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Abstract—In this work, we apply domain randomization to
synthetic images and train deep 6DoF monocular RGB pose
estimation models to work on a real object. We compare 19
models trained with different combinations of synthetic and
real data (fully synthetic, fully real, initially synthetic and
supplemented with real, and a real-synthetic randomized mix). By
gradually decreasing the amount of real data used, we show it is
possible for deep 6DoF detection to obtain superior results while
using less real data (which is harder to obtain) and suggest the
best approach to train a model with synthetic data. Our method is
validated using a textureless 3D printed object, as the textureless
category is a challenging, common open problem in itself. A real
and a synthetic dataset generated for this work, totalling over
24,800 annotated frames, are also made public. We also show
that synthetic, randomized data can help generalize a model by
training it to handle challenges such as illumination changes and
fast motion. Finally, we also evaluate how a model trained for
one camera sensor works with a different one, and show that
synthetic simulations of real cameras can help overcoming this
challenge.

I. INTRODUCTION

The six degrees-of-freedom (6DoF) pose estimation of rigid
objects in an RGB image is a long-time computer vision chal-
lenge, with applications in areas such as Mixed Reality (XR)
[1], robotics [2], autonomous vehicles [3], human-computer
interaction [4], etc.

Recently, detection approaches are quickly improving due to
the arrival of deep learning [5], [6]. Models can now be trained
to extract relevant information about the object to be detected
using only the pixels from input images. These complex RGB
deep learning models usually have to be trained with a high
amount of labeled images to supplement the lack of depth
information available to their RGB-D counterparts [7], [8].

The main issue arises from the fact that filming those
training sequences as well as annotating their ground truth
is generally a cumbersome, expensive, and time-consuming
task. Challenges include setting up and calibrating markers and
cameras to properly capture the ground truth [9]–[11], as well
as dealing with problems such as camera noise, occlusions,
and motion blur. Moreover, a wide array of viewpoints and
rotation angles must be covered, all while accounting for
background, foreground, and illumination details. Even then,
detection trained using those sequences might not work well
with different cameras or environments.

Fig. 1. Clockwise from the top-left corner: real data acquisition with ground
truth pose (in green); segmented object from real frame; data generated
through domain randomization; detection output in a challenging motion and
illumination scenario for a model trained with both real and synthetic data.

For these aforementioned reasons, it is highly desirable to
be able to generate such training sequences artificially, using
just a computer aided design (CAD) model, and have that
work for the detection of real objects. Yet, that remains an
open challenge due to the reality gap. Our work proposes a
way to introduce configurations of diverse synthetic data to
decrease the number of real images required during training,
while simultaneously improving the model’s response when
faced with detection challenges.

In the subject of application fields for RGB detection, one
relevant area for both the industry and the academy is the
development of AR and VR applications using 3D printed
objects [12], [13], which are becoming more common every
day. As these objects are available both in their digital (pre-
print) and physical (printed) forms, they are widely suitable
for an multiple user-end XR applications [14]. Using these
objects’ CAD models, synthetic data can be generated to train
a network even before they are printed. This can make the
process of detecting a new object much quicker and user-
friendly. It is worth noting that although these objects’ lack of
texturization makes them very suitable for AR, it also makes
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them more challenging, as they lack distinctive features and
can vary widely in terms of color, size, and specularity.

This work’s main contribution is evaluating how the intro-
duction of synthetic data with domain randomization (DR) can
improve 6DoF detection, both in terms of precision and ease of
training. Specifically, we investigate the impact of such points
on the 6DoF detection of a 3D printed, textureless object. The
DR approach is evaluated to measure improvements in model
accuracy when faced with generic real-world challenges (e.g.,
different illumination, motion, and different camera sensors).
This is performed while evaluating how results are altered by
the balance between synthetic and real training data distribu-
tions. This way, we can obtain clues as to which scenarios and
challenges benefit more from either synthetic or real training.
An application to easily render and annotate synthetic images
for a general-purpose detection scenario is also proposed. To
the best of our knowledge, this is the first work to investigate
the impact of DR to increase model robustness to camera
hardware changes (i.e., when the model is trained with one
camera but tested with a different one). Having robustness to
different cameras is especially relevant to the industry, as it
must be handled when attempting to develop generic models
and applications for a wide array of user-end devices. For an
overview of our data generation results and detection output,
see Fig. 1.

II. RELATED WORK

A. 6DoF Object Pose Estimation

Recently, many robust markerless 6DoF pose estimation
approaches have been proposed. Out of these, RGB-D tech-
niques have received special attention [15], [16]. These works
obtain a very high accuracy due to the RGB input frame
being supplemented by depth maps. Yet, those depth maps are
limited by the view distance, and struggle with illumination
such as sunlight. In those cases, RGB-D techniques are prone
to fail, as they are left with just the RGB data. Considering
how much less common and more expensive RGB-D sensors
are compared to standard RGB camera, multiple works have
also attempted to solve this issue using purely RGB [1], [8].

Traditionally, techniques have used image processing and
geometric concepts to tackle this problem. Region-based
works [1], [17] evaluate the color distribution in image regions.
Edge-based works attempt to match the CAD model’s edges to
the RGB input’s gradients [18]. Feature-based use keypoints
and descriptors [19], [20]. Other techniques attempt to use
traditional machine learning algorithms to interpret extracted
features and optimize a hypothesis [21], [22]. Finally, there are
hybrid approaches that merge the aforementioned geometric
concepts with machine learning [9], [15], [23].

In recent years, deep learning approaches have been in-
troduced. Those can learn about the object of interest by
being trained with example images, without needing pre-
defined features or clues like traditional approaches do. This
characteristic makes deep learning especially suitable to per-
form pose estimation in scenarios where there’s not much
available information, such as plain RGB. Though it has been

shown to work for real-time object tracking (with temporal
consistency) [24], [25], most deep learning works attempt
to perform object detection on a frame by frame basis [7],
[8], [23], [26]. Newer deep learning approaches have been
using more complex, deeper pipelines to perform both pose
prediction and refinement directly [5], [25].

On the other hand, some approaches simplify the problem
by attempting to detect image keypoints [20] or bounding
box corners [8], [26] and only then perform minimization
calculations in a more traditional way, such as by solving
least-squares problems or similar algorithms. The simplified
architectures of such approaches make training the model
much easier, while still being able to achieve high accuracy
values. However, they still suffer from a major drawback: the
need for large amounts of annotated data. Deep learning 6DoF
works have been shown to be able to detect synthetic objects
when trained with synthetic data, but most still require real
data to detect real objects.

B. Synthetic Dataset Generation

As explained in Section I, capturing and annotating real
datasets are an expensive, time-consuming task with lots of
variables and prone to constant error at multiple stages. This
is especially true for 6DoF, as the ground truth is hard to
capture, given the higher complexity of the information. Yet,
deep learning approaches still require large amounts of real
data to work properly. This is due to the reality gap between
virtual and real images, which makes it hard for the network
to learn about the real object just by seeing a virtual version
of it.

To tackle this reality gap, Tobin et al. [27] explored the
concept of domain randomization of synthetic frames. Using
it, they trained a neural network with the task of localizing
simple, colorful geometric shapes on top of a table for
robotic manipulation. This work also provided a robotics-
oriented localization training dataset with high variability to
the neural network that can generalize to real-world data. The
dataset generator was built using the MuJoCo Physics Engine
[28] and generates images by randomizing the positions and
textures of the object of interest and surrounding objects, as
well as randomizing illumination, camera position, distractor
configuration, and the type and amount of noise present on the
images. This work, albeit performing a task simpler than 6DoF
pose estimation, is very relevant as the system can achieve high
accuracy (1.5 cm) without any pre-training on real images.

Tremblay et al. [3], from NVIDIA, also used DR to present
a system for training deep neural networks for 2D car detection
on outdoor scenarios. The scenes were generated using Un-
real Engine (UE4) by changing randomly the number, type,
and texture of the objects, camera translation and rotation,
illumination, background, and floor textures, and the set of
distractors, which were either contextual distractors (objects
similar to possible real scene elements, positioned randomly
but coherently) or flying distractors (geometric shapes with
random texture, size, and position). Their network presented
better results when using the synthetic DR dataset mixed with



Fig. 2. Example of synthetic frames generated using the domain randomization process from Section III-A.

real images. Other alternatives tested were using only real
images and using a mix of real and realistic (non-randomized)
synthetic data from the VKITTI dataset [29]. Even though this
work also does not perform 3D detection or 6DoF estimation,
it is a step forward in this direction, as the complexity of the
objects and scenes is very significant.

NVIDIA also published their Deep learning Dataset Synthe-
sizer (NDDS) [30], a UE4 plugin that can generate synthetic
data in real-time by randomizing illumination, objects, cam-
eras, poses, textures, and distractors. The plugin can export
images, segmentations, depth maps, object pose annotations,
bounding boxes, keypoints, and custom stencils. The system
was used to create several datasets. The Falling Things dataset
(FAT) [31] uses NDDS and focuses on the context of 6DoF
object detection. Each of its photorealistic images consists of a
stereo frame pair with corresponding depth images, 3D poses,
bounding boxes, and the segmentation image of each scene’s
objects. The objects were extracted from the YCB dataset [32]
and used in 3 virtual environments within UE4 in random
positions that change after the objects fall into the scenes.
Yet, it does not perform DR.

The Synthetic Image Dataset for 3D Object Pose Recog-
nition with Distractors (SIDOD) dataset [33] is similar to the
FAT dataset but with the presence of flying distractors (see [3])
and domain randomization. Lee at al. [34] extended NDDS to
handle robotic joints and export the joint information to be
used in network training. Still, all these NDDS datasets are
synthetic, without similar real frames to compare against, so
they are best suited for fully synthetic approaches.

Hinterstoisser et al. [35] proposed a strategy that generates
cluttered synthetic frames and trains a network to perform
2D detection of complex objects. Though the scenes are clut-
tered, the technique guarantees that the objects of interest are
presented equally to the neural network in all scenarios. The
model trained with only synthetic data outperformed the model
trained with only real data. The authors also investigated
individual aspects of the image generation pipeline, which
revealed that blur and illumination color are the scene aspects
that influence results the most.

In the 6DoF context, Tremblay et al. [2] proposed a
DOPE deep learning approach that infers the 6DoF poses of
known objects from a single RGB image without requiring
refinement. The system was trained using a combination of
photorealistic images from the FAT dataset [31] and non-
photorealistic domain randomized frames with varying types
of flying distractors (cones, pyramids, spheres, cylinders, par-

tial toroids, arrows), randomized illumination, occlusion, and
distractor and background textures. Their DOPE approach had
comparable performance to a state-of-the-art network trained
using a mix of real and synthetic data and was the first deep
6DoF work to achieve such precision levels with only synthetic
data. In our work, we aim to deepen the understanding of how
these data distributions influence a network. In particular, how
DR alone can make networks easier to train and more robust
to challenges. The motivation being that photorealistic frames
(such as the ones from the FAT dataset) are hard to generate
and can be comparable in difficulty and time consumption to
recording and annotating real data, depending on the challenge
to be simulated. Thus, it is important to understand how the
simpler way (domain randomization) alone can impact results.

III. METHOD OVERVIEW

This section describes the processes of synthetic data gen-
eration, real data acquisition, and 6DoF detection. All the over
20, 000 real and 4, 000 synthetic annotated frames generated
in this work have been made available as public domain1.

A. Synthetic Data Generation
Our synthetic data generation process varies color, textures,

background, occlusion, illumination, and viewpoint. The inten-
tion was to expose the object to a wide array of variations, each
having their own contribution to the final result, as explained
below.

Fig. 3. Diagram illustrating the domain randomization and synthetic scene
generation process as described in Section III-A.

The synthetic scenes used in this work all had one basic
structure for randomization: 1 object over a flat surface (floor),

1https://github.com/Kelvin-Cunha/3dprinted-objects-6dof



1 camera, up to 5 flying distractors and up to 15 point lights.
All objects were contained within a skybox. The cameras used
in our work had their output size and intrinsic parameters
(focal length and principal point in pixels) configured to
simulate the ones obtained by calibrating the cameras used
during real data acquisition (see Section III-B). Radial and
tangential lens distortion were not simulated. As documented
in Kehl et al. [7], randomizing the camera’s position increases
robustness to multiple viewpoints. Our camera was always
pointing at the origin (where the object of interest is fixed),
and its randomized spawn location (always contained within
the skybox cube, which is 50m in size) has radial distance
limited from 4m to 10m, azimuth angle from 0◦ to 180◦, and
polar angle from 0◦ to 360◦, following the spherical coordinate
system. Those ranges were set keeping in mind our indoor,
small object scenario.

Tremblay et al.’s work [3] illustrates the importance of
randomizing the textures of the background (skybox) and floor
(surface beneath the object) to avoid learning features that
do not belong to the object itself. It also suggests adding
flying distractors, simple 3D geometric objects of varying
textures, in random places. Our flying distractors consisted of
cubes, spheres, cylinders, and capsules of a fixed size. Those
distractors further increase robustness to occlusions, as they
can sometimes partially occlude the object. In fact, unlike
[3] (that deals with vehicles), our small object scenario had
cases where total or near-total occlusions happened, making it
necessary for us to introduce a new step to the randomization:
if the object has more than 35% of its 2D area occluded in the
final render (value based on [11] experiments), the frame is
discarded. All skybox, floor, and distractor textures were taken
from the Visual Object Classes (VOC) dataset [36], which
contains photos of scenes with elements such as clutter and
other objects (as opposed to the outdoors backgrounds used by
Tremblay et al.). This choice provided a more realistic scenario
for our indoors use case. As [35] has stated the importance
of blur and illumination, we have trained models synthetically
for illumination but not for blur, and added a test scenario for
each of the 2 to evaluate generalization. To increase robustness
to illumination, Tremblay et al. suggests randomizing the
lights of the scene. Our indoor scenario used point lights of
random colors with constant radius and intensity, spawned at
random locations inside the skybox. Finally, [3] suggests that
randomizing the object of interest’s texture is desirable, as it
makes the network learn the object’s structure as opposed to its
appearance. Given our textureless scenario, the object’s color
was randomized, but no texture images were added. The entire
process is illustrated in Fig. 3. Our synthetic dataset generation
tool was developed in C# using the 3D engine Unity.

B. Real Data Acquisition

For every frame of our real RGB sequences, the object was
placed on top of a field of ArUco markers [37] in order for the
6DoF ground truth to be obtained. By projecting the object’s
CAD model using the 6DoF pose obtained through the marker
field, we could segment only the pixels which corresponded

to the object, removing the background and building a binary
segmentation mask. The segmented frame was then matched
to a random background from the VOC dataset [36]. This
was necessary to avoid overfitting, given the constant marker
field below the object. The projected object 3D model’s depth
map is also stored. This is a way RGB techniques are trained
to supplement the lack of RGB-D data. Finally, using the
6DoF pose, the 8 corners of the object’s 3D bounding box
can be projected on the frame and stored together with the
segmentation mask, depth map, and new-background (see Fig.
4). Our real data acquisition tool was developed in C++ and
uses OpenCV and OpenGL to perform the described tasks.

The sequences recorded contain a wide array of viewpoints
and camera rotation, motion blur, and illumination challenges
such as a moving point light in a dark room, indirect sunlight,
and varying indoor illumination patterns.

Fig. 4. Real data generation process. Clockwise from the top-left corner:
raw RGB frame and object bounding box (in green) projected according to
the ground truth pose from the ArUco marker field, binary mask, segmented
object, new-background random frame the VOC dataset.

C. 6DoF Detection

In order to evaluate the impact different training data, a
model that performed monocular RGB 6DoF detection had to
be chosen. We opted to use the supervised estimator proposed
by Tekin et al. [8] because it is robust, simple to train, and
publicly available2.

IV. REAL DATASET GENERATION

To map real-world challenges and test the proposed method,
sequences were recorded and processed according to Section
III-B. These sequences were captured with two different
mobile cameras, to enable the assessment of how a model
trained with one camera performs with another, which to
our knowledge has not been previously investigated in other
works. It is also worth to mention again our 3D printed
textureless focus, which is a difficult area for the object’s
lack of features. The 3D object chosen was printed using a
solid-color red Polylactic Acid (PLA) filament, which is a
very common configuration for 3D prints, and which interacts
considerably with the scene’s illumination. The generated
sequences, camera calibrations, and CAD model have also

2https://github.com/Microsoft/singleshotpose



been made available as public domain (see Footnote 1). We
believe this collateral contribution can help to close those gaps
in the literature.

To capture the frames at 1920 × 1080 resolution, we used
the back-facing cameras of an Apple iPhone X and a Samsung
Galaxy S8. Sequences listed below are organized by the
camera model and present challenges.

• X Simple: Scene recorded using the iPhone X. The
camera circles around the object that is fixed at the center
of a marker field as per Fig. 4. Movements are slow and
controlled, indoor illumination is fixed;

• X Motion: Same as X Simple but with faster camera
motion, introducing motion blur and shaking;

• S Simple: Same as X Simple, but recorded with the
Galaxy S8;

• S Motion: Same as X Motion, but recorded with the
Galaxy S8;

• S Illumination: Same as S Simple, but with changing
illumination slightly;

• S Extreme: Challenging illumination scenario recorded
with the Galaxy S8 and with faster camera motion. The
same scene as S Motion but with all indoor lights turned
off, the room completely dark, and the object being
illuminated by a small, moving point light.

V. EVALUATION

Training and testing were ran on a desktop computer with a
quad-core CPU @ 3.60 GHz, 32 GB of RAM, and an NVIDIA
GeForce GTX 1080 Ti GPU.

A. Datasets

Sequences X Simple and S Simple from Section IV were
divided in separate portions for training (70%, ' 3, 500
frames) and testing (30%, ' 1, 500 frames). The remaining,
more complex scenes were used exclusively for testing to
enable us to pinpoint exactly which challenges (unseen by
the model during training) were (or not) troublesome. It also
enables us to train the model to learn how to deal with
these challenges solely by using synthetic, randomized data
to evaluate its influence.

B. Model Training

The model was always trained for 500 epochs (fixed). An
Stochastic Gradient Descent (SGD) optimizer was used with
learning rate α = 0.001, decreasing tenfold every 100 epochs.
The original model input process resizes frames to 680× 680
pixels, which was used for testing. Yet, during training as per
[8], in order to increase robustness to scale changes, frames
were additionally scaled uniformly in width and height by
a random factor of 32 between 320 and 680. Input camera
parameters are also changed accordingly.

A total of 19 models were trained and evaluated in this
work. They are listed below, organized by the data used to
train them. A total of 4, 000 synthetic frames (with domain
randomization) was used in addition to the ' 7, 000 total of
available real frames from X Simple and S Simple.

• Full X: Trained only using real images from X Simple;
• Full S: Trained only using real images from S Simple;
• Full DR: Only with domain-randomized frames;
• Mix X10, Mix X30, Mix X60, Mix X100: Trained

mixing the batches with real and synthetic frames at
random. Used 10%, 30%, 60%, and 100% of X Simple,
respectively, in addition to 100% of the synthetic set.

• Mix S10, Mix S30, Mix S60, Mix S100: Same as
above, but images came from S Simple.

• Fine X10, Fine X30, Fine X60, Fine X100: Trained
initially using exclusively 100% of the synthetic set of
frames, then afterwards fine-tuned (supplemented) with
10%, 30%, 60%, and 100% of the frames from X Simple,
respectively.

• Fine S10, Fine S30, Fine S60, Fine S100: Same as
above, but images came from S Simple.

C. Evaluation Metrics

The pose error predicted by the models was measured using
3 different metrics, described below.

• Reprojection Error (Rep.): Prediction is accepted if
the mean 2D Euclidean distance (in pixels) for all mesh
vertices projected using the predicted pose and the ground
truth is less than 5, as per [8].

• 3D Pose Error (ADD): Described as the average 3D
Euclidean distance between all mesh vertices multiplied
by the 6DoF pose transformations corresponding to the
ground truth and model prediction. As per [10], a pre-
diction is accepted if the ADD value is less than 10%
of the model’s 3D diameter, calculated as the maximum
distance between two mesh vertices.

• Pose Accuracy (Pose): In this case, translation and
rotation errors are measured individually. A prediction
is accepted if its translation and rotation difference to
the ground truth is less than 5 cm and is less than 5◦

respectively [38].

D. Experimental Results

Results using the models described in Section V-B with the
datasets from Section V-A under the metrics from Section V-C
can be seen in Table I. Further evaluation of representative
models by variating the ADD threshold can be seen in Fig. 5.

VI. DISCUSSION

A. Full Models

As expected, Table I shows that the models trained fully
with real data perform best in scenarios similar to the ones
they were trained with (S Simple and X Simple). There is
about 90% or more of a drop in precision when new chal-
lenges are introduced (S Motion, S Illumination, S Extreme,
X Motion). It is also possible to notice that camera sensor
variation has an equally high impact on the final performance
of the model, even when under the same scenario (Full X
in S Simple and Full S in X Simple). This is a significant
problem for generic real-world applications where end-user
configurations are not known and cannot be fully mapped.



TABLE I
PERCENTAGE OF ACCEPTED FRAMES PER METRIC FROM SECTION V-C FOR ALL MODELS USING ALL SEQUENCES, AS DESCRIBED IN SECTIONS V-B AND

V-A. HIGHER IS BETTER. UNDERLINED VALUES REPRESENT LOCAL BEST RESULTS, BOLD VALUES REPRESENT OVERALL BEST RESULTS.

Model S Simple S Motion S Illumination S Extreme X Simple X Motion
Rep. ADD Pose Rep. ADD Pose Rep. ADD Pose Rep. ADD Pose Rep. ADD Pose Rep. ADD Pose

Full X 4.55 7.14 6.48 0.00 0.88 0.00 0.00 0.70 0.00 0.00 0.00 0.00 26.22 18.80 54.90 3.26 1.38 0.10
Full S 41.61 25.67 46.27 1.91 3.80 0.00 0.00 1.53 0.00 0.00 0.00 0.00 0.00 3.95 1.74 0.00 0.12 0.00
Full DR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mix X10 7.45 9.07 7.14 0.00 0.00 0.00 0.00 2.29 0.00 0.00 0.00 0.00 26.86 33.10 56.37 7.07 7.07 1.12
Mix X30 7.86 6.83 9.63 0.00 1.40 0.71 0.00 1.76 1.76 0.00 0.00 0.00 21.48 34.57 64.93 7.27 5.93 2.71
Mix X60 7.45 14.60 9.94 0.00 0.78 0.00 0.00 3.44 1.67 0.00 0.00 0.00 26.46 48.66 83.10 7.07 6.09 2.03
Mix X100 7.10 14.05 9.35 0.00 1.50 2.00 0.00 2.95 1.36 0.00 0.13 0.00 28.41 29.61 22.26 7.07 5.22 4.98

Mix S10 8.70 11.18 11.18 0.00 0.75 0.07 0.00 0.57 0.00 0.00 0.13 0.00 12.29 14.58 12.37 0.00 0.12 0.11
Mix S30 36.65 39.75 58.07 0.00 1.67 0.71 0.48 4.01 4.39 0.00 0.26 0.00 10.51 15.32 10.27 0.00 1.60 3.45
Mix S60 33.85 28.57 51.86 0.00 2.50 1.70 2.53 4.59 4.77 0.00 0.13 0.00 16.08 15.93 15.79 5.11 7.87 4.58
Mix S100 20.50 17.39 46.27 0.00 4.10 4.10 0.57 2.67 6.30 0.00 0.13 0.00 10.90 15.64 13.98 2.74 7.07 6.47

Fine X10 20.19 14.91 25.78 3.39 6.58 4.81 2.70 8.02 3.24 6.28 5.13 7.95 34.36 12.01 38.70 10.32 10.74 10.55
Fine X30 27.33 33.85 44.72 6.37 11.93 9.02 2.70 13.93 4.20 8.46 8.46 9.23 38.70 28.36 76.38 10.28 17.23 17.60
Fine X60 28.88 27.33 34.16 10.17 15.25 9.69 2.70 10.50 2.67 8.33 7.31 8.08 38.55 27.09 75.91 11.87 17.75 16.00
Fine X100 17.70 24.53 36.65 5.22 11.53 4.34 2.70 11.26 4.58 6.28 8.21 3.95 43.68 29.70 79.70 11.90 18.63 18.26

Fine S10 52.80 35.09 65.22 6.03 6.85 5.36 2.67 8.02 11.26 9.36 12.44 12.69 13.35 19.67 19.27 5.11 7.69 9.19
Fine S30 55.59 48.14 79.81 6.58 7.32 5.36 1.53 13.93 8.21 4.74 24.74 13.08 20.93 21.01 19.19 4.77 7.40 6.47
Fine S60 63.98 36.65 87.58 13.08 7.39 9.02 3.05 10.50 9.35 8.97 24.87 12.31 15.09 18.80 22.91 9.41 9.73 11.18
Fine S100 55.59 45.84 76.71 10.98 7.93 8.61 1.15 8.21 3.63 6.79 20.38 13.46 11.22 14.22 19.19 9.24 7.87 10.37

Likewise, the model trained fully with randomized data
(Full DR) does not have a satisfactory performance at the
tests with real data, even in the most straightforward sce-
narios. This behavior is expected due to the large difference
between the non-photorealistic randomized synthetic scenarios
and the real world, causing a huge reality gap. In fact, some
existing attributes of the original object could not be mapped
in the frames rendered, such as object texture, color, and
deformations caused in the printing process. This makes the
difference between the distributions generated through real and
synthetic data be even greater, in addition to the influence of
the reality gap and variations that existing on sensors used in
real cameras. These mentioned factors make our synthetic data
generation process of little use when used alone to evaluate
real scenarios. However the DR information can be used to
guide the training to achieve a better result making the syn-
thetic data to perform models adjustments and regularization
on training. For this reason, we carry out the next experiments
with combinations of real and synthetic data hoping that the
use of synthetic data will help to avoid overfitting for the real
images on the specific training scenario and improve model
generalization on different data distributions.

It is also possible to note that all models failed in the
S Extreme scenario. Even the model trained using the same
camera (Full S) showing how serious the generalization prob-
lems are when there is a change in motion and illumination
conditions. Those scenarios are very common especially in
mobile, as the devices often go to different locations with
different illuminations and are constantly in motion.

B. Mixed Models

As we can see in Table I, mixing synthetic and real
data produces a slight improvement for test cases with the
same properties as the images used in training (Mix S30 and
Mix S60 in S Simple, all Mix X in X Simple). This strategy
reduces the reality gap issues for the model trained solely with

synthetic data (Full DR) while improving generalization and
reducing overfitting with respect to the ones trained with only
real data (Full X, Full S).

This generalization effect also improves performance with
different camera hardware under similar scenarios to the ones
seen training (all Mix S with X Simple, all Mix X with
S Simple). Results are still about 25 to 50% lower than with
the original camera, but it is a considerable improvement from
the results in Section VI-A. Results in more complex scenarios
with variations in lighting and movement were slightly better,
but not significantly. This is expected as S Motion, X Motion,
and S Extreme introduce motion blur, which was not added
to the randomized training nor the real training sequences.
It is also interesting to point out that Mix S60 has obtained
the best results from both the mixed and full models when
handling minor illumination changes, a challenge that was
present in the randomized data. It is also important to consider
that training was more challenging here, given the simplicity
and lack of features of the object of interest, coupled with the
relatively low number of frames used for each model and the
high amount of randomization in the synthetic scenes. Training
in this mixed manner with a much higher number of frames,
as performed by [2], might further improve results.

Overall, results show that mixing synthetic and real data
obtains results that are either comparable or superior, showing
that it is possible to train networks more easily with smaller
amounts and simpler scenarios of real data, mixed with random
synthetic frames. Even if improvements are not yet significant
in precision, being easier and faster while remaining at least
comparable is an interesting outcome.

C. Fine-Tuned Models

This scenario covers models trained initially with synthetic
data and then supplemented (fine-tuned) with real data. As
mentioned in section V-B the synthetic pretraining is per-
formed using all synthetic set available and later models are



adjusted using different percentages of the training set with
real images. It was (by far) the best alternative, obtaining
the best overall results in 16 out of the 18 scores and being
comparable in the remaining 2. It is interesting to note that
the best variations were using 30 and 60% of real data
as supplementation, showing that not necessarily more real
information is beneficial.

Moreover, the performance numbers obtained with different
camera hardware (e.g., all Fine X when compared to Full X
and all Mix X on the scene S Simple) shows that this form
of training is an effective way to simulate variations in camera
sensor and gain robustness to this challenge, which was mostly
overwhelming to the other approaches from Sections VI-A
and VI-B. The fine-tuned approach also had the best results
in the scenes with fast motion (X Motion, S Motion, and
S Extreme), showing that randomization is able to somewhat
generalize the model even when the motion blur challenge
itself is not present in the synthetic data. The approach also
outperformed the others for illumination challenges.

Results indicate how crucial model initialization is to the
training process. They also display how well synthetic, ran-
domized data can accelerate convergence, requiring less real
data and being more efficient in avoiding overfitting than the
approaches mentioned in Sections VI-A and VI-B.

D. ADD Threshold Variation

Figure 5 gives a general idea of how models behave (in
the simple scenarios X Simple and S Simple) as the ADD
threshold increases, accepting poses that are farther away from
the ground truth. This can give an indication of which model
is, overall, predicting values closer to the ground truth. Though
such values may be still unacceptable in terms of real-world
usage for 6DoF detection, they can give indications of which
variations show more promise to be trained further.

Note that models fine-tuned with just 10% of real data
perform better overall than most of those trained with another
camera. It is thus visible in the charts that models trained with
the same camera as the sequence have a general advantage.
That is especially true for the iPhone X chart, where same-
camera models are also able to reach higher accuracies faster
(10 ∼ 20% against 20 ∼ 40% of the S8). This might be
an indication of how much a higher-end camera influences
training (even with the same image resolution as the S8).
This hardware caveat is especially valid because while a
value around 10% might be acceptable, for most applications,
20 ∼ 40% certainly is not. Yet, the fine-tuning approach’s
efficacy is also validated, as the iPhone X’s fine-tuned results
have outperformed most mixed results for the Galaxy S8 in
its own chart. Finally, we want to once more draw attention
to how synthetic data, and how the data was introduced,
have alleviated sensor differences (which were shown to be
a significant challenge). This is an indicator of how to train
more generic user-focused models in the future.

Because we have shown that initializing the model with
synthetic data is highly preferable, we would like to further
suggest that, for our 3D printed scenario, a model could

begin to be trained synthetically while the 3D object is still
being printed. The pre-trained estimator can then be fine-tuned
afterward by a small set of images (which can be captured
by the user’s camera sensor), obtaining superior precision.
This can be a much quicker and cost-effective way to detect
3D objects, as opposed to trying to generate a very large
real or photorealistic dataset. Is would also be better suited
to the user’s camera lens, and possibly robust to different,
challenging scenarios due to randomization.

Fig. 5. Results for representative models when varying the ADD threshold.
Top chart shows results for the X Simple sequence, bottom chart S Simple.

VII. CONCLUSION

In this work, we have conducted an extensive analysis to
evaluate how different training strategies a model with DR
impacted the output of a 6DoF pose estimator. We have
included numeric analyses and discussions on little-explored,
relevant aspects such as variations in camera sensor and
illumination. Results have shown that initializing a model
with synthetic, randomize data can improve its convergence
even with a low number of input frames. They have also
shown that more real data is not necessarily a good thing. Our
results indicate that synthetic data can better prepare a model
for different real scenarios, especially in an industry case
of many different users with different cameras. Finally, we
have made available two datasets, one real and one synthetic,
which use the same textureless object and can be combined
for training. A more efficient way to train models to detect
3D printable objects was also suggested as a consequence
of the obtained results. For future work, we must perform
a careful ablation study to identify better how each DR aspect
impacts 6DoF. It would also be interesting to reproduce this
work, but using photorealistic synthetic data instead of real



data. More complex challenges such as occlusions, same-color
clutter, outdoor illumination, noise, and varying environments
also need evaluation. For those, we must further improve our
data generation tools. Testing with a wider array of objects
(with geometries of increasing complexity) and camera sensors
(of different qualities) is also desirable.
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