
combination approaches were explored.

a) Majority Voting: It is one of the most utilized non-
trainable combination strategies [6]. In the majority voting, it
is counted the number of classifiers that vote for a particular
class, and the one with the majority of the votes is selected.
In this work, the classes are the identified characters, after
the alignment, for each position of the strings obtained by the
engines, it is voted and chosen the most recurrent character.
Also, in case of a tie, it is picked any of the characters.

b) Ranking: In this combination approach, it is utilized
one value to weight the classes obtained by the classifiers. By
the sum of those values, the classes are ranked, and the one
in the first place is chosen. In this work, the classes are the
characters, and the weight values are the confidence obtained
from the OCR engines. So, for each position of the aligned
strings output by the engines, a rank is done according to the
confidence. The character in the highest position is chosen.

Table III presents one example of this combination approach
for three strings. In the table, the confidence for each character
is presented, as well as for the gaps created in the aligned
process, the confidence of 0.50 was adopted as default. With

7https://mafft.cbrc.jp/alignment/software/



TABLE I
PAGE SEGMENTATION MODES FROM THE TESSERACT, DEFINED THE THE PARAMETER psm.

psm Description
0 Orientation and script detection (OSD) only
1 Automatic page segmentation with OSD
2 Automatic page segmentation, but no OSD, or OCR
3 Fully automatic page segmenation, but no OSD (default value)
4 Assume a single column of text of variable sizes
5 Assume a single uniform block of vertically aligned text
6 Assume a single uniform block of text.
7 Treat the image as a single text line
8 Treat the image as a single word
9 Treat the image as a single word in a circle

10 Treat the image as a single character
11 Sparse text, find as much text as possible in no particular order
12 Sparse text with OSD
13 Raw line, treat the image as a single line, bypasssing hacks that are Tesseract-specific

TABLE II
ALIGNED OUTPUT FROM THREE DIFFERENT OCR ENGINES.

OCR Engine Identified characters
Calamari A A L A C U Ø Ø

kraken I A A N A L U Ø
OCRopus W A N S - A L U

Aligned characters
Calamari Ø Ø A A Ø Ø Ø L A C U

kraken I A A N Ø Ø Ø Ø A L U
OCRopus Ø W A N S - A L U Ø Ø

TABLE III
RANKING COMBINATION EXAMPLE.

String 1 Character Ø m a t t a
Confidence 0.50 0.90 0.85 0.50 0.30 0.80

String 2 Character r n a t 2 Ø
Confidence 0.50 0.40 0.80 0.75 0.45 0.50

String 3 Character Ø m 2 t a Ø
Confidence 0.50 0.80 0.40 0.70 0.85 0.50

Rank
Ø, 1.00 m, 1.70 a, 1.65 t, 1.95 a, 0.85 Ø, 1
r, 0.50 n, 0.40 2, 0.4 2, 0.45 r, 0.80

t, 0.30
Final output Ø m a t a Ø

the characters and the confidence, a rank is made for each
position, and then it is chosen the character with the highest
sum of confidence, i. e. the highest position in the rank.

c) Median String: Originally proposed by Kohonen [3]
with the objective to smooth or average over repeated erro-
neous strings, the median string is explored as an approach
to combine OCR engines in this work. This median string
can be from a set or generalized. The first one is defined by
the element in the set of strings which the sum of distances
is the smallest between the elements, and the second one is
a hypothetical element created to minimize even more that
distance.

Therefore, the set median can be found by calculating all
the distances between elements and picking the minimum sum
of distances. On the other hand, the generalized median is
found through the systematic variation of each character in
the set median, creating errors through the whole alphabet and
searching for a minimal sum of distances. In this work, it is
adopted the generalized concept. And also, different elements
can present different weights to ponder the distances. Later in
this work, the median string that utilizes the OCR confidences

as weights is referenced as “wei median”, while the median
string without weights is called only “median”.

To calculate the median it is also necessary to adopt a
distance measurement. In this work, we adopted the Leven-
shtein distance, which according to Kohonen [3] is capable
of yielding better results. In simple terms, the Levenshtein
distance can be understood as the minimum number of basic
operations to transform one string into another. These basic
operations are the insertion, deletion, and substitution of one
character.

C. Validation Data
For the validation of the proposed methodology, evaluation

metrics were calculated with two different datasets. The first
one is the Form Understanding in Noisy Scanned Docu-
ments8 [20] (FUNSD), which is a dataset composed of 199
forms completely annotated. This dataset is originally intended
for evaluating form understanding.

The second one is the Scanned Receipts OCR and Informa-
tion Extraction 9 [21] (SROIE) dataset, which was presented
at a competition in ICDAR 2019 focusing on information
extraction on scanned receipts and containing 986 documents.
Although the methodologies explored in the competition were
trying to achieve new models and processing strategies, in
this work, we explored the potential of improving pre-trained
models through combination.

Although the datasets present different document types,
forms and receipts, they were chosen because they present
sparse text and alphanumeric codes. Besides that, both contain
annotated ground-truth where it can be found the correct text
output for each document and its location.

IV. RESULTS

According to the methodology presented previously, this
section explains the evaluation metrics, presents the results ob-
tained through different experiments, and discuss those results.
The first experiment presents the analysis of the individual
performance of the OCR engines followed by the results for
the combination strategies.

8https://guillaumejaume.github.io/FUNSD/
9https://rrc.cvc.uab.es/?ch=13



A. Validation Metrics

Following other works that analyze the performance of
OCR systems, the metrics evaluated in this work are character
accuracy, word accuracy, and the number of errors in terms
of edit operations. The metrics were calculated through the
ocreval10 toolset, which is a updated implementation of a
toolset to assess OCR systems called ISRI [22]. This toolset
was also adopted in other works, such as the work of Reul et
al. [11].

1) Character Accuracy: The recognized text is compared to
the correct text to determine the minimal number of operations
necessary to correct the generated text, this quantity is the
number of errors e. If there are n characters in the correct
text, the accuracy per character is given in the Equation 1
according to Rice et al. [23].

character accuracy =
n− e

n
. (1)

2) Word Accuracy: Through comparison of the recognized
text and the correct text, the word accuracy is defined by the
percentage of words correctly identified [23]. For a word to
be correct, it must contain all the characters of the word in
the correct text, but uppercase and lowercase letters are not
discriminated.

3) Edit Operations: The edit operations are the insertion,
deletion, and substitution of one character to transform one
string into another, i.e. the recognized text into the correct one.
Through this metric, it is expected to understand if unnecessary
information is being acquired by the number of deletions,
or even, if the information is being lost by the number of
insertions, for example.

B. Individual Performance

First, it is necessary to analyze the individual performance
of the OCR engines in order to compare with the results from
the combinations later. In this experiment, no training was
performed and all engines use standard models for the English
language. The obtained results for all the adopted engines can
be observed in Table IV for the FUNSD dataset and Table V
for the SROIE. In the case of Tesseract 4.1 and 5.0, results
were generated for all the possibles values of psm, but only
the best results for each version are presented in both tables.

In terms of individual performance in the FUNSD dataset,
the best accuracy results were achieved with the Tesseract 5.0
psm = 6 (assume a single uniform block of text) for the
character accuracy, and with the Tesseract 4.1 psm = 6 for
the word accuracy. The best results in terms of edit operations
were also achieved with those Tesseracts. It is interesting to
note that the Tesseract achieved results greater than all the
other engines.

For the SROIE dataset, the best results are achieved with
the Google Vision OCR, in terms of the accuracies and most
of the edit operations, except for the number of insertions.
The Tesseract 5.0 psm = 13 (treat the image as a raw
line) achieved a smaller number of insertions than the Google

10https://github.com/eddieantonio/ocreval

TABLE IV
OCR ENGINES INDIVIDUAL PERFORMANCE ON FUNSD.

FUNSD
Character
accuracy

Word
accuracy

Edit operations
Insertion Deletion Substitution

Calamari 43.56 23.46 83461 10892 23368
kraken 45.18 13.67 83052 8757 27038

OCRopus 36.56 16.74 91073 17600 29695
Tesseract 5.0

psm = 6 86.82 80.62 12920 7515 6135

Tesseract 4.1
psm = 6 86.54 81.11 12406 8710 6142

Tesseract 3
psm = 12 34.82 17.14 99169 27708 27834

TABLE V
OCR ENGINES INDIVIDUAL PERFORMANCE ON SROIE.

SROIE
Character
accuracy

Word
accuracy

Edit operations
Insertion Deletion Substitution

Calamari 64.55 56.31 197891 171892 42461
kraken 53.16 36.56 253882 177690 71147

OCRopus 61.21 48.34 207288 184269 59538
Tesseract 5.0

psm = 13 71.18 79.73 166371 166117 24168

Tesseract 4.1
psm = 10 70.57 78.42 168968 171787 25162

Tesseract 3
psm = 12 15.40 11.49 533505 563411 34199

Google
Vision 71.25 86.08 175953 150593 14947

Vision. Here it is important to note that the usage of the
Google Vision API is not completely free, being limited to a
certain number of images per month, and even so, the Tesseract
achieved a character accuracy very close to the Google Vision
one.

C. Combination Performance

Our combination strategies were investigated in two differ-
ent moments in this work. The first one with the Tesseract
parameter fixed psm = 12 (sparse text with OSD) because it
was expected to yield better results in documents with sparse
text. And the second one happened using different values of
psm (1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13 as observed
from Table I) as different OCR systems in the combinations
and also using assumptions based on the first results generated
with fixed psm value.

In the following tables, we adopted a simplified nomencla-
ture for each combination for better readability. This nomen-
clature starts by an abbreviation of the combination type
(“maj”, “rank”, “median” or “wei median”) and it is followed
abbreviations of the names from the OCR systems. For the
Tesseract this abbreviation is like “t4p12”, where the number
following the letter ‘t’ is the version of the Tesseract and
the number following ‘p’ is the psm parameter value. Also,
“tess all” stands for all Tesseract versions with all the possible
psm values, and “tess 4” or “tess 5” stands for all possible
psm values for a specific version of the Terreseract, 4.1.1 and
5.0.0 respectively.

1) Results without psm variation: In this experiment ma-
jority voting, ranking, median string, and median string with



TABLE VI
COMBINATION RESULTS ON FUNSD WITHOUT psm VARIATION (psm

= 12).

FUNSD
Character
accuracy

Word
accuracy

Edit operations
Insertion Deletion Substitution

Best individual (psm = 12) 82.51 74.42 20488 5214 6766
maj t3p12 t4p12 t5p12 82.49 74.12 20974 4606 6743
maj t3p12 t4p12 t5p12

kra cal ocro 71.10 49.43 42506 5284 11977

rank t3p12 t4p12 t5p12 65.75 40.59 35020 28736 20767
rank t3p12 t4p12 t5p12

kra cal ocro 49.67 21.44 35228 57053 40572

median t3p12 t4p12 t5p12 81.51 72.68 24001 3814 6534
median t3p12 t4p12 t5p12

kra cal ocro 67.73 51.12 48954 4251 11042

wei median t3p12 t4p12 t5p12 82.80 75.15 19720 5013 6674
wei median t3p12 t4p12 t5p12

kra cal ocro 80.12 68.85 25582 6029 8234

TABLE VII
COMBINATION RESULTS ON SROIE WITHOUT psm VARIATION (psm = 12).

SROIE
Character
accuracy

Word
accuracy

Edit operations
Insertion Deletion Substitution

Best individual (psm = 12) 71.25 86.08 175953 150593 14947
maj t3p12 t4p12 t5p12 60.68 66.64 223267 170137 35494
maj t3p12 t4p12 t5p12

kra cal ocro 67.36 68.30 193801 155365 29000

rank t3p12 t4p12 t5p12 55.88 55.71 227484 186953 53899
rank t3p12 t4p12 t5p12

kra cal ocro 53.20 43.53 185597 240594 83292

median t3p12 t4p12 t5p12 59.89 63.99 236195 152272 34025
median t3p12 t4p12 t5p12

kra cal ocro 65.31 66.41 203327 152807 33266

wei median t3p12 t4p12 t5p12 60.92 67.80 218636 170173 34996
wei median t3p12 t4p12 t5p12

kra cal ocro 68.16 72.94 185813 159979 28170

maj t3p12 t4p12 t5p12 kra
cal ocro google 70.05 76.80 182885 151969 20257

rank t3p12 t4p12 t5p12 kra
cal ocro google 53.55 43.95 181981 241767 81714

median t3p12 t4p12 t5p12 kra
cal ocro google 69.20 76.22 185218 152539 23045

wei median t3p12 t4p12 t5p12
kra cal ocro google 71.11 81.24 173962 156568 19317

confidence weights were explored. The results from this ex-
periment can be fully observed in Table VI for the FUNSD
and Table VII for the SROIE.

On the results over FUNSD, it can be observed that our
median string combination with confidence weight for three
Tesseract versions achieved the best results. Not only this
result was the best between the combinations, but it was also
better than the best individual result between the combined
engines. Therefore, it is verified that there was information
gain through the combination. Besides that, the Tesseract 3
individual results were not as good as the other Tesseract
versions, so it is expected that other OCR systems in its place
could yield even better results.

Over the SROIE dataset, no combination was able
to achieve results better than the individual result from
Google Vision, not even combinations that used it.
However, it is possible to observe that the combi-
nations of all OCR systems except the Google Vi-
sion (maj t3p12 t4p12 t5p12 kra cal ocro, median t3p12
t4p12 t5p12 kra cal ocro and wei median t3p12 t4p12 t5
p12 kra cal ocro) were capable to improve those individual
OCR results. So, there is a capability to achieve some gain,
even though those combinations could not improve on the
Google Vision results.

TABLE VIII
BEST RESULTS COMPARISON ON FUNSD.

FUNSD
Individual Combination

Tesseract 5.0
psm = 6

Tesseract 4.1
psm = 6 maj tess 5 wei median t4p6

t5p6 t5p12
Character accuracy 86.82 86.54 87.82 87.56

Word accuracy 80.62 81.11 80.03 81.55
Insertion 12920 12406 13824 12069
Deletion 7515 8710 5562 6938

Substitution 6135 6142 5078 5695

2) Results with psm variation: In this second experiment,
the ranking strategy was not explored, because it did not
generate good results in the previous experiment. Besides
that, the previous results on combinations and the results
from different values of psm oriented the selection of the
combination groups, OCR engines which yielded better results
were selected to be combined.

The results for character and word accuracy are presented
in Figure 2 for the FUNSD and Figure 3 for the SROIE.
In addition, results over edit operations are only presented
for the best combination approaches in the comparative Table
VIII for FUNSD and Table IX for SROIE. Finally, Table X
presents examples of outputs for two sample text images from
the SROIE dataset, those outputs are presented for the engine
and combinations that achieved the best results for the SROIE.

For the FUNSD dataset, the results surpassed the best
individual results more than once. Observing Figure 2, there
was an improvement in terms of character accuracy for ten
combinations, but only for four in terms of word accuracy.
Besides that, comparing the best individual performance to
the combinations in Table VIII, it is observed that there is
greater improvement in terms of character accuracy than word
accuracy. This may not be something necessarily bad because
it indicates that the system improved more on correctly iden-
tified characters over whole words, which is important for
alphanumeric codes that can not be matched with a dictionary.

The best result was achieved with the median string
with confidence weight for the combination of three Tesser-
acts (wei median t4p6 t5p6 t5p12) that individually have
achieved the best individual performances for the FUNSD
dataset. In this experiment for the FUNSD, the best result
in terms of character accuracy was 1.48% better than the best
individual result with the majority voting combination with
all psm values from Tesseract 5 (maj t5p all), and 0.54%
better in terms of word accuracy with median string weighted
(wei median t4p6 t5p6 t5p12). Even though the majority
voting achieved greater character accuracy, the weighted me-
dian string still surpasses the best individual results for this
metric.

For the SROIE, the results surpassed the best individual
results more than once as well. Observing Figure 3, there was
an improvement for eleven combinations in terms of character
accuracy and three combinations for word accuracy. In the
same way as the FUNSD, there were greater improvements in
terms of character accuracy.

The best result was also observed with the median string
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Fig. 2. Accuracies results on FUNSD with psm variation, the dashed lines represent the best individual result.
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Fig. 3. Accuracies results on SROIE with psm variation, the dashed lines represent the best individual result.

TABLE IX
BEST RESULTS COMPARISON ON SROIE.

SROIE

Individual Combination with
Google Vsion

Combination without
Google Vsion

Google
Vision

wei median google
t4p10 t5p10

wei median t4p10
t5p10 cal

Character accuracy 71.25 73.45 72.7
Word accuracy 86.08 87.08 83.81

Insertion 175953 160051 162439
Deletion 150593 159331 160994

Substitution 14947 15375 18129

with confidence weight (wei median google t4p10 t5p10),
the set of OCR systems was the Google Vision, Tesseract 4.1
psm = 10 (sparse text), and Tesseract 5.0 psm = 10. This
result achieved a character accuracy 3.09% higher in compar-
ison to the Google Vision individual result (best individual
result on SROIE), and 1.16% higher for word accuracy.

More interestingly, is that even without using the Google
Vision OCR in the combination set, it was possible to
surpass its individual character accuracy. This was possi-
ble through the combination of two Tesseracts and the



TABLE X
BEST RESULTS COMPARISON ON SROIE.

Correct Text (126926-H) 822737-X
wei median google

t4p10 t5p10 (126926-H) G2e451TK

wei median t4p10
t5p10 cal (126926-H) a22731-X

Google Vision (126926-1) No text was identified

Calamari with our weighted median string combination
(wei median t4p10 t5p10 cal). This result is really interest-
ing because Tesseract and Calamari are free, differently from
Google Vision. This result is also illustrated in Table IX.

V. CONCLUSION

This work brought a new proposal for the combination
of pre-trained models of OCR, such as Tesseract engine or
Google Cloud’s Vision API, for example. The combination
was achieved at the decision level for the characters, i.e. the
combination happened after all the models gave their output,
and there is no combination in the pre-processing stage or the
segmentation step. It was explored three different combination
approaches between different sets of the five OCR engines;
majority voting, ranking, and median string, which is a concept
newly explored in the context of documents with sparse text
and alphanumeric codes. For the validation, three different
metrics were calculated with two datasets.

Throughout this work, reference works were presented as
well as some necessary concepts. In which, the median string
concept stands out as an effective method for combining
OCR engines and helps to deal with how to compare the
different outputs. With the median string, it was achieved an
improvement of 3.09% and 1.16% in terms of character ac-
curacy and word accuracy respectively, in the SROIE dataset.
In the FUNSD dataset, it was observed an improvement of
1.48% in character accuracy with majority voting and 0.54%
in word accuracy with median string which also surpassed
the individual best character accuracy. Also, in the SROIE,
it is interesting to note that even in combinations without
the Google Vision was possible to achieve better results
through the median string combination between Tesseract and
Calamari.

These results indicate that the combination of the outputs
from different OCR engines presents improvement in com-
parison to the individual results. Also, this work brought the
Kohoken [3] median string concept as a combination approach,
which yielded the best results for all combination experiments
of this work. Finally, this work is interesting as a way to easily
achieve some improvement through OCR engines, without
training.

For future works, exploring the combination of the outputs
from the same document with different preprocessing strate-
gies as proposed by Boiangiu et al. [8] can be interesting, as
well as to explore ways to deal with different segmentations.

Furthermore, experiments building a deep learning model
specifically for this kind of data should also be conducted,
and also experiments involving other OCR systems with open
code.
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