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Abstract—Porous media characterization presents substantial
importance for the oil industry. The X-ray micro-computed
tomography (µCT) is often used to generate digital models of
reservoir rocks. This paper presents an automatic histogram-
based method for the segmentation of µ CT images, which
allows the fast extraction of some petrophysical properties. The
processing is based on the analysis of the typical 2D images used
to produce 3D volumes. The method was applied to analyze seven
samples of carbonate rocks, to define the porosity values, pores
size distribution, and the orientation of the pores. Calculated
porosity values were compared to the porosity results obtained
with a helium porosimeter. The comparison of porosity calculated
by this method against the experimental values showed an
average error of 3.43%. The computational time spent for each
sample processing was of about 9 minutes on a regular PC.
The method can be used to extract porosity parameters in a
large number of samples with a substantial gain of time and
computational power.

I. INTRODUCTION

Petrophysical characterization of hydrocarbon reservoir
rocks is of extreme importance for the oil industry. Thus,
several analysis techniques used to extract these properties
have been an intense research object in recent years. The
modeling of porous through images obtained by X-ray micro-
computed tomography (µCT) has evolved substantially and
allows the generation of high-quality images and access to
the internal rock structures. The present processing methods
can provide quantitative data regarding many characteristics
of rocks porous network [1]. Image segmentation techniques
were also subject to significant development. They allow
sophisticated analysis of the microstructures of rock samples,
according to the application of a varied number of workflows
[2]–[5]. In this field of study, some works focus on providing
accurate information on the porous volume of rock samples
using complex image processing techniques [6], while others
focus on the extraction of detailed data about the morphology
of the porous media [7]. Due to the large size of image files
that can be produced, regarding the necessity of larger samples
and the highest possible resolution, the existing approaches
require substantial time (manual parameterization) and com-
puting power. The present procedures provide an enormous
quantity of information. However, it needs to improve its
applicability to the industry demands, which involves the
necessity of treating a large number of samples daily.

This part of the µCT images application has become a bot-
tleneck for reservoir rocks’ characterization. Thus, reduction
of time µCT images analyses trough more efficient processing
methods, capable of producing faster and reliable results
represents a key challenge for the oil industry.

This work presents a method to extract some petrophysical
properties of µCT images of rock samples, which represent
analogs of carbonate reservoir rocks. The main objective was
to reduce the computational processing of images by using
an automatic procedure to reduce the processing time and
computational power. The method was designed to allow an in-
dustrial processing routine, with less manual parameterization.
The code was capable of extracting the porosity values (φ) of
the imaged samples, the pore size distribution, and the pores’
orientation. These characteristics are fundamental to estimate
the rock storage capacity and enable a forward analysis of flow
in the porous system [8].

This paper is organized as follows. Section II describes
some of related works in petrophysical characterization. Sec-
tion III contains a brief description of the rock samples used to
validate the analyses carried out with the code, and Section IV
shows the main results achieved so far. The main conclusions
are presented in Section V.

II. RELATED WORKS

A comparative study presented by Chauhan et al. [5] showed
that some machine learning-based algorithms (unsupervised,
supervised, and ensemble clustering approaches) can extract
porosity data from µCT 3D images from rock samples.
Regarding the accuracy of porosity estimation, all of the
techniques demonstrated good agreement with experimental
values. Analysis of the computing time needed for the com-
putation showed that some of these techniques spent hours to
perform the porosity characterization, even with the support
of a high-performance computer.

Nova et al. [9] showed relevant results on the quantifi-
cation of the porosity of limestone and sandstone samples
through microtomographic 3D images processing, helped by
calibration made with gamma ray tomographic data of the
rock samples. Although, despite the good correlation between
computed porosity data and experimental tests, the processing



time required to extract this single property took at least 1
hour for computing of each 3D image volume.

Kong et al. [7] conducted a detailed study on the porous
medium of a synthetic sample made by 3D printing, based
on the analysis of µCT images in commercial software.
The authors used the watershed algorithm as a segmentation
technique to obtain the porous volume characteristics (shape,
orientation and porosity values). The comparison between
the calculated porosity values and porosity data obtained
with helium porosimeter tests presented an RMSE error of
3.8%. These analyses showed that this algorithm is reliable
to determine petrophysical properties of rocks based on µCT
images. The authors do not cite information about the time
required for data processing.

As stated by Guntoro et al. [1], one crucial issue of rock
samples characterization consists of finding a data processing
workflow that can provide porosity features efficiently and
accurately. As there is currently no general solution for precise
analysis of different rock samples (lithologies), techniques for
extracting petrophysical properties are still in development.
Deng et al. [10] proposed a new method for enhancing im-
age segmentation of fractured limestone rocks. Their method
showed better classification accuracy compared with other
segmentation techniques in the same dataset.

III. METHODOLOGY

Carbonate rocks samples used in this research were col-
lected from outcrops located in the coastal zone of the Paraı́ba
Basin, NE Brazil. These samples represent analogs of bio-
genic calcareous rocks encompassing mudstones, packstones,
and coquina-like microfacies, from the Tambaba Formation
(Eocene), formed in reefal and lagoon systems. We have used
seven cores with 3.7 cm of diameter, and heights varying from
3.7 to 7.6 cm, for the calculation of petrophysical properties
(Figure 1).

Fig. 1. Core samples used in the study (� = 3.7cm).

All the samples were scanned in an X-ray micro-CT (model
Nikon XT H 225 ST) with a 40 µm resolution. Scanning
parameters were set at 150kV, 70µA for operating voltage and

current, and the integration time was of 500 ms. An aluminum
filter (0.25 mm) was used to improve image quality. After the
reconstruction, the images were rescaled to Hounsfield units
(16-bit images), in which air and water pixels were set to 0
and 1000, respectively.

The porosity values of the same samples were obtained
through with a helium porosimeter for comparison. The new
code used for image processing was developed in Python,
and it operates the extraction of porosity data from the slice
images created with the scanning process. The slices represent
2D images created by the reconstruction of tomographies,
which are stacked vertically to build the image volume. The
code loads the 2D images in memory individually during
processing, and the outputs are saved in a data structure in
the respective slice index, when applicable.

Fig. 2. Workflow diagram for the method operation.

The workflow (Figure 2) starts with the selection of the
region of interest (ROI) by the system. The code selects a
squared region inserted in the circular image section of each
slice to reduce edge effects, which usually impacts the borders
of the images (beam hardening effect) [11]. After defining
the slice area, the code (Algorithm 1) carried an analysis of
the first and the last slice of the selected stack of slices to
project the squared area, which will fit inside all the images.
In the studied cases, the square area was defined with 650
pixels of side. Due to problems with sample instability during
the scanning process and irregularities in the core shape,
the squared area’s definition across the stacked images is
systematically refined to fit all the square areas within all the



selected slices.

Algorithm 1: Selection of ROI in the images dataset.
Input: number of images,W
Output: square coordinates
load the first and the last slices;
apply closing operation in both images;
apply threshold segmentation in both images;
get the circumference’s center (xc, yc) of the last slice;
while end of algorithm == False do

number of shifts, validation = 0;
while validation != 3 do

while validation == 0 do
if square’s corners fits in the first slice then

validation = 1;
else

shift square towards the opposite
direction of the failure point(s);
number of shifts += 1;
if number of shifts >= 20 then

break;
end

end
end
while validation == 1 do

if square’s corners fits in the last slice then
validation = 2;

else
shift square towards the opposite

direction of the failure point(s);
number of shifts += 1;
if number of shifts >= 20 then

break;
end

end
end
if square’s corners, centered in (xc, yc), fits in

the first slice && validation == 2 then
validation = 3;
end of algorithm = True;

else
validation = 0;

end
if number of shifts >= 20 then

W -= 10;
break;

end
end
return square coordinates;

end

If the initial position is out of range, the system rescales the
square length over the slice in at least one of the images. When
the algorithm does not find a suitable region after a certain
number of attempts, it reduces the square size in about 10

pixels and tries to fit it again. Figure 3 shows the representation
of the clipped square area across the stacked slices (blue
prismatic volume). After that, a Gaussian filter was applied to
reduce noise. The method implemented for the segmentation
process is based on global threshold techniques.

Fig. 3. Representation of the selection of Region of Interest (ROI) through
the slices that composes a 3D image volume.

Although this technique can present some additional chal-
lenges for extraction of petrophysical data in the type of
studied rocks, mainly caused by the microporosity, [12],
[13] the validation tests with the proposed code (automated
segmentation processing) showed very consistent results. Clas-
sical segmentation is based on the empirical determination of
threshold values, and it depends typically on porosity measure-
ments produced with experimental techniques for validation
and verification of accuracy [13].

The new algorithm performs image segmentation based on
the histogram analysis and the automatic definition of the
threshold value considering the levels detected in the data.
The heuristics used in this method is based on the assumption
that it is a bimodal representation, and the threshold value will
be at some point in the upward slope of the second peak of
the histogram. These premises were previously discussed in
other works, which have tested this type of analysis [14].

Algorithm 2: Computing the threshold value based on
histogram data.
Input: image
Output: threshold value (thresh)
get the vector (h(x)) from image’s histogram;
hmax = max(h);
x1 = min(x) ∀ h(x)≥ hmax ∗ l1;
x2 = min(x) ∀ h(x)≥ hmax ∗ l2;
thresh = x1+x2

2 ;
return thresh;

The algorithm operation is based on the definition of a
vector (h(x)) for each image, where h corresponds to the
number of pixels present in the image, with a given radio-
density value (x). The algorithm requires two parameters l1



and l2, to determine the threshold value. These parameters
must be a real number in the interval of 0<l1<l2<1. The
lower limit (l1) and upper limit (l2) impact the interval in
which the threshold value belongs. Once these parameters are
determined, the threshold value is defined for each image (2D
slices). The threshold value calculation is done according to
the rationale presented in Algorithm 2. For defining the most
suitable parameters, a series of tests are performed to compare
the porosity results obtained with the automatic definition
of threshold limits and the porosity values obtained through
laboratory experiments.

Fig. 4. Heuristics used for the threshold definition on the image Histogram.
The dashed lines show how the lower and upper limits’ constraints impact
the determination of the threshold value (red mark).

After the automatic testing and adjustments, the analyses
of porosity parameters are performed and integrated. The
pores’ orientation (widest axis) in each slice is calculated by
considering the coordinates of the bounding boxes applied for
each pore detected. The algorithm divides the oblong pores
into three categories according to their specific area. To test the
capacity of the algorithm of extracting porosity data with less
information we have performed Sensitivity tests. That focus
on the observation of the impact of reducing the number of
slices from the original total dataset used to calculate porosity.
We reran the analysis for each sample with 50%, 25%, 20%,
10%, and 5% of the slices from the original volume processed.
These reruns were performed by loading a new set of 2D slices
equally spaced in the images stack according to the percentage
defined (Figure 5).

IV. RESULTS AND DISCUSSION

A. Porosity estimation

The amount of data processed varied according to the length
of each sample scanned (see Figure 1). The number of slices
processed for each sample varied from 640 to 1440. Table I
shows the number of slices processed for each sample and the
ROI automatically defined for each set of slices. These two
attributes directly reflect the proportionality of analyzed data
compared to the total volume of the samples.

Fig. 5. Scheme showing the resampling method of slices from the original
stack to perform sensitivity tests (a) 100% of the volume, (b) 50% of the
volume and (c) 25% of the volume.

The segmentation step proceeded with preliminary tests to
determine the percentage of the histogram’s upward slope used
to define the threshold limit. The consistency of the post-
segmentation results was verified through the analysis of the
error associated with the extracted porosity value and visual
inspection. After the verification phase, the lower (l1) and
upper limits (l2) were assigned to be 0.3 and 0.7. These
parameters allowed the determination of the threshold value at
approximately 50% of the rising edge of the second peak in the
histogram. Porosity values obtained after processing are shown
in Table I. The calculated porosity values were compared
with the helium porosimeter tests for the rock samples. The
average error was about 3.43%, and the root-mean-square error
(RMSE) was about 4.47%.

TABLE I
COMPARISON OF POROSITY VALUES CALCULATED WITH THE NEW

METHOD AND OBTAINED WITH HELIUM POROSIMETRY

Sample Slices ROI Size
Porosity (%)

Error
Method Porosimeter

Sample 1 1250 630x630 13.71 16.17 -2.46

Sample 2 700 650x650 15.30 24.38 -9.08

Sample 3 1200 640x640 21.31 27.29 -5.98

Sample 4 1370 650x650 17.64 21.05 -3.41

Sample 5 1350 640x640 23.47 22.71 0.76

Sample 6 640 650x650 24.91 24.39 0.52

Sample 7 1440 640x640 26.99 25.21 1.78

The comparison of values with the porosimeter test showed
differences between 0.5% to 3.4%, representing a good result
except for samples 2 and 3. The higher divergence observed for
the values extracted for samples 2 and 3 could be attributed to
the effect of different techniques applied for the porosity data
extraction. The porosimeter test accessed all the volume of the
samples, and the algorithm selected a rectangular prismatic
volume (ROI) within the sample scanned volume (Figure 3).
Another factor that could have impacted the measurements
is the microporosity, representing the porosity below the CT
scanning resolution. Compared to the porosimeter tests, the
best results obtained with samples 5, 6 and 7 possess a higher



TABLE II
COMPARISON OF POROSITY VALUES OBTAINED FOR THE SEVEN SAMPLES BY THE APPLICATION OF CLASSICAL METHODS OF HISTOGRAM

SEGMENTATION AGAINST THE RESULTS OBTAINED WITH THE NEW METHOD.

Segmentation
technique

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7
φ (%) Error φ (%) Error φ (%) Error φ (%) Error φ (%) Error φ (%) Error φ (%) Error

G. Thresh. 5.55 -10.62 22.52 -1.86 23.02 -4.27 17.06 -3.99 21.90 -0.81 21.22 -3.17 24.82 -0.39
Otsu 39.27 23.10 18.63 -5.75 8.23 -19.06 8.27 -12.78 15.83 -6.88 14.09 -10.30 8.91 -16.30

K-means 37.30 21.13 20.88 -3.50 16.95 -10.34 18.56 -2.49 18.05 -4.66 17.89 -6.50 14.06 -11.15
Prop. Method 13.71 -2.46 15.30 -9.08 21.31 -5.98 17.64 -3.41 23.47 0.76 24.91 0.52 26.99 1.78

Fig. 6. Results for pores major orientation considering the distribution of
large. (a), (c) and (e) represent the results obtained with the proposed approach
and (b), (d) and (f) results obtained with the application of Otsu’s method on
ImageJ, for samples 4, 5 and 7, respectively.

proportion of the porosity of larger pores. Additionally, the
code was used to determine the morphological characteristics
of the pore space. The orientation of the pores in each slice
was calculated, considering their specific size category, and
this information was integrated between the slices. A rose
diagram was automatically generated for each sample to show
the orientation and distribution of pores with areas bigger than
1200 (µm2). This area constraint can be adjusted according to
the more significant contribution of larger pores on the fluid
flow and rock stiffness.

As a matter of comparison, we used other segmentation
techniques, commonly applied on rock characterization studies
[1], [15], for the extraction of porosity values in the pro-
cessed prismatic image volumes (Table II). We tested the con-
ventional Global thresholding, Otsu’s method, and K-means
clustering techniques because they are commonly applied
to rock characterization, request lower computing time, and
do not demand intense parameterization for implementation
[16]. A comparison of porosity values extracted with these
segmentation methods against porosimeter tests showed poor
results. These techniques are less useful for the petrophysical
analysis of carbonate rocks regarding the inherent problems
they present for image processing [13]. The proposed method
presented better results, considering the error per sample,
and the average variation, compared to experimental tests.
The proposed method also showed better performance to the
intrinsic aspects of the calcareous rocks treated. If necessary
preprocessing algorithms Schluter et al. [17] can be applied
to the images to enhance the results obtained by the new
algorithm.

B. Pore orientation

Figure 6 shows the primary orientation of oblong pores,
that form the major part of the porous volumes, considering
their widest axis for three samples (4, 5, and 7). We used
the software ImageJ [18], to calculate the area and orientation
of the pores in the same image sets. The chosen segmentation
technique was the Otsu’s method, as it has been proven to be a
well-established method for pore morphology characterization
[10]. Comparison of results automatically calculated with our
code against results calculated with ImageJ showed a very
satisfactory correlation for both determination of large pores
orientation (Figure 6). This information is essential to define
aspects related to flow anisotropy and mechanical properties of
the rocks [7]. According to Griffiths et al. [19], the existence
of a dominant pore orientation has an essential role in deter-
mining the strength and stiffness of the rock. Consequently,
these parameters are directly related to permeability.

C. Pore size distribution

The proposed code also can automatically extract the pore
size distribution. This attribute provides an estimation of pores
involved in the formation of porous volume according to their
size, which can be separated into a few significant classes.
Some studied samples presented particularities essential to
verify the robustness of the method. For example, Sample 1



TABLE III
RESULTS FOR POROSITY CALCULATION OF EACH SAMPLE, WITH A REDUCED SET OF SLICES (50%, 25%, 20%, 10%, AND 5%) FROM THE ORIGINAL SET

(100%). THE TEST WAS DESIGNED TO VERIFY THE ROBUSTNESS OF THE METHOD WHEN APPLIED TO ONLY A PART OF THE FULL IMAGES DATASET.

Data
fraction

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7
φ (%)1 Time2 φ (%)1 Time2 φ (%)1 Time2 φ (%)1 Time2 φ (%)1 Time2 φ (%)1 Time2 φ (%)1 Time2

100% 13.71 12:48 15.30 6:47 21.31 10:54 17.64 13:20 23.47 8:27 24.91 4:24 26.99 10:10
50% 13.72 5:30 15.31 3:11 21.32 5:01 17.62 6:08 23.46 2:58 24.90 2:01 27.01 4:33
25% 13.70 2:56 15.30 1:31 21.31 2:26 17.60 3:01 23.45 1:22 24.88 1:08 27.02 2:18
20% 13.73 2:09 15.26 1:12 21.25 2:01 17.62 2:35 23.44 1:08 24.87 0:49 27.00 1:54
10% 13.72 1:04 15.25 0:37 21.28 0:57 17.59 1:13 23.48 0:30 24.79 0:24 27.03 0:52
5% 13.74 0:35 15.19 0:19 21.26 0:28 17.56 0:41 23.38 0:16 24.76 0:17 27.02 0:26

1Porosity (%). 2Time expressed in min:sec.

Fig. 7. Pore size distribution of the seven samples.

contains notably the smallest amount of macropores, which
represents a higher contribution of micropores in the total
porosity. That was likely the main reason for the unsatisfactory
results of porosity measurements obtained with classical seg-
mentation techniques. On the other hand, sample 7 possessed
most important contribution of larger pores and a considerable
number of elongated pores, which resulted from the dissolution
of bioclasts (Figure 1).

Figure 7 shows the relationship between the cumulative
porosity volume and the distribution of the pores according
to their area for all samples. The samples are divided in two
main groups: Group 1, formed by samples 1 to 4, presents
the predominance of micro and mesopores (pore areas with
less than 1200µm2), which can correspond to more than 80%
of porosity detected. Group 2, that includes samples 5 to 7,
which porosity are much more influenced of macropores, with
at least 40% of its porosity formed by large pores.

D. Computing time

During the study, the time spent to automatic process each
sample and extract the data was recorded. The analysis of
performance in terms of computing time is shown in Table
IV. Processing of Sample 6 was completed in the shortest
time with 4m:24s. The longest processing time was 13m:20s

TABLE IV
TIME COMPUTING SPENT FOR THE AUTOMATIC CALCULATION OF

PETROPHYSICAL PARAMETERS OF THE SEVEN SAMPLES.

Sample S1 S2 S3 S4 S5 S6 S7

Time* 12:48 6:47 10:54 13:20 8:27 4:24 10:10

*Time expressed in min:sec.

for sample 4. The average processing time for the extraction of
petrophysical data was 9m:33s (approximately 0.49 sec/slice).
Computing time is directly related to the number of slices
used and the ROI square size defined for each volume of
images. Vectorization techniques are considered a remarkable
feature in the NumPy module, and it is used for reducing
time consumption when compared to conventional for-loops
in Python [20]. It can be applied with the developed code to
improve computing time results. The images’ processing was
carried out in a computer with the following configurations:
Intel i7-4500U (1,8GHz-2,4GHz), 8GB of RAM, and Nvidia
Geforce 840M GPU. To perform similar tasks with the same
studied data, a 3D processing platform demands much more
memory.

E. Sensitivity tests

We have performed sensitivity tests to verify the limits of the
new code of extracting porosity values with a reduced number
of 2D images (slices). A fraction of the original quantity
of slices was used to rerun the analysis (50%, 25%, 20%,
10%, and 5%) of the original number of 2D images of the
samples. Table III shows the calculated porosity values and the
computational time spent for the analyses. The processing time
was reduced linearly according to the reduction in the number
of 2D images used. The average reduction of computing time
was of 95.44% when the analysis was reduced from 100% to
5% of the original dataset for each sample (Table III).

The reduction of slices in the analysis process did not
significantly resulted in loss of accuracy in the results of
porosity values calculation. The maximum variation between
the value porosity calculated with the original number of
images and the sets with reduced numbers of slices was
only 0.15% (for sample 6), with a mean standard deviation
of 0.03%. Although some works have shown that porosity
calculation is very dependent on changes in parameters used in



segmentation algorithms [21], the calculation of this property
with the new code remained practically the same with the
reduction in the number of 2D images processed.

The new method is based on a processing of 2D images,
and it showed compatible results, in terms of precision, with
state of the art techniques that are based in 3D segmentation
processes. This approach allowed us to combine the advantage
of reducing the complexity of processing, maintaining the
accuracy of the results obtained from more sophisticated
techniques.

V. CONCLUSIONS

This paper presented a new approach based on the histogram
segmentation of 2D µCT images to calculate porosity volume,
area of the pores and their orientation of limestone rock
samples. The code was designed to select and calculate the
properties automatically, after the loading of image data.
The automatic calculated porosity values were compared with
porosimeter analyses of the same samples. The comparison
of calculated porosity values with the data obtained through
porosimeter tests showed good results.

The study also tested a few algorithms based on histogram
segmentation customarily used to perform porosity analysis
µCT digital images, and the results obtained with the new
code was far superior. The new method also was able to
define the area and the dominant orientation of the pores,
which is essential for rock porous volume characterization. We
compared the information processed with the new method with
the information of the area and orientation of pores extracted
with a classical method (Otsu’s method) performed in an open
software (ImageJ), and the results are consistent and accurate.
The computing time spent to perform the porosity calculation
showed an average of about 9.5 minutes, which is an excellent
achievement and can allow the processing of a large number
of samples in a significantly shorter time when compared with
the processing performed with classical segmentation methods
in 3D images. The processing of limestone samples showed
good improvement compared with the time spent with classical
approaches based on manual segmentation of 3D images.
Although the new approach has shown excellent results for
some carbonate rocks, its applicability for different lithologies
(other carbonate and siliciclastic facies) will demand further
tests.
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[5] S. Chauhan, W. Rühaak, F. Khan, F. Enzmann, P. Mielke, M. Ker-
sten, and Sass, “Processing of rock core microtomography images:
Using seven different machine learning algorithms,” Computers and
Geosciences, vol. 86, pp. ”120–128”, 01 2016.

[6] N. Alqahtani, F. Alzubaidi, R. T. Armstrong, P. Swietojanski, and
P. Mostaghimi, “Machine learning for predicting properties of porous
media from 2d x-ray images,” Journal of Petroleum Science and Engi-
neering, vol. 184, p. 106514, 2020.

[7] L. Kong, M. Ostadhassan, C. Li, and N. Tamimi, “Pore characterization
of 3d-printed gypsum rocks: A comprehensive approach,” Journal of
Materials Science, vol. 53, p. 5063–5078, 04 2018.

[8] N. Farrell and D. Healy, “Anisotropic pore fabrics in faulted porous
sandstones,” Journal of Structural Geology, vol. 104, 09 2017.

[9] A. Nova, F. Ribeiro, P. Oliveira, D. Amancio, C. Machado, A. Car-
olina, M. Paixão, A. Antonino, E. Barbosa, A. Barbosa, M. Lourenço,
Rodrigues, and R. Heck, “Using gammaray and x-ray computed to-
mography for porosity quantification of reservoir analogue rocks,” EGU
General Assembly 2020, pp. 4–8, 5 2020.

[10] H. Deng, J. Fitts, and C. Peters, “Quantifying fracture geometry with
x-ray tomography: Technique of iterative local thresholding (tilt) for 3d
image segmentation,” Computational Geosciences, vol. 20, 02 2016.

[11] T. Mukunoki, J. Otani, Y. Obara, and K. Kaneko, “Artifacts of x-ray ct
data in the analysis of geomaterial properties,” X-CT for Geomaterials:
Soils, Concrete, Rocks, pp. 95–101, 2004.

[12] C. Appoloni, C. Fernandes, and C. Rodrigues, “X-ray microtomography
study of a sandstone reservoir rock,” Nuclear Instruments & Methods in
Physics Research Section A-accelerators Spectrometers Detectors and
Associated Equipment - NUCL INSTRUM METH PHYS RES A, vol.
580, pp. 629–632, 09 2007.

[13] P. Smal, P. Gouze, and O. Rodriguez, “An automatic segmentation
algorithm for retrieving sub-resolution porosity from x-ray tomography
images,” Journal of Petroleum Science and Engineering, vol. 166, 03
2018.

[14] M. Freire-Gormaly, J. Ellis, A. Bazylak, and H. Maclean, “Comparing
thresholding techniques for quantifying the dual porosity of indiana
limestone and pink dolomite,” Microporous and Mesoporous Materials,
vol. 207, 05 2015.

[15] H. Taud, R. Martinez-Angeles, J.-F. Parrot, and L. Hernandez-Escobedo,
“Porosity estimation method by x-ray computed tomography,” Journal
of Petroleum Science and Engineering, vol. 47, pp. 209–217, 06 2005.

[16] P. Iassonov, T. Gebrenegus, and M. Tuller, “Segmentation of x-ray
computed tomography images of porous materials: A crucial step for
characterization and quantitative analysis of pore structures,” Water
Resources Research, vol. 45, 09 2009.
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