
A Bucket LBVH Construction and Traversal
Algorithm for Volumetric Sparse Data

I.B. Fernandes and M. Walter
Institute of Informatics - PPGC

Universidade Federal do Rio Grande do Sul - Brasil

Fig. 1: Datasets used as tests cases rendered in our in-house Narval Engine. From left to right: Harvard Dragon, Fireball,
Explosion, Disney Cloud and Bunny cloud.

Abstract—Many volumetric rendering algorithms use spatial
3D grids as the underlying data structure. Efficient represen-
tation, construction, and traversal of these grids are essential
to achieve real-time performance, particularly for time-varying
data such as in fluid simulations. In this paper, we present
improvements on algorithms for building and traversing Bound-
ing Volume Hierarchies (BVH) designed for sparse volumes.
Our main insight was to simplify data layout representation
by grouping voxels in buckets, preserving their spatiality using
Morton codes, instead of using bricks, as current solutions use.
Our solution does not use pointers nor stacks, allowing for its
usage directly on computing shaders and provides, on average,
9.3x improvement in construction speed, compared with state-
of-the-art approaches for Linear Bounding Volume Hierarchies
(LBVH).

I. INTRODUCTION

Volumetric rendering is a field in computer graphics focused
on techniques to render spatial data often not defined by
geometric primitives, such as medical computed tomography
scans and participating media. These data are typically stored
in 3D uniform grids. Accurate volumetric rendering has been
a challenge to do in real-time, due to the memory footprint
needed to store increasingly larger data sets and the required
time to render them. Most real-time systems in the game
industry using volumetric rendering are constrained to small
resolution grid sizes to fit both speed and memory constraints
[1]. Specialized data structures can ease the problem, and a
BVH built-in linear time and implemented in GPU is currently
the state-of-the-art for these tasks [2].

In this work, we present a stackless and pointerless algo-
rithm to build and traverse LBVHs using buckets. Without
stacks nor pointers, we can quickly transfer our algorithms
to shaders, which are the most common way for real-time
rendering on the game industry. Since we do not use bricks

and directly store voxels, we avoid the potential overhead that
comes with vastly sparse volumes, where if a brick has only a
single non-empty voxel, we still need to store all other voxels
within this brick.

Our proposal does not present the binary tree limitation,
being easily adapted to a quadtree, octree, or any other power
of two n-dimensional tree by changing how we calculate
the parent-children relationship between nodes. Different tree
structures work differently for each data distribution, whereas
in some cases, a shorter tree performs better than a deeper
tree. We also aimed to implement a more straightforward
algorithm linearized in memory that performs better for real-
time rendering usage.

II. RELATED WORK

As soon as ray tracing was introduced [3], the need for
Bounding Volume Hierarchies (BVH) was clear [4]. A bit
later, with the availability of computed tomography (CT)
scans, marching cubes [5] also used spatial data structures
to store volume data, which are converted into 2D images.
As rays cross the space to compute intersections, we need
efficient ways to traverse it when searching for geometric
or volumetric primitives. With a hierarchical data structure
segmenting regions by existing objects, we can quickly remove
large portions of the space. A vast amount of work improved
on these initial ideas.

Efficient support for dynamic data sets appeared around
2006, with a focus on rebuilding BVHs [6]. Almost at the
same time, we start to see GPU implementations for dynamic
BVHs. Torres, Martin and Gavilanes [7] addressed the lack
of recursion on GPUs and proposed a roped version of BVH
using CUDA. Ropes are pointers to the next node in a preorder
tree traversal.



To be amenable to run in GPUs, Lauterbach and colleagues
[8] introduced the idea of a Linear BVH (LBVH), by first
traversing the input primitives according to a Morton space-
filling curve and thus “linearizing” the primitives. The Morton
codes are then sorted and processed in this order. Their work
achieved substantial gains in the construction step, with a
positive net effect when both construction and traversal are
taken into account, but only for surface primitives.

Pantaleoni and Luebke presented HLBVH, a hierarchical
approach for LBHV [9]. By building a hierarchy using Morton
codes [10], thus preserving spatial mesh coherence, they
reported 2-3x speedup over a reference implementation of the
LBVH [8].

Murguia and colleagues improved on the idea of LBVH
by presenting a stackless approach called SLBVH. Their first
contribution presented a CPU-version later extended for GPUs.
Both approaches improved construction times while preserving
traversal and were used for surface primitives only, such as
triangles. Their technique presented in [11] benefits from a
fast way to find left and right children of a parent node in a
binary tree, reducing memory accesses. Their CPU implemen-
tation also introduced a stackless and pointerless approach for
building a heap as an LBVH. Their second paper [12] was
mainly concerned with introducing a GPU implementation of
their previous work, together with a speeding up scheme where
traversals could start at the last visited node instead of the
root using a “bit-trail” approach. Another variant presented
by Hapala and colleagues [13], used a parent pointer within
each node of a BVH, plus simple state logic to infer which
node to traverse next.

Together with these previous approaches, we start to see
specialized solutions for volume rendering, where the primi-
tives are not surfaces, but voxels. In the work done by Fogal
and colleagues [14], the authors explore several combinations
of previously studied strategies and propose a new renderer.
Particularly interesting is their analysis of brick sizes for
some datasets. A brick is a uniform box-shaped subdivision
of the volume space. Bricking allows us to load and render
as required, instead of using the whole volume [15]. In 2014,
Beyer, Hadwiger, and Pfister presented a report on GPU-Based
Large-Scale Volume Visualization [15]. Although six years old
now, it provides a pedagogical text for many concepts in this
research line.

More recently, Zellmann and his group managed to expand
on the original LBVH idea [8], adapting it to deal with
direct volume rendering with sparse volumes [2], since the
LBVH formerly assumed only triangles as primitives. Instead
of sorting triangles, they used bricks of fixed size. One of
their limitations is that their algorithm in CUDA could not
be ported to shaders, since they used pointers and stacks for
their implementation. In the next section, we detail Zellman’s
approach since we used it as our departure point.

Finally, Stoter and colleagues presented yet another variant
for LBVH called Octree LBVH (OLBVH) [16]. It is a spe-
cialized octree-based data structure targeted for unstructured
volumetric meshes, such as the ones that appear in finite

element simulations and 3D printing tasks.

III. BUCKET LBVH ALGORITHM

Zellman et al. [2] approach to a LBVH first decomposes
the 3D uniform grid into bricks of fixed resolution 83. On
the next step, they run a CUDA kernel where each thread is
responsible for deciding whether a voxel is visible or not for
the current transfer function. Each thread is made responsible
for one brick and atomically votes if the brick is visible or not.
Then it sets a bit flag accordingly, followed by a compaction
operation to remove empty bricks. For each non-empty brick,
they assign a 30-bit 3D Morton code that is used to sort them
calling functions from the Thrust library [17]. The order of
sorted Morton codes implicitly defines a spatial hierarchy for
all bricks, spatially splitting children nodes in the middle. Split
positions can be read from the bit codes of the Morton indices
and computed using Karras’ algorithm [18]. In the last step,
a CUDA kernel traverses the tree hierarchy on a bottom-up
fashion while assembling the Axis Aligned Bounding Box
(AABB) of each node.

Morton codes allow sorting points alongside a space-filling
curve that preserves data locality. Figure 2 shows how these
codes are distributed in a 3D space. For example, the Morton
encoded coordinate (31, 9, 11) is equal to 20271, as shown
below.

(31, 9, 11) = (111112, 010012, 010112)

1000000000000002 = (111112, 010012, 010112)
1001110000000002 = (111112, 010012, 010112)
1001111000000002 = (111112, 010012, 010112)
1001111001010002 = (111112, 010012, 010112)
1001111001011112 = (111112, 010012, 010112)

1001111001011112 = 2027110

First, convert each axis coordinate into its binary form. For
each most significant bit of each coordinate axis in the indices
nx, ny , and nz , pack them in the ZYX order and put them
into the most significant “pack” n of the Morton code.

In our CUDA implementation, we do not code bricks, but
each AABB coordinate representing a voxel. Our approach
consists of encoding each non-empty voxel using 30 bit
Morton codes, 10 bits for each axis, and sort them using the
Thrust library, as illustrated in Figure 3, steps 1 and 2. On
step 3, we calculate the minimum amount of buckets needed
and fill them with their respective Morton codes. With all
buckets filled, we proceed to shift all non-empty buckets to
the left and map each bucket to a tree leaf, as demonstrated
in steps 4, 5, and 6. The final step is to propagate each
node’s AABB along the tree in a bottom-up fashion. Each tree
node comprises of two 32 bit integers representing its AABB
minimum and maximum coordinates encoded as a simple 10-
bit shift of each axis in the ZYX order, as shown in the
example below. Using 32 bits integers, the system is limited to
a grid with a maximum resolution of 10243, or 210 per axis.
It can be trivially extended to use 64 bits integers, expanding
the maximum resolution to 2, 097, 1523, or 221 per axis.



Fig. 2: Morton code filling curve presented in a 3D space
where each yellow dot illustrates a voxel alongside its 3D
space coordinates and corresponding Morton encoding.

(1023, 829, 560) =

560� 20 = 00110011000100000000000000000000
829� 10 = 00110011000111001111010000000000
1023� 0 = 00110011000111001111011111111111

Each tree leaf also has a corresponding value stored in an
offset array that encodes both the number of voxels inside its
bucket and the starting index at which these values begin in
the sorted Morton codes array. In Section III-A we discuss
in details how we construct the tree and in Section III-B we
discuss its traversal.

A. Construction

The Stackless and Pointerless Bucket Linear Bounding
Volume Hierarchy (BLBVH) construction starts by generating
a Morton code [10] for each non-empty voxel in the grid.
Since volumes stored as 3D uniform grids contain voxels
with fixed-sized AABBs, we deliberately chose the minimum
corner of each voxel to be encoded by a Morton code. It could
be any point as long as the same procedure is used for all
voxels within the grid. Given the minimum corner, it is trivial
to calculate the maximum corner that forms each AABB by
adding one or any other size given to a voxel, thus eliminating
the need to store both corners in memory.

Once the array of Morton codes is computed, we proceed to
sort them. Before generating leaf nodes, we create an array of
offsets, used to calculate at which index the elements of each
bucket start on the sorted Morton codes array, and how many
voxels are inside each bucket. Given the highest Morton code
value h and bucket size b, the minimum amount of offsets
and buckets necessary to store all Morton codes is given by
h
b . Each offset is filled with the number of corresponding
Morton codes that fall within its range. Next, we do a parallel
inclusive scan on all offsets, resulting in each element being
a cumulative sum of all previous values in the array.

We generate tree leaves using the previously calculated
array of Morton codes and offsets. The number of elements
in each bucket is given by offsets[i]−offsets[i−1], where
offsets[i] corresponds to an index in the Morton codes array
at which this buckets elements start. We calculate the AABB
of each bucket by getting the minimum and maximum of all
the voxels it contains. For all buckets that are still empty, i.e.,
offsets[i] - offsets[i− 1] = 0, we set a flag on the first bit
of the Morton code on both node’s min and max, indicating
that this node is empty, thus saving the need for an intersection
test when ray casting.

For every tree level, we launch a kernel that calculates its
current node min and max based on its children AABBs. The
final memory layout of the tree is an array of mins and maxes
representing the AABB of each node. The whole process is
illustrated in Figure 3 and written down as pseudo-code in
Algorithm 1.

Algorithm 1: Bucket LBVH binary tree construction
procedure treeConstruction():

foreach Voxel v in Grid do
if v is non-empty then

MortonCodes[i] = encodeMorton(v)
end

end
sort(MortonCodes)
findAndCompactEmptyBuckets()
depth = log2(quantity of non-empty buckets) + 1

//Each bucket maps to a leaf
foreach bucket b do

if b is empty then
setEmptyBitFlag(node)

else
tempAABB
foreach Voxel v inside b do

tempAABB = minmax(tempAABB, v)
end
simpleEncode(node, tempAABB)

end
end

foreach level l from [0, depth - 2] do
foreach node n in this level do

if n.leftChild and n.rightChild is empty then
setEmptyBitFlag(n)

else
AABB = minmax(n.leftChild, n.rightChild)
simpleEncode(n, AABB)

end
end

end

B. Traversal

Traversal occurs similarly to the classical Depth First Search
(DFS) on LBVHs. For every visited node, starting from the
root, we first check for the empty bit flag. If it is empty, we do
not check for any intersection and move on to the next node to
be visited. If the current node is not empty, and an intersection
test succeeds, we test its left child. Since we want a flexible
way to handle any power of 2 trees, we use a more generic



Fig. 3: Tree construction step by step. In step 1 the coordinates of each voxel are encoded using Morton Codes. In step 2 the
voxels are sorted based on their Morton codes and the minimum amount of buckets is calculated. In step 3 each bucket is
filled with the voxels that fall within its range. In step 4 all buckets that did not receive a voxel, i.e. are empty, are removed
from the list. In step 5 all non-empty buckets are shifted to the left and the remaining ones on the right are set with a bit flag
indicating emptiness. This is done to respect the minimum necessary power of two size of the tree. In step 6 all buckets are
mapped to a leaf and their corresponding AABBs are calculated based on the voxels it contains. In step 7 the tree is generated
in a bottom-up fashion by propagating the AABB of each node.

approach to visit its children, instead of the classical formulae
used in binary trees where the left child index is calculated as
2n, and the right child index is calculated as 2n+ 1, being n
the parent node index.

We calculate the left and right children as described in Al-
gorithm 2, where sumOfBase2 is calculated as a cumulative
sum of powers of two up to the current level and powBase2
is a power of 2 exponentiation, calculated using a simple
and efficient bit shift operation. To improve performance,
all sumOfBase2 values up to the tree depth can be pre-
calculated, instead of calculating them in real-time using a for
loop.

If the current node is a leaf node and it is not empty,
we get the number of elements contained in this bucket by
calculating offset[i] − offset[i − 1] where i is calculated
as currentNodeIndex− firstNodeAtDeepestLevelIndex
and offset[i] is the starting index for its elements on the
Morton codes array. For each Morton code within this bucket,
we decode it back to its 3D coordinates, calculate its AABB
and check for an intersection. If this leaf node is the rightmost
child of its parent, then the next node to be visited is its parent
index plus one. The ray traversal is shown in Figure 4, and its
pseudo-code presented in Algorithm 3.

Algorithm 2: How to calculate the left and right
children of a given parent node

procedure getLeftChild(node, level):
int leftmost = sumOfBase2(level) - powBase2(level) + 1
int rightmost = sumOfBase2(level)
return node + (rightmost - node) + 2 * (node - leftmost)

+ 1
procedure getRightChild(node, level):

return getLeftChild(node, level) + 1

Fig. 4: Tree traversal on a grid 43 with bucket size 8.

IV. RESULTS

We performed all tests on a machine equipped with an Intel
i7-4770 3.40GHz, 16 GB RAM DDR3, and a GTX 1060 6GB,
running on a Windows Seven 64 bits. We performed our tests
on Walt Disney Animation Studios Cloud Data Set [19] and
OpenVDB Data Sets [20], all of which are publicly available.
Namely, Dragon Harvard, Smoke, Explosion, Bunny cloud,
and Cloud were chosen. Particularly for the Cloud dataset,
we chose two versions: 1/8 and 1/4 of its original size. We
present the datasets in Figure 1, rendered with our in-house
renderer.

We evaluate average tree construction time, average tree
traversal time, and memory usage for varying bucket sizes. We
compared all evaluations to our implementation of Zellmann
et al. [2], named as Reference, using a brick size of 83. We
computed the final construction time for every dataset and
bucket size by adding how much time each function took to
finish using CUDA events. Traversal time was calculated for
each face of the AABB comprising the volume. We cast rays
perpendicular to each face pointing towards the volume, as if



Algorithm 3: Bucket LBVH Tree traversal
procedure traverse(Ray):

currentNode = 1
currentLevel = 0
while currentNode 6= numberOfNodes do

bool miss
if currentNode is empty then

miss = true
else

miss = intersect(ray, currentNode.AABB)
end

if miss is true then
if currentNode ==

rightmostNodeOfCurrentLevel then
break

end
if currentNode is parent’s rightmost child then

currentNode = getParent(currentNode) + 1
currentLevel = currentLevel - 1

else
currentNode = currentNode + 1

end
continue

end

if currentNode is a leaf then
foreach MortonCode m in this leaf’s bucket do

intersect(ray, getAABB(m))
end
if currentNode = numberOfNodes then

break
end
if currentNode is parent’s rightmost child then

currentNode = getParent(currentNode) + 1
currentLevel = currentLevel - 1

else
currentNode = currentNode + 1

end
else

currentNode = getLeftmostChild(currentNode)
currentLevel = currentLevel + 1

end
end

seeing the volume perfectly aligned with the screen, and each
voxel occupying a single pixel. We measured the time taken to
complete each tree traversal for each ray and then summed all
of them to obtain an average traversal time for all rays. Once
we finish all faces, we averaged the averages of all faces.

We calculated memory consumption using the number of
nodes on each tree multiplied by its size in bytes. Because in
our case, we store Morton codes and offsets in an auxiliary
array, we also added these. Figure 5 shows the memory usage
of our novel algorithm for the three largest grids we tested
as well as for our Zellman et al. implementation. Note that
the smaller a bucket is, the higher our memory overhead is.
This happens because we need to store an offset for each
bucket and, with more buckets, more offsets to store. The only
constant part for each bucket size is the Morton codes array,
reflecting the grid size in terms of non-empty voxels.

Our memory usage has a higher overhead compared to [2]
that comes from storing Morton codes for each non-empty
voxel. In contrast, they store a Morton code for each brick of

size 83, thus saving more memory than our implementation.
However, since GPUs nowadays have increasingly memory
sizes, and for many real-time applications such as games, the
grid sizes are smaller, it does not impact as much. For example,
this is shown in an implementation done by Andrew Schneider
[21], where his real-time volumetric cloudscapes used 3D
textures sizes of 323 and 1283 in the game Horizon Zero
Dawn. His technique had limited grid sizes due to rendering
performance when raymarching and storage limitations due to
other components of the game. Many games and game engines
that followed his technique also had limitations in grid sizes
to meet real-time constraints, such as Frostbite [22] and Red
Dead Redemption 2 [23]. The trade-off between performance
and memory may be well suited for such applications where
grid sizes are smaller or memory is not a limitation.

Following on these limitations, we can project a case
scenario with our Bucket LBVH algorithm. Given a grid of
resolution 1283 with all voxels having a density higher than
zero comprised of a 32 bits float and a bucket size of 32, we
can calculate the total memory overhead from our algorithm:
8.38 MB for all 2,097,152 Morton codes, 1.04 MB for all
131,071 nodes and 0.26 MB for all 65,536 offsets, totaling
9,68 MB for the whole structure. Therefore, the total memory
fits in any GPU nowadays, as shown in the Steam hardware
survey [24], where less than 12.87% of its user base have
GPUs equipped with less than 2GB of VRAM, which implies
more than enough space to store these grids while leaving
plenty of room to all other data a game may need.

Furthermore, even though Zellman et al. works on top of
bricks, which in consequence, consume less memory, they
have to loop through all voxels to create the struct that
encapsulates each brick. When sorting all these Morton codes,
we compared looping through an array of integers versus
looping through an array of structs. The former performed
better than the later when using thrust to sort, which partially
contributes to our construction time gains.

Table I shows the best and worst construction times for
each bucket size alongside its performance gains. We improved
construction performance by a varying degree of 3x-12x times
more. On average, our construction time improved perfor-
mance by 9.3 times. As expected, our worst cases were on
smaller bucket sizes, since the smaller a bucket is, the deeper
a tree is and longer it takes to generate it.

Table II showcases the best average traversal time for each
grid and bucket size alongside its performance gain. As a
rule, the smaller a bucket, the better balanced the tree is, and
thus tree traversal takes less time. With bigger buckets, which
contains more voxels, we must perform more intersection tests,
which is costly performance-wise. The caveat here is, the
smaller a bucket, the worse construction time is. Not only
is construction time worse, but also memory consumption.
For our best cases in traversal times, with bucket sizes of
4, we performed 2.2 times better on average. This becomes
clear in Figure 6, where, from a given point, we note that
increasing bucket sizes makes our algorithm perform worse in
traversal times than Zellman et al. This performance is a trade-



(a) Case I - Bunny (b) Case II - Cloud quarter (c) Case III - Explosion

Fig. 5: Memory usage in MB for each bucket size for three of the largest grids. Reference is fixed at a brick size of 83.

off between traversing the tree, which is O(log(n)), traversing
the array of voxels within each bucket, which is O(n), and
AABB intersection tests.

Our best-case scenario lies around bucket sizes of 64
and 128, where we have better traversal times, winning in
most cases against our reference, while also getting excellent
construction times and small memory overhead. An important
point here is that we only use power of two bucket sizes. This
is due to the nature of Morton codes and its Z shape in 3D
space, where power of two sizes helps preserve data locality
better when grouping them in buckets.

V. CONCLUSION AND FUTURE WORK

We have presented a novel Bucket LBVH algorithm for
constructing and traversing sparse volumes. Our algorithm im-
proves construction performance by an average of 9.3 times on
tested grids. Some of its limitations are high memory overhead
with smaller buckets and worse traversal performance for too
large bucket sizes.

For future work, we aim to test larger grids, with resolutions
of 10243 and onwards. Another point of improvement is to
experiment with trees of other dimensions such as quadtrees
and octrees, to see how well they perform for each bucket size.
With these other tree dimensions, we could also correlate and
test a heuristic to determine which tree model is best for each
volume based on how sparse it is.

A next step to further verify the robustness of our algorithm
would be to test grids from medical data and animated fluids.
Another significant factor to play a role in future work
is to evaluate performance and implementation on shaders
and measure not only traversal times but render times using
volumetric equations.

Furthermore, our implementation is publicly available at
github.com/ibfernandes/bucketlbvh.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001. We also thanks CNPq for
scholarship funding for the first author.

REFERENCES

[1] A. Schneider, “Real-time volumetric cloudscapes,” in GPU Pro 7,
W. Engel, Ed. CRC Press, 2016, pp. 97–127.

[2] S. Zellmannn, M. Hellmann, and U. Lang, “A linear time bvh construc-
tion algorithm for sparse volumes,” in 2019 IEEE Pacific Visualization
Symposium (PacificVis). IEEE, 2019, pp. 222–226.

[3] T. Whitted, “An improved illumination model for shaded display,”
Commun. ACM, vol. 23, no. 6, p. 343–349, Jun. 1980.

[4] S. M. Rubin and T. Whitted, “A 3-dimensional representation for
fast rendering of complex scenes,” in Proceedings of the 7th annual
conference on Computer graphics and interactive techniques, 1980, pp.
110–116.

[5] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3d surface construction algorithm,” ACM siggraph computer graphics,
vol. 21, no. 4, pp. 163–169, 1987.

[6] I. Wald, S. Boulos, and P. Shirley, “Ray tracing deformable scenes using
dynamic bounding volume hierarchies,” ACM Transactions on Graphics
(TOG), vol. 26, no. 1, pp. 6–es, 2007.

[7] R. Torres, P. J. Martı́n, and A. Gavilanes, “Ray casting using a
roped bvh with cuda,” in Proceedings of the 25th Spring Conference
on Computer Graphics, ser. SCCG ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 95–102. [Online].
Available: https://doi.org/10.1145/1980462.1980483

[8] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha,
“Fast bvh construction on gpus,” in Computer Graphics Forum, vol. 28,
no. 2. Wiley Online Library, 2009, pp. 375–384.

[9] J. Pantaleoni and D. Luebke, “Hlbvh: hierarchical lbvh construction
for real-time ray tracing of dynamic geometry,” in Proceedings of the
Conference on High Performance Graphics, 2010, pp. 87–95.

[10] G. Morton, A Computer Oriented Geodetic Data Base and a New
Technique in File Sequencing. International Business Machines
Company, 1966. [Online]. Available: https://books.google.com.br/
books?id=9FFdHAAACAAJ

[11] F. A. Sergio Murguia, Arturo Garcia and L. Reyes, “Stack-less lbvh
traversal for real-time ray tracing,” in Proceedings of CGI 2011, 2011.

[12] L. R. Sergio Murguia, Francisco Avila and A. Garcıa, “Bit-trail traver-
sal for stackless lbvh on directcompute,” in GPU Pro 4: Advanced
Rendering Techniques, W. Engel, C. Oat, C. Dachsbacher, M. Valient,
W. Bahnassi, and S. St-Laurent, Eds. AK Peters, 2013, pp. 319–336.

[13] M. Hapala, T. Davidovič, I. Wald, V. Havran, and P. Slusallek,
“Efficient stack-less bvh traversal for ray tracing,” in Proceedings of
the 27th Spring Conference on Computer Graphics, ser. SCCG ’11.
New York, NY, USA: Association for Computing Machinery, 2011, p.
7–12. [Online]. Available: https://doi.org/10.1145/2461217.2461219

[14] T. Fogal, A. Schiewe, and J. Krüger, “An analysis of scalable gpu-based
ray-guided volume rendering,” in 2013 IEEE Symposium on Large-Scale
Data Analysis and Visualization (LDAV). IEEE, 2013, pp. 43–51.

[15] J. Beyer, M. Hadwiger, and H. Pfister, “A survey of gpu-based large-scale
volume visualization,” in Eurographics Conference on Visualization (Eu-
roVis)(2014). IEEE Visualization and Graphics Technical Committee
(IEEE VGTC), 2014.

[16] D. Stroter, J. S. Mueller-Roemer, A. Stork, and D. W. Fellner, “Olbvh:
octree linear bounding volume hierarchy for volumetric meshes,” The
Visual Computer, 2020.

https://github.com/ibfernandes/bucketlbvh
https://doi.org/10.1145/1980462.1980483
https://books.google.com.br/books?id=9FFdHAAACAAJ
https://books.google.com.br/books?id=9FFdHAAACAAJ
https://doi.org/10.1145/2461217.2461219


TABLE I: Best and worst cases in construction time (ms)

Worst case Best case
Grid Resolution Bucket size Bucket LBVH Bucket size Bucket LBVH Reference Performance Gain
Havard Dragon 101x50x100 4 1.31603 2048 1.34623 4.82716 3.6x
Cloud Eighth 249x169x306 4 18.4432 2048 13.3931 114.387 6.2x – 8.5x
Fireball 268x298x267 4 25.1156 2048 20.5236 198.679 7.9x – 9.6x
Explosion 328x349x311 4 35.4059 2048 30.6663 333.416 9.4x – 10.8x
Cloud Quarter 497x337x612 4 130.448 2048 89.9799 1015.84 7.78x – 11.2x
Bunny Cloud 576x571x437 4 141.325 2048 119.868 1468.04 10.3x – 12.2x

TABLE II: Best cases in traversal time (ms)

Grid Resolution Bucket size Bucket LBVH Reference Performance gain
Havard Dragon 101x50x100 4 0.000857581 0.00138955 1.62x
Cloud Eighth 249x169x306 4 0.00137175 0.00286178 2.08x
Fireball 268x298x267 4 0.0010806 0.00207262 1.91x
Explosion 328x349x311 4 0.000760094 0.00204735 2.7x
Cloud Quarter 497x337x612 4 0.00236053 0.00510869 2.16x
Bunny Cloud 576x571x437 4 0.00185723 0.00555913 3.0x

(a) Case I - Harvard Dragon (b) Case II - Fireball (c) Case III - Explosion

(d) Case IV - Bunny cloud (e) Case V - Cloud eighth size (f) Case VI - Cloud quarter size

Fig. 6: Average traversal times in milliseconds for each grid and bucket size configuration. The yellow line represents Zellman
et al. traversal time, with brick size fixed at 83, and the blue line is the Bucket LBVH traversal time.

[17] N. Bell and J. Hoberock, “Chapter 26 - thrust: A productivity-oriented
library for cuda,” in GPU Computing Gems Jade Edition, ser.
Applications of GPU Computing Series, W. mei W. Hwu, Ed. Boston:
Morgan Kaufmann, 2012, pp. 359 – 371. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/B9780123859631000265

[18] T. Karras, “Maximizing Parallelism in the Construction of BVHs,
Octrees, and k-d Trees,” in Eurographics/ ACM SIGGRAPH Symposium
on High Performance Graphics, C. Dachsbacher, J. Munkberg, and
J. Pantaleoni, Eds. The Eurographics Association, 2012.

[19] Walt disney animation studios cloud data set. [Online]. Available:
https://www.technology.disneyanimation.com/clouds

[20] Openvdb data sets. [Online]. Available: https://www.openvdb.org/
download/

[21] W. Engel, GPU Pro 7 - Advanced Rendering Techniques, 1st ed. A K
Peters/CRC Press, 2016.

[22] S. Hillaire. (2016) Physically based sky, atmosphere
and cloud rendering in frostbite. [Online]. Avail-

able: https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/
s2016-pbs-frostbite-sky-clouds-new.pdf

[23] F. Bauer. (2019) Creating the atmospheric world of red dead
redemption 2: A complete and integrated solution. [Online]. Available:
http://advances.realtimerendering.com/s2019/index.htm

[24] (2020) Steam hardware and software survey.
[Online]. Available: https://store.steampowered.com/hwsurvey/
Steam-Hardware-Software-Survey-Welcome-to-Steam

http://www.sciencedirect.com/science/article/pii/B9780123859631000265
http://www.sciencedirect.com/science/article/pii/B9780123859631000265
https://www.technology.disneyanimation.com/clouds
https://www.openvdb.org/download/
https://www.openvdb.org/download/
https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/s2016-pbs-frostbite-sky-clouds-new.pdf
https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/s2016-pbs-frostbite-sky-clouds-new.pdf
http://advances.realtimerendering.com/s2019/index.htm
https://store.steampowered.com/hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam
https://store.steampowered.com/hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam

	Introduction
	Related work
	Bucket LBVH Algorithm
	Construction
	Traversal

	Results
	Conclusion and Future Work
	References

