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Abstract—Network traffic classification can improve the man-
agement and network service offer, taking into account the kind
of application. The future network architectures, mainly mobile
networks, foresee intelligent mechanisms in their architectural
frameworks to deliver application-aware network requirements.
The potential of convolutional neural networks capabilities,
widely exploited in several contexts, can be used in network
traffic classification. Thus, it is necessary to develop methods
based on the content of packets which can transform them into
a suitable input for CNN technologies. Hence, we implemented
and evaluated the Packet Vision, a method capable of building
images from packets raw-data, considering both header and
payload. Our approach surpasses those found in the state-of-
the-art, considering classification performance and regarding
the fully-packet structure characteristic, delivering security and
privacy by transforming the raw-data packet into images. Besides,
we built a dataset with four traffic classes and evaluated three
CNNs architectures, considering performance and the exploita-
tion of training from scratch, fine-tuning and hyperparameter
optimization. Experiments showcase applicability and suitability
when combining Packet Vision with CNNs, which seemed to be
a promising approach to deliver outstanding performance in the
classification of network traffic.

I. INTRODUCTION

Classifying network traffic allows us to know the kind of
application running on the network, benefiting the forecasting
models, capacity utilization, quality of service, security, and
planning and management steps. Besides, in new communi-
cation frameworks, network architectures require intelligent
entities to support resource management and operation. Traffic
classification mechanisms are known and widely explored in
the state-of-the-art. However, with the advent of convolutional
neural networks (CNNs), new training methods, validation
and classification are available, especially those based on
images, which creates the opportunity to propose and evaluate
mechanisms for network traffic classification [1] [2].

The known traffic classification mechanisms can be cat-
egorized as port-based, payload-based, machine-learning ap-
proaches based on statistics and deep learning [3]. In particular,
CNNs demonstrate capabilities beyond its fields of action,
with highly accurate mechanisms for clustering and classifying
medical [4], biomolecular [5], environmental [6], and other
images [7]. The success of CNNs results from their ability to
incorporate spatial context and weight sharing between pixels

to extract high-level hierarchical representations of the data
[8].

In this sense, we employ the capabilities of CNNs for
processing packets of data communication networks. The
graphics processing supported by GPU hardware surpasses
the CPU-based processing by reducing the execution time [9].
Hence, the speedup of time-to-ready of traffic classification
technologies is reduced [10], which allows faster classification.

Recent studies demonstrated effective results in network
traffic classification which the use of deep CNNs [1] [2] .
However, these studies performed the classification by splitting
both header and payload of packets as a learning feature. In
a real scenario, this approach may generate security and time
issues. Regarding the latter, it may increase the pre-processing
time without guaranteeing gains in classification performance
metrics.

This paper presents the Packet Vision: a computer vision
method to generate images from both payload and packet
header. Our main contribution is the development of a single
image representing all content of the network packet. Other
traffic classification approaches, such as those based on the
packet signature [11], struggle with security and privacy as-
pects. Sensitive information, such as source and destination
address, port and transport protocol, to name a few, are handled
as plain text, making straightforward inference by malicious
third-parties.

Furthermore, a novel contribution of this paper is an
evaluation of the performance of three CNNs for the network
traffic classification via training from scratch and fine-tuning.
Besides, we found, quantified and presented the fine-tuning
through Bayesian hyperparameter optimization.

Our results showcase the suitability and performance score
of Packet Vision in generating and classifying images of
packets from communication networks, considering raw-data.
Besides, we considered three classification technologies based
on CNNs and appliyed a hypothesis test to judge the perfor-
mance between them.

The remaining of this paper is organized as follows:
Section II survey related work. Section III presents our ap-
proach for network traffic classification. The CNNs evaluated
in this paper and the protocol used in the experiments are
presented in Section IV. Section V presents and discusses



the results. Finally, we provide concluding remarks and future
work agenda in Section VI.

II. RELATED WORK

Lim et al. [2], proposed a traffic classification mechanism
that aimed to improve the quality of service for applications,
Remote Desktop Protocol (RDP), Skype, SSH, BitTorrent,
HTTP-Facebook, HTTP-Google, HTTP-Wikipedia and HTTP-
Yahoo. Their solution structure generates a dataset containing
images of flows analyzed over time intervals. The approach
uses CNN and Long short-term memory (LSTM) to train
and evaluate the classification performance using the F1-score
metric. The proposed architecture comprises the following
layers: network data switches, classification mechanisms and
traffic entities and at the top, the implementation of specific
network behaviors based on the type of traffic.

The dataset generation mechanism comprises capturing the
network flow: a set of packets with similar characteristics
(source and destination host, port and transport protocol) in a
specific time interval. Therefore, for each packet of a flow, they
extracted the payload and performed a mathematical operation
over a set of bits to transform it into a single numerical value.
Thus, a single figure, containing many pixels, is the set of
packet representing a network flow. In [2], they do not carry
out cross-validation and disregard the entire package structure,
which requires additional computation in the processing step
that consists of extracting the payload of each package.

In [12] it is proposed and evaluated a CNN performance in
virtual malware threat classification close to just-in-time. The
dataset building transforms the binary signature of malware,
comprising an 8-bit vector into an 8-bit array, afterward in
a grayscale figure, and then a 2-D color map is applied.
The classification performance evaluation takes into account
approaches with data augmentation and fine-tuning. Unlike
the present proposition, this article proposes cross-validation
to avoid bias and over model adjustment. Besides, there is no
need to transform the image of the 2-D color map dataset, thus
maintaining performance.

A proposal that also uses convolutional neural networks
to provide application classification and traffic categorization
is available in [13]. The proposal integrates feature extraction
and classification through deep neural networks of the type
stacked autoencoder (SAE) and convolutional neural network
(CNN). The method takes into account, in the pre-processing
phase, the entry of the packet capture (pcap), which proceeds
with header extraction, modification, bit normalization and IP
address masking. After being processed and converted into
bit strings, the data feed into the neural network input. In
contrast to the present proposal, the authors assume the bit
chain representing the semantics of the packet as an input for
the neural network.

The paper [14] describes an IP traffic classification frame-
work based on CNNs named Seq2Img. Their method captures
the packets of a flow, extracting its characteristics and be-
haviors. A probability distribution model termed Reproducing
Kernel Hilbert Space (RKHS) is mandatory to construct the
figures for each traffic class, which consist of the network
protocols and popular social networking applications. Accu-
racy was the performance metric held in the validation of

the traffic classification model. Unlike the present paper, the
authors did not validate the proposal with hold-out, and the
data collection mechanism depends on a third non-open-source
application. However, our approach consists of an open-source
collector and does not handle images as flows and nor requires
processing with complex mathematical models.

Similar to [12], the paper [1] describes a framework for
classifying malicious traffic in domestic environments through
home-gateway equipment containing an embedded traffic pre-
diction mechanism. The mechanism based on CNNs is similar
to ours, since it takes into account the figure from each package
as a data suitable for Machine learning models. However,
unlike our work, in the pre-processing stage, the ethernet
header of the packet is removed. Besides, to avoid bias and
overfitting in the training model, we shuffle the image pixels
of each class. Thus, packages containing the same source and
destination address do not keep patterned pixels in predefined
locations. The dataset images are built from a set of packet
captures from typical Internet applications, such as VoIP and
BitTorrent.

Other works are known in the state-of-the-art, which pro-
pose a network traffic classification targeting security, quality
of service enhancement and management, among others [15],
[16], [17], [18]. They range in terms of the learning and
validation method and also differ between strategies based
on port, payload, statistics, CNNs and flows, among others
[19]. The Packet Vision innovates by drawing the packets
entirely, transforming network packets into figures, considering
header and payload, and by creating a deep learning model,
considering those images generated through packets raw-data.

III. THE PACKET VISION APPROACH

Network resource sharing is presented in different ways in
the literature. The operating systems architecture, especially
those for time-sharing processing, has influenced new resource
sharing formats, computing resources and network sharing.
Sharing network resources relies on assigning part of general-
purpose hardware to a specific user while safeguarding es-
sential aspects of isolation and guarantees. In the context of
mobile networks, especially in the 5G standardization, sharing
took the form of network slicing, which provides logical
networks with independent data and control plans for users
to meet specific application requirements.

Therefore, among the network slicing approaches found in
the state-of-the-art, the Network and Slice Orchestrator (NA-
SOR) [20] aimed to implement the network slicing beyond the
mobile network ecosystem, providing logical connectivity over
the Internet data plane. The NASOR ecosystem includes in-
terfaces that facilitate network slice management, called Open
Policy Interface (OPI). OPI allows third-party mechanisms to
support network slicing and management. Consequently, we
propose a component that performs this interface, offering
traffic classification to lead the NASOR path configuring agent,
called Packet Vision. Fig. 1 depicts NASOR entities settled in
blocks that communicate and perform instructions to provide
logical connectivity for a user. The Packet Vision aimed to
classify the traffic in the path established through NASOR.

The action of transforming network packets into images has
been performing by the Packet Vision method. The method



Fig. 1. Combining NASOR Framework and Packet Vision.

enables receiving a raw packet, drawing it into a picture
considering its hexadecimal values, which carries network
packet semantics. After generating images, it is possible to
classify them according to the traffic class. Traffic classes range
across the network according to the overlying application.
This classification guides the network slicing agent to the
path that logical connectivity must take along Internet routers.
Besides, we present Packet Vision as a method to build dataset
of network traffic class images, which enables us to train
and evaluate through deep learning algorithms. Hence, Fig. 2
depicts Packet Vision general method for creating datasets.

Fig. 2. Packet Vision proposed method.

The first step comprises collecting network packets car-
ried over a network interface. The open-source application
Wireshark and its extension libraries allow Packet Vision to
collect packet from a network interface without affecting it.
Besides, Packet Vision handles packet traces from four sources,
collected through the open-source tool Wireshark, containing
pcap files for each traffic class.

We compose a dataset containing packet traces from differ-
ent sources, implying in different classes. The first one relates
to standard IoT Applications containing about 27 heteroge-
neous devices, such as sensors and actuators [21]. The second
packet trace comprises conventional Internet applications con-
taining DNS and BitTorrent classes [22], also available in pcap
format.

The raw information carried on the packet, including
header and payload, available in this dataset, was processed
to generate figures for each class. The third packet trace refers
to network slice deployed through NASOR, considering three
network domains [20]. This trace refers to a VoIP application
providing communication between entities placed in domain

A targeting domain B, communicating with voice chunks
processed by codec G.711. Packet Vision combines three
different packet traces and builds a single dataset of figures
containing four traffic classes: BitTorrent, DNS, VoIP and IoT.

According to Fig. 3, a watcher captures the packets and
presents it differently; bits are the conventional form of the
physical layer. However, they are grouped in formats with
semantic values, such as byte array, plain text, to name a few.
Hence, the second step of the method consists of handling
the raw format data, distributed in an array of bytes, and
transforming them into a matrix. In this sense, our method
considers the data grouping model in the Array format, which
presents the packet information in hexadecimal composition.

According to Fig. 2, the second step turns the hexadecimal
byte array into a matrix whose size is n × 8, where n refers
to the number of rows and 8, the number of columns, as
detailed in Fig. 3. The size of the packets, measured in bytes,
varies among applications. Thus the Packet Vision considers
the number of columns fixed at 8, while the number of rows in
the matrix varies, so as to accommodate the size of the packet
in bytes.

The reason the matrix column is eight refers to the format
in which Wireshark library delivers the packet raw-data to
Packet Vision. There are scenarios in which the packet size
in bytes is not n×8, requiring to append bytes-padding at the
end of the packet, namely, at the last row. We agree that bytes-
padding is always 0xFF for all traffic classes. Thus, when
processing the matrix n × 8 of hexadecimal and constructing
the dataset organized in classes, these will contain figures of
size n× 8 pixels.

Fig. 3. Packet Vision: dataset builder.

The third stage of the method (Fig. 2) considers as essential
to convert the hexadecimal matrix, previously created, into
decimal format. At the end of this step, the fourth step shuffles
the decimal values in the matrix (as depicted in Fig. 3) to
avoid bias and overfitting on deep learning model. Shuffling
is mandatory to change decimal information regarding packet
header, such as source host, destination host and port, to name
a few. Our shuffling method is based on the Poisson probability
distribution over the decimal matrix, enduring the security and
privacy lack observed in the state-of-the-art.

The fifth step (Fig. 2) of Packet Vision consists of adding
RGB channels according to each decimal in the matrix, main-
taining the color intensity for the three channels. The fifth
step brings PNGs figures representing the packet contents,
including both the headers and the payload, as a gray-scale
picture. Headers are the addressing information essential to



the entire packet deliver, and the payload is the information
carried.

We summarized the information about the created dataset
in Table I, and we bring some examples of packet pictures
that Packet Vision had drawn in Fig. 4. Besides, we detail the
dataset structure, related publications, and made it available
under an open-source1 license.

Fig. 4. Network packets samples generated from Packet Vision.

TABLE I. DISTRIBUTION OF IMAGES BY CLASSES.

Class Samples

Bit Torrent 1217

DNS 1412

VoIP 1320

IoT 1848

Total 5797

The sixth step (Fig. 2) of Packet Vision entails training and
validating the deep learning mechanism that uses the properly
labeled figures from the created dataset. Several convolutional
neural network architectures are known, so it is necessary to
evaluate the performance of some of them to identify the most
suitable for this kind of problem. After training and validating
the learning model based on the figures generated through the
raw packets, the current traffic on the network may be collected
from a given network channel, by sample, specific time and
others.

As we can see at the state-of-the-art, other methods for
building images from the packet are available [14], [23], [24],
although they do not handle the complete packet structure.
Alternatively, our method does not require the header and the
packet payload separation in advance, which implies additional
processing. Besides, shuffling the packet bytes in the matrix

1https://romoreira.github.io/packetvision

highlights the privacy of our method. It is not straightforward
to achieve the original semantics of the packet, including a
source, destination, transport protocol port, and others, from
the generated image.

IV. CLASSIFICATION METHOD

In this study, we carried out experiments to assess the
classification performance using CNNs, which employ multi-
layer neural networks to learn features and classifiers in
different layers, at running time, and do not require handcrafted
feature extraction [25]. Three CNN architectures were selected
based on their past performance in image classification tasks:
AlexNet [26], ResNet-18 [27] and SqueezeNet [28].

AlexNet [26] was the champion of ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) 2012 and is responsi-
ble for the recent popularity of neural networks. This CNN has
five convolutional layers, three max-pooling layers, two fully
connected layers with a final softmax. It was a breakthrough
architecture, since it was the first to employ non-saturating
neurons and dropout connections to prevent overfitting.

ResNet-18, presented in [27], was the champion of
ILSVRC 2015 [29] and has several variations with 18 to
152 layers. This network has a series of residual blocks,
each composed of several stacked convolutional layers. This
configuration allows accelerating the convergence of the deep
layers without overfitting. In this study, we settled to work
with the ResNet-18 for the sake of simplicity.

SqueezeNet [28] has a compact architecture, with approx-
imately 50 times fewer parameters than AlexNet. This CNN
reduces parameters through 1×1 convolutions and eight fire
modules, which perform the functions of fully connected and
dense layers.

Fig. 5 depicts the main components of the CNN archi-
tectures evaluated in this paper: (a) convolutional layers of
AlexNet; (b) residual block of ResNet-18; and (c) scheme of
one fire module of SqueezeNet.

Fig. 5. A general representation of the building blocks of each CNN.

We consider two strategies of training: from scratch and
fine-tuning. In training from scratch, we initialize all param-
eters randomly, and during the training, the parameters were
learned directly from the dataset in all layers [25]. The fine-
tuning strategy ran over pre-trained models from the ImageNet
dataset. All convolutional layers initialized with weights from
the pre-trained model, and the fine-tuning was performed only
in the deeper layers [8]. For both training strategies, namely,



from scratch and fine-tuning, the last fully connected layer had
been set to four, according to the number of classes.

In order to compare the CNN architectures, we trained and
tested using the stratified k-fold cross-validation method [30].
Cross-validation was repeated five times, for each iteration,
and one of the training folds was selected for the test and
the others for training. Also, the average accuracy, precision,
recall, and F1-score were measured from the confusion matrix
[31].

V. RESULTS AND DISCUSSION

All experiments were conducted on a machine with an Intel
i5 3.00 GHz processor, 16 GB RAM, and a GPU NVIDIA
GeForce GTX Titan Xp with 12 GB memory. Also, the
experiments were programmed using Python (version 3.6) and
PyTorch [32] (version 1.4) deep learning framework.

We trained the CNN architectures using Stochastic Gra-
dient Descent (SGD) [33] optimizer, with a learning rate of
0.001, momentum of 0.9, batch size of 32, and 50 epochs.
All images were resized to 224×224 pixels to adapt for the
input of the CNNs evaluated. The training images had been
augmented through vertical and horizontal flips, with rotating
images around its center through randomly chosen angles of
between 0◦ and 360◦.

We propose some experiments aiming to answer the fol-
lowing questions:

1) What is the highest classification performance among
the three evaluated CNNs?

2) Considering accuracy, training from scratch, fine-
tuning and fine-tuning with hyperparameter optimiza-
tion, what is the most suitable training method for this
dataset?

3) Is the performance of pre-trained CNNs statistically
equivalent?

4) What are the best values of hyperparameters (learning
rate and momentum coefficient), which bring the
highest classification performance?

5) How much does the hyperparameter optimization
increase the performance of CNNs, considering fine-
tuning approaches?

A. Training from scratch vs. fine-tuning

Aiming to assess the impact of the training from scratch
and fine-tuning, we analyze the classification performance
of each CNN architecture according to metrics of accuracy,
precision, recall and F1-score. Regarding the classification
performance, Tables II and III present the average 5-fold cross-
validation for each CNN, considering training from scratch
and fine-tuning, respectively. As shown, the best performance
results are achieved using the training from scratch. Conse-
quently, the best result among the three was obtained by the
AlexNet architecture, especially the strategy which uses from
scratch training.

Although the fine-tuning technique did not improve the
performance indices compared to training from scratch, this
approach requires less time to train the unfrozen layers and
could be suitable in real scenarios (see Table IV). Thus, we
compared only the pre-trained CNNs in order to identify the
best model.

TABLE II. 5-FOLD AVERAGE VALUES OF THE PERFORMANCE INDICES
FOR EACH CNN ARCHITECTURE TRAINING FROM SCRATCH.

CNN Accuracy (%) Precision (%) Recall (%) F1-Score (%)

AlexNet 100.00 100.00 100.00 100.00

ResNet-18 99.80 100.00 100.00 100.00

SqueezeNet 99.60 99.80 99.60 99.60

TABLE III. 5-FOLD AVERAGE VALUES OF THE PERFORMANCE INDICES
FOR EACH CNN ARCHITECTURE TRAINING WITH FINE-TUNING.

CNN Accuracy (%) Precision (%) Recall (%) F1-Score (%)

AlexNet 95.40 96.00 95.80 95.80

ResNet-18 96.40 96.40 96.80 96.40

SqueezeNet 97.60 97.80 97.40 97.60

According to the results presented in Table IV, despite
training from scratch achieves high accuracy, the SqueezeNet
architecture trained with fine-tuning is the most suitable for this
dataset, considering the impact of computational cost, since,
in real network traffic classification scenarios, approaches with
lower computational cost are more appropriate.

TABLE IV. AVERAGE TRAINING TIME FOR EACH CNN ARCHITECTURE
CONSIDERING TRAINING FROM-SCRATCH AND FINE-TUNING.

Training Time (minutes)

CNN From-scratch Fine-tuning

AlexNet 16.21 06.21

ResNet-18 37.00 14.13

SqueezeNet 27.41 12.29

Aiming to assess the performance, we carried Z-Test with
95% of confidence over samples of Table V, which contains ac-
curacy obtained from each test set. Thus, considering AlexNet
and ResNet-18, we raise the following hypotheses: H0 – the
performance of AlexNet is equal to or less than ResNet-18. On
the other hand, Ha – the performance of AlexNet is higher than
ResNet-18. Considering the sample space of size five, we can
infer that the observed Zobs. is lower than Zcrit., which leads
us to accept H0, implying that the performance of AlexNet is
less than or equal to ResNet-18.

TABLE V. 5-FOLD TEST ACCURACY FOR EACH CNN ARCHITECTURE
TRAINING WITH FINE-TUNING.

Fold AlexNet (%) ResNet-18 (%) SqueezeNet (%)

1 93.00 95.00 96.00

2 97.00 97.00 98.00

3 98.00 98.00 98.00

4 93.00 95.00 97.00

5 96.00 97.00 99.00



Additionally, we formulate two hypotheses to infer the
performance of ResNet-18 and SqueezeNet, namely H0 – the
performance of ResNet-18 is less than or equal to SqueezeNet.
At the same time, Ha – the performance of ResNet-18 is higher
than SqueezeNet. Considering a sample space with size five
and a normal distribution, the observed Zobs. is outside the
critical region, which leads us to accept H0. Hence, we can
infer that the ResNet-18 performance is less than or equal to
SqueezeNet.

Therefore, SqueezeNet architecture, pre-trained with Ima-
geNet, performed better than its peers. These results suggest
the suitability of Packet Vision to act as a traffic classifier
mechanism, and its eventual embodiment on low-cost hard-
ware, such as Raspberry Pi.

Finally, considering the best result for each training strategy
(from-scratch and fine-tuning), the charts in Fig. 6 show how
each CNN architecture behaved during the training stage,
considering the average loss and accuracy of the 5-folds. The
results show that CNNs maintained the generalization property.

Fig. 6. Average 5-fold training loss and accuracy, considering the best training
strategy. (a) AlexNet training from-scratch; and (b) SqueezeNet training with
fine-tuning.

B. Fine-tuning with hyperparameter optimization

This experiment aimed to demonstrate the proper hyper-
parameter tunning to improve the performance of the CNNs.
The selection of hyperparameter values was carried out as
an optimization problem. Thereby, the validation error on the
trained model is the objective function intended to minimize,
and the hyperparameters are decision variables.

Properly tuning the learning rate improves learning effi-
ciency, once it defines the adjustment levels to the weight con-
nections and network topology applied in each training step.
This is also fundamental to improve the runtime when using
SGD [34]. Besides, the tuning of the momentum coefficient
enables reducing noise and oscillations in the high-curvature
regions of the loss function generated by SGD [8].

We applied the Bayesian optimization (using the Gaussian
process as a probabilistic model [35]) to optimize the fine-tune
values, namely the learning rate and momentum coefficient

in pre-trained CNNs. The Gaussian function is a sequential
model-based optimization (SMBO) used to find a globally
optimal solution within the feasible region, based on previ-
ous observations. Besides, the Bayesian optimization is high
efficiency, compared to the grid and random search approach
[36] [37].

The hyperparameter optimization process for each fold
took about 100 minutes for AlexNet, 220 minutes for ResNet-
18, and 170 minutes for SqueezeNet. The Bayesian approach
had also performed in two iterations, five steps of random
exploration, and 50 epochs of training.

The hyperparameter space search is present in Table VI,
and the searching values take into account an uniform distri-
bution. Besides, Table VII presents the best values for each
hyperparameter returned by the Bayesian algorithm. Those
values are the best hyperparameter values that bring the highest
classification performance.

TABLE VI. HYPERPARAMETER SEARCH SPACE USED FOR
OPTIMIZATION.

Hyperparameter Value

Learning Rate x ∈ [0.0001, 0.01]

Momentum x ∈ [0, 1]

TABLE VII. FINE-TUNING TRAINING-RELEVANT HYPERPARAMETERS
OBTAINED FOR EACH CNN WITH BAYESIAN OPTIMIZATION.

Hyperparameter

CNN Fold Learning Rate Momentum

AlexNet

1 0.0015433407950530326 0.9683901952093108

2 0.002418215510161384 0.001523738687215559

3 0.004228517846555483 0.7203244934421581

4 0.00010113231069171439 0.30233257263183977

5 0.004228517846555483 0.7203244934421581

ResNet-18

1 0.004228517846555483 0.7203244934421581

2 0.004228517846555483 0.7203244934421581

3 0.004228517846555483 0.7203244934421581

4 0.00010113231069171439 0.30233257263183977

5 0.004228517846555483 0.7203244934421581

SqueezeNet

1 0.00010000568478612993 0.000000574220821205

2 0.00010113231069171439 0.30233257263183977

3 0.002418215510161384 0.001523738687215559

4 0.00022048625032683222 0.9857022918324738

5 0.004228517846555483 0.7203244934421581

As shown in Table VIII, the Bayesian hyperparameter
optimization improved the accuracy for all evaluated CNNs
architectures. When we compare the results of fine-tuning
training against and without hyperparameter optimization, it
is possible to observe that the accuracy of AlexNet, ResNet-
18 and SqueezeNet increased by 4.25%, 3.16%, and 1.45%,
respectively. Also, the hyperparameter optimization in fine-
tuning generates significant improvements, with results closer
to the accuracies obtained through from-scratch training.

Our results suggest that the learning rate and momentum
coefficient significantly impact the network training process.



Therefore, they have to be carefully tuned to achieve sact-
isfatory classification performance. Thus, the advantage of our
approach is the selection of the best values for the hyperpa-
rameters, using Bayesian optimization. For our network traffic
classification, with the hyperparameters set in Table VII, we
had achieved the best average accuracy of 99.45% in the test
set for AlexNet and ResNet-18 architectures. Besides, when we
defined the learning rate and momentum coefficient with the
values returned by the Bayesian algorithm, the spent training
time was the same as the training based on fine-tuning.

TABLE VIII. 5-FOLD AVERAGE TEST ACCURACY FOR EACH CNN
ARCHITECTURE AND ALL TRAINING STRATEGIES EVALUATED.

Training Strategy

CNN From-scratch Fine-tuning
Fine-Tuning

+ Optimization

AlexNet 100.00% 95.40% 99.45%

ResNet-18 99.80% 96.40% 99.45%

SqueezeNet 99.60% 97.60% 99.02%

VI. CONCLUDING REMARKS

This paper presents the Packet Vision method for building
and evaluating datasets representing traffic on communication
networks through CNNs. This method enables the represen-
tation of the raw-data of network packets in images for
training and classification held by deep learning mechanisms.
The image creation mechanism takes into account the header
and the payload advancing the state-of-the-art, since its peers
consider only the payload, among other approaches, such as
the semantic and statistical representation of flows. Besides,
our method seemed suitable for classifying traffic with similar
characteristics implying in challenging tasks and achieving
excellent performances, according to state-of-the-art metrics.
Its implementation in the network is performed directly by
handling the packets as they are.

Carried experiments showcase that SqueezeNet achieved
higher or at least equal performance against AlexNet and
ResNet-18 trained with fine-tuning, which allows us to answer
raised questions about the quality of CNNs. Besides, we point
out the suitability of training approaches for this problem,
including a statistical test, seeking possible performance equiv-
alence. Also, unlike the state-of-the-art approaches, the Packet
Vision shuffling step enhances the privacy claim upon packets
and avois fixed fields of the packets placed at the same pixel
location. Besides, we found, quantified and presented the hy-
perparameters and measured the improvement they promoted
in the performance of CNNs trained with fine-tuning.

We believe that Packet Vision is a robust application for
the network traffic classification with a significant degree of
innovation stemming from computer vision techniques applied
to generate images from packet raw-data. Moreover, the Packet
Vision seems suitable for future networks, such as 5G and
beyond, which takes into account the security, privacy and
application-aware as a baseline.

As future work, we intend to exploit the Packet Vision
approach to generate other traffic classes related to different
applications, such as Remote Desktop Protocol (RDP), SSH

and social media. We are also planning to evaluate other CNN
architectures, different data augmentation strategies and further
optimization algorithms with more extensive hyperparameters
set.
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[36] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.
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