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Department of Computer Science
Federal University of Ouro Preto

Ouro Preto, Brazil
Email: guillermo@ufop.edu.br

Abstract—Automatic violence detection in video surveillance
is crucial for social and personal security. Due to the massive
video data produced by surveillance cameras installed in different
environments like airports, trains, stadiums, schools, etc., tradi-
tional video monitoring by humans operators becomes inefficient.
In this context, develop systems capable of detect automatically
violent actions is a challenging task. This study describes a
method to detect and localize violent acts in video surveillance
using dynamic images, CNN’s, and weakly supervised localization
methods. Experimental results demonstrate the effectiveness of
our approach when applied to three public benchmark datasets:
Hockey Fight [1], Violent Flows [2], and UCFCrime2Local [3].
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I. INTRODUCTION

Nowadays, conventional video surveillance systems rely
heavily on human operators to monitor activities and re-
duce crime. Unfortunately, many incidents are erroneously
detected due to the inherent limitations of deploying humans to
watch multiple surveillance videos. Such a problem promotes
research of violence detection methods to analyze videos
robustly and feasibly. Violence actions can be defined as those
an 8-year-old child should not watch because of physical
violence [4]. In the video-based violence detection literature,
the approaches can be broken into two categories: hand-craft
methods and deep learning methods.

Handcraft methods represent video actions using a prede-
fined method to overcome specific problems like occlusions,
variable illumination, and scales. Generally, these kinds of
methods build descriptors around interest points [5]–[8], and
dense information [9]–[13]. Then, the descriptors are codified
using the Bag-of-visual-words technique. Finally, The codified
descriptors are fed to an SVM, Random Forest or AdaBoost
classifier.

On the other hand, deep learning methods train convolu-
tional networks to extract low and high-level features. Multi-
stream CNN architectures are proposed by [14]–[16] to obtain
visual and motion information from violent videos. A 3D-
CNN architecture is proposed in [17], [18] to extract spatio-
temporal information. In [19], the authors propose a hybrid
hand-crafted/CNN framework to encode motion information
in images. In [20], [21] convolutional and recurrent neural

networks are used to capture long spatio-temporal informa-
tion. Although actual methods achieve good results detecting
violent actions in videos, there are only a few methods that
can localize violent regions in frames like [22] and [23].

In [14], the authors propose a two-stream CNN architec-
ture and a SVM classifier. The approach consists of three
stages: feature extraction, classification training, and label
fusion. Each stream CNN uses an Imagenet pre-trained VGG-
f architecture. The first stream extracts visual features, while
the second extract motion features from consecutive frame
differences. Then, two SVM classifiers are trained with visual
and motion information, respectively. Finally, the detection
result is obtained with a label fusion method. The main
advantage of this method is its low processing time. However,
this method does not detect violent actions between people
at close range, making it challenging to detect violence in
settings with many people. Meng et al. [15] took a similar
approach of two-stream CNNs. They propose to integrate
CNNs with improved trajectories to capture long temporal
information. They use two VGG-19 networks to extract spatial
and temporal information. Spatial information is extracted
from video frames, and temporal information is extracted from
dense optical flow images.

Malveira et al. [16] focus on the idea of breaking down
violence into more specific concepts such as fighting, shooting,
explosions, presence of blood, fire, firearms, and knives. First,
they detect movements and combine frames to train a CNN
for each concept. The main disadvantage is their dependence
on video quality and their high computational cost due to the
large number of CNNs they use. In [24], the authors focus
on detecting violence in dense scenarios; for that, they train
two CNNs, one with RGB images and the other with Optical
Flow images. Although his method achieves high levels of
precision, one of the shortcomings of the technique is the high
computational cost.

The authors in [17] modify a 3D convolutional network
and propose a new preprocessing method based on keyframes
and video length. Their method performs a uniform sampling
in videos. A hybrid model of hand-crafted features and deep
learning is proposed in [19], they extract features by com-
bining the FAST corner detector, the BRISK descriptor, and
Hough Forests classifier to obtain representative images and



train a CNN. The disadvantages of its method are that it can
only detect a specific type of violence (fighting), and its best
precision result depends on the scene condition with a static
camera and a short distance between people and the camera.

Other studies explore temporal information that represents
violent actions using recurrent networks. In [20], propose
a method combining a pre-trained ResNet-50 by adding a
pyramid grouping method in the final layer and feeding a
bidirectional network LSTM. This method achieves low levels
of precision compared to other methods focused on deep
learning. Sudhakaran et al. [21] propose an improvement in
the architecture of [20], by replacing LSTM cells with convo-
lutional LSTM cells, achieving higher levels of precision.

In this research work, we propose and analyze a method
for detecting and locating violence in video sequences. The
method consists of four main stages. Initially, a video sequence
is summarized into an image using the rank pooling method
[25] in order to represent motion information through an image
called dynamic image [25]. Then, a CNN classifier is trained
on top of such dynamic images to learn the violent motion
appearance. This violence classifier detects whether a video
sequence (or dynamic image that summarizes it) has violence
or not. Due to the lack of a publicly available violence dataset
with spatial annotations, we propose a weakly-supervised
approach as the third stage of our approach. This stage
consists of generating a saliency mask from dynamic images
using the knowledge of the violence classifier and produce
region proposals with movement. Finally, a refinement method
processes the saliency masks with region proposals to get
bounding boxes with the violent regions only. This step is more
detailed in Section II-D. The experiments were conducted on
three public datasets like Hockey Fight [1], Violent Flows [2]
and UCFCrime2Local [3].

In summary, the main contributions of this work are:

• A methodology for temporal detection of violent actions
in videos.

• We propose an approach for identifying the spatial local-
ization in the frame where the violent action is performed.

• Our detector is based on dynamic images, i.e. a video is
resumed in one or very few images, making it possible
for our proposal to be used in real-time applications.

II. PROPOSED METHOD

In this section, we present our approach for violence de-
tection and localization in the video. The main stages of the
proposed method are illustrated in Fig. 1. Firstly, a video is
summarized into one or multiple dynamic images. Then, a
deep neural network is used to learn a video classifier on top
of such images. Next, if the classifier detects violence in the
video, a weakly supervised mask model is used to manipulate
the scores of the classifier by masking saliency regions of
a violent dynamic image, generating region proposals with
motion. Finally, a refinement method is applied to such region
proposals to get accurate violent regions. Each stage is detailed
in the following sections.

A. Video Summarizing
Initially, an input video is divided into N video segments

with length T (number of frames). Then, each segment is
summarized to a RGB image called dynamic image. Dynamic
images are constructed with the Rank Pooling [26] method.
Rank pooling represents a video as parameters of a linear
ranking function that is able to order through time a sequence
of frames I1, I2, ..., IT . Precisely, let ϕ(It) ∈ Rd be an
operator that stacks RGB channels of each pixel in image It
on a large vector and Vt = 1

t

∑t
T=1 ϕ(It) be the average of

these large vectors up to time t. The ranking function S(t|d)
predicts a ranking score for each frame at time t denoted
as S(t|d) = 〈d, Vt〉, where d ∈ Rd are the parameters of
the ranking function [26]. Learning d is posed as a convex
optimization problem using the RankSVM formulation given
as Equation 1.

d∗ = ρ(I1, ..., IT ;ϕ) = argmin
d

E(d)

E(d) =
λ

2
‖d‖2 +

2

T (T − 1)
×∑

q>t

max{0, 1− S(q|d) + S(t|d)}
(1)

Optimizing Equation 1 defines a function ρ(I1, ..., IT ;ϕ)
that maps a video sequence of length T to a single vector
denoted by d∗. This output d∗ has the same dimensions as
input images, and it is called dynamic image. In [25], an a
faster approximation of rank pooling called approximate rank
pooling was presented. In this work, we used this approxima-
tion in order to process video sequences in a fast manner.
Approximate rank pooling computes d∗ by the following
equation.

d∗ =

T∑
t=1

αtIt (2)

the coefficients α are given by α = 2(T − t + 1) − (T +
1)(HT −Ht−1), where Ht =

∑t
i=1 1/i is the t-th Harmonic

number and H0 = 0.

B. Violence Classifier
After video summarizing, a CNN is trained on top of

dynamic images in order to classify an input video as violent
or not violent. The goal of this model is to determine if an
input video has violent content or not, using violent motion
appearance. The CNN architecture is illustrated in Fig. 2. The
architecture is based on dynamic image networks proposed
in [25]. After splitting and summarizing an input video into
one or multiple dynamic images, the model extracts visual
features from them using the convolutional layers of a pre-
trained CNN. As illustrated in Fig. 2, the last convolutional
layer is followed by a temporal max pooling layer [25] in
order to aggregate feature maps over time into one, and it
extracts long temporal information. Similar to [27], a batch
normalization layer is added before the first fully-connected
layer.



Fig. 1. Stages of the proposed method. In the first step, a video sequence is summarized into dynamic images using the rank pooling method. Then, a
trained CNN classifies these images as a video sequence with violent or not violent content. If the video is categorized as violent, then a weakly-supervised
approach generates saliency maps with violence region proposals from dynamic images. Finally, in the fourth step, a refinement method is applied to get
bounded violent regions.

Fig. 2. The architecture of the violence classifier model. The model consists of a rank pooling layer (yellow), which can be thought of as a zero layer. The
convolutional layers (gray) correspond to a pre-trained CNN model. The last convolutional layer is followed by a temporal max-pooling (red), and a batch
normalization (blue) layer. The fully-connected layers are shown in green color.

C. Masking Model

Salient regions in a dynamic image are regions with move-
ment in a sequence of video frames. In order to produce a
saliency mask, we train a weakly supervised model proposed
in [28]. Fig. 3 illustrates the architecture of the masking model.
The model adapts a U-Net [29]. The encoder part is a ResNet-
50 [30] pre-trained in ImageNet [31], and it downsamples
the input by a factor of 32. The feature map from Scale 5
passes through a filter. The feature filter performs the initial
localization attenuating spatial locations which contents do not
correspond to the selected class (violence and non-violence).
The class selector is just a class embedding that multiplies the
feature map into the filter. The output of the feature filter Y
at the spatial location i, j is given by:

Yij = Xijσ(XT
ijCs) (3)

where Xij is the output of the Scale 5 at spatial location i, j.
Cs is the embedding of the selected class s and σ(.) is the
sigmoid nonlinearity.

The initial localization, given by the filter, is fine-tuned by
the decoder part of the model. The decoder part is composed of
transposed convolutions that upsample a low-resolution feature
map by a factor of two. Every upsampler block concatenates
the upsampled feature map with the corresponding feature

map from the decoder part. The model learns which parts
of a dynamic image are considered salient by the violence
classifier, minimizing the following objective function:

L(M) = λ1TV (M) + λ2AV (M)−
log(fc(Φ(X,M))) + λ3fc(Φ(X, 1−M))λ4

(4)

where X is the original dynamic image, M is the mask, and fc
the softmax probability of the class c of the violence classifier.
TV (M) is the total variation of the mask defined as:

TV (M) =
∑
i,j

(Mi,j −Mi,j+1)2 +
∑
i,j

(Mi,j −Mi+1,j)
2 (5)

AV (M) is the average of the mask elements and takes a
value between 0 and 1. The constants λi are regularizers. The
function Φ is the mask applied to the image, avoiding the
introduction of artifacts. It is defined as:

Φ(X,M) = X �M +A� (1−M) (6)

where A is a blurred version of X . This blurred image is
useful to minimize introduced evidence during image saliency
detection [28].

D. Refinement

Fig. 7 shows the outputs of our proposed refinement method.
In contrast to existing methods, our localization method finds



Fig. 3. Architecture of the masking model proposed in [28].

moving region proposals in dynamic images. After computing
a saliency mask, we use it to generate region proposals. To
detect moving regions under various motion contrast, we apply
an adaptive thresholding method [32] over the saliency mask.
To alleviate the problem of incomplete regions with some parts
of the actors only, we apply morphological transformations to
filter small regions and get complete moving region proposals.
The results of the salient motion detection (sixth column of
Fig. 7) are region proposals with violent movement. In most
cases, these proposals are smaller than a person because the
movements are centered in the arms and legs of the actors
during violent actions. Therefore, to alleviate this problem,
an object detector is applied to obtain regions with persons
(seventh column of Fig. 7). Then, the salient regions close to
a detected person are joined together to the person region.
The final localization is the region with the greater area.
Additionally, the person detector is useful to differentiate
between noise movement and human movement. In this study,
we experiment with two state-of-the-art pre-trained object
detectors like Yolo V3 [33] and Mask R-CNN [34]. The object
detector is applied only in some frames of the video segment
to reduce the computational cost.

III. EXPERIMENTS AND RESULTS

The proposed method in classifying and detecting vio-
lence in video evaluates its effectiveness in three benchmark
datasets, reporting metrics like classification accuracy and
localization error.

A. Datasets

The performance of the proposed method is evaluated on
three standard public datasets namely, Hockey Fight [1],
Violent-Flows [2] and UCFCrime2Local [3]. They contain
real-world videos captured using CCTV cameras.

Hockey Fight dataset: This dataset is composed of 1000
video clips with a resolution of 360×228 pixels, collected from
hockey games, and recorded by moving camera. All video
clips have between 40 and 50 frames. Half of them (500 clips)
are labeled as fight and another half as non-fight. Almost all
the videos in the dataset have a similar background, duration,
and subjects. Figure 4 shows some examples of the dataset.

Fig. 4. Frames captured from the Hockey Fight dataset. Frames in the first
row are violence samples while non-violence in the second row.

Fig. 5. Frames captured from the Violent-Flows dataset. Frames in the first
row are violence samples while non-violence in the second row.

Violent-Flows dataset: This dataset consists of videos in
crowded scenarios where the number of people taking part
in violent events is vast. Football matches compose most of
the videos in this dataset. The dataset has 246 videos with a
resolution of 320×240 pixels. Figure 5 shows some examples
of the dataset.

UCFCrime2Local dataset: This dataset enriches a portion
of UCF-Crime dataset [35] with spatio-temporal annotations
(bounding boxes) with particular attention to human-based
anomalies in six categories: arrest, assault, burglary, robbery,
stealing, and vandalism. The dataset contains 100 anomalous
videos and 200 normal videos. All the videos are long real-
world surveillance videos with anomalies of a significant
impact on public safety. We only use in our experiments the
following violent categories: Arrest, Assault, Robbery, and
Stealing. Because the videos have a long duration, they have
positive and negative instances. Each positive sample has a
max of three temporal instances of violence. During exper-
iments, all positive instances were used as violent samples.
For normal videos, we randomly chose videos from negative
instances and original normal videos, respectively. Finally, the
reduced dataset has 46 violent videos and 45 normal videos.
Figure 6 shows some examples of the dataset.

B. Implementation details and Results

In this section, we present the specific experimental steps
of the violence classifier, masking model, and refinement step
training and results. All models are implemented using the
Torch library.

Violence Classifier training: We fine-tuned three base
models: AlexNet [36], ResNet-50 [30] and DenseNet [37], pre-
trained on ImageNet to identify optimal values for the param-



Fig. 6. Frames captured from the UCFCrime2Local dataset. Frames in the
first row are violence samples while non-violence in the second row.

eters N and T , which determine the number of segments and
the segment length, respectively. We run this experiment on all
datasets using 5-fold cross-validation. On the training subsets,
we finetune all the layers of the respective models. During our
experiments, we analyze the impact of the parameters N and
T in violence detection.

Segment length (T): Figure 8a shows the classification accu-
racy using a dynamic image per video with different segment
lengths using an AlexNet as the classifier. We can see that
increasing the number of frames per dynamic image decreases
the classifier performance (For the Hockey Fight dataset, the
performance decreases using more than 40 frames). This is
because a dynamic image can be contaminated by background
motion when the number of frames increases. In Figure 9, we
show some examples of dynamic images varying the parameter
T . The best performance of the violence classifier is 95.5%,
82.0%, and 79.0% for the Hockey Fight, Violent Flows, and
UCFCrime2Local datasets, respectively.

Multiple Dynamic images (N): Analyzing the previous re-
sults, we train a ResNet-50 classifier using short segments
of video frames (10 frames), but now using more dynamic
images per video. Figure 8b shows the classification accuracy
using a different number of dynamic images per video. Using
multiple short segments reduces background noise, and the
classifier learns to model violent motions as a combination of
complex motions. The classifier achieves a 96.4%, 92.0%, and
79.1% of accuracy for the Hockey Fight, Violent Flows and
UCFCrime2Local datasets, respectively.

State of the Art comparison: Table I shows the classi-
fication accuracy for the Hockey Fight, Violent Flows and
UCFCrime2Local datasets. We can see that the proposed
method outperforms most of the methods and achieves com-
petitive results with state of the art. Our method is outper-
formed by a margin of one to two percentage degrees by [10],
[21], and [38] in the Hockey Fight, and Violent Flows datasets.
However, most of the methods shown in Table I can only detect
violence in videos in the temporal dimension. In contrast,
our method can detect and localize the violence in a two-
stage approach, identifying the region in the frame where the
violence occurs. To the best of our knowledge, in the literature
of violence detection, only a few methods like [38] can detect
and localize violence.

Method generalization: In order to evaluate the capability of

TABLE I
COMPARISON OF CLASSIFICATION RESULTS FOR THE HOCKEY FIGHT,

VIOLENT FLOWS AND UCFCRIME2LOCAL DATASETS.

Method Hockey Fight Violent Flows UCFCrime2Local
[39] 82.40% - -
[40] 90.10±0% - -
[9] 95.00% 94.31±1.65% -
[38] 96.80±1.04% 93.19±0.12% -
[13] 95.80% 95.11% -
[11] 95.00% - -
[10] 98.20±0.76% 93.09±1.14% -
[7] 88.60±1.2% 85.83 ±4.26% -
[12] 92.79±3.05% 92.29% -
[41] 81.25±0.59% 85.43±0.21% -
[42] 89.30±0.91% 76.83±1.76% -
[43] 89.10% 88.21% -
[6] 96.50% - -
[20] 83.19% - -
[21] 97.10±0.55% 94.57±2.34% -
[44] 95.90±3.53% 93.25±2.34% -
[19] 94.60±0.6% - -
Our method 96.40±0.3% 92.0 ±0.14% 79.1 ±0.191%

the method to generalize in the recognition of types of violence
different from those viewed during training, we evaluate the
classifier performance training on a dataset and testing in
another one. Table II shows the results. We can see that using
the Hockey Fight dataset during training, and testing on the
Violent Flows dataset, the classifier achieves a 62.2% of ac-
curacy. The poor performance is because of the big difference
between the two datasets. Using two more similar datasets
like Hockey Fight (train) and UCFCrime2Local (testing), the
classifier achieves a 50.5% of accuracy. Increasing the training
set with the Violent Flows dataset, increase the classifier
accuracy to 58.24%. Analyzing the obtained results, we can
conclude that the violence classifier based on dynamic images
has a low capability of generalization in different kinds of
violence such as fights, robberies, arrests, and crowd violence.

TABLE II
GENERALIZATION EXPERIMENT RESULTS.

Dataset train Dataset test Accuracy
Hockey Fight Violent flows 62.2 %
Hockey Fight UCFCrime2Local 50.5 %

Hockey Fight + Violent flows UCFCrime2Local 58.24 %

Mask Model training: The masking model training is about
minimizing the function from equation 4. We use 30 epochs to
train our model. The parameter values are λ1 = 8, λ2 = 0.5,
λ3 = 0.3 and λ4 = 0.3. The training set consists of 73 random
samples from the UCFCrime2Local dataset. The test set is
composed of the 18 remaining samples.

In order to evaluate our violence localization approach,
we use only the UCFCrime2Local dataset using the spatial
annotations provided in it. Similar to [28], we evaluate our
localization method using the localization error metric. Our
method achieves a 46.4% of localization error using the Yolo
V3 detector [33] and a 35.35% of localization error using the
Mask R-CNN detector [34]. In most cases, when our method
fails, it is because the object detector does not detect persons



Fig. 7. Outputs of the proposed refinement method.

(a) Accuracy vs segment length (AlexNet) (b) Accuracy vs Dynamic images (ResNet-50)

Fig. 8. Violence classifier performance using (a) different segment lengths, and (b) multiple dynamic images per video.

Fig. 9. Qualitative comparisons between dynamic images with different segment length (T ). When the number of frames increases, the dynamic image is
contaminated by background motion. Each row corresponds to a video sample. The first column shows a frame sample of the video, while the other columns
show dynamic images generated with a different number of frames.

in the segment, or the binary segmentation fails.

Impact of the classifier in localization: Because our lo-
calization method depends on the classifier performance, we

analyze the localization error training the mask model with
different classifiers. Table III shows the localization errors
using an AlexNet, ResNet50 and DenseNet, respectively. It



can be seen that localization has an improvement when the
classifier achieves a good performance. This is because the
masking model uses the knowledge of the violence classifier
to produce the binary mask. Some examples of the localization
results are showed in Figure 10. We can see that the mask
model trained with AlexNet classifier has the best performance
for the localization task. On the other hand, the mask model
trained with a DenseNet classifier has poor performance. Last
row of Figure 10 shows a fail localization in all models.

TABLE III
ACCURACY AND LOCALIZATION ERROR FOR THE UCFCRIME2LOCAL

DATASET USING DIFFERENT CLASSIFIERS.

Accuracy Localization
Error(%)

AlexNet 0.79 35.35%
ResNet-50 0.69 42.85%
DenseNet 0.77 85.7%

IV. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a method to detect and
localize violent actions using only temporal video annotations.
Our method follows a two-stage approach, firstly classifying a
video as violent or non-violent, and finally localizing violent
regions. Our method is based on dynamic images and convo-
lutional networks, and it achieves close results to state of the
art. We analyze the usefulness of dynamic images to represent
violent motion in videos. Using dynamic images instead of
optical flow frames to represent motion, allowed us to analyze
long temporal information, and at the same time, avoid the
high computational cost of optical flow. For three different
datasets, the video length, and the number of dynamic images
per video was studied. The results demonstrate that combining
multiple dynamic images of short frame sequences improve
the accuracy of violence classification. Due to the lack of a
publicly available violence dataset with spatial annotations, we
propose to localize violence spatially using the knowledge of
the classifier. The localization error of the masking model and
the refinement step is affected by the classifier performance.

Method Limitations: The proposed approach also has some
limitations, which must be improved in future works. First,
our two-stage approach for violence detection is limited by the
classifier performance, i.e., poor performance of the classifier
will generate poor saliency regions during the localization step.
Secondly, during the refinement step, we use a person detector
under the assumption that human agents are performing violent
actions. Therefore, the localization fails if the person detector
does not detect a person in the frame. Finally, more experi-
ments are needed to achieve a more robust method of violence
detection in real-world videos, such as long videos and videos
with two or more instances of violence in a frame. Future
works include experiments with more recent convolutional
network architectures, improve the refinement method, and
propose an end-to-end architecture for violence detection and
localization.
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